1
|
Badali V, Checa S, Zehn MM, Marinkovic D, Mohammadkhah M. Computational design and evaluation of the mechanical and electrical behavior of a piezoelectric scaffold: a preclinical study. Front Bioeng Biotechnol 2024; 11:1261108. [PMID: 38274011 PMCID: PMC10808828 DOI: 10.3389/fbioe.2023.1261108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Piezoelectric scaffolds have been recently developed to explore their potential to enhance the bone regeneration process using the concept of piezoelectricity, which also inherently occurs in bone. In addition to providing mechanical support during bone healing, with a suitable design, they are supposed to produce electrical signals that ought to favor the cell responses. In this study, using finite element analysis (FEA), a piezoelectric scaffold was designed with the aim of providing favorable ranges of mechanical and electrical signals when implanted in a large bone defect in a large animal model, so that it could inform future pre-clinical studies. A parametric analysis was then performed to evaluate the effect of the scaffold design parameters with regard to the piezoelectric behavior of the scaffold. The designed scaffold consisted of a porous strut-like structure with piezoelectric patches covering its free surfaces within the scaffold pores. The results showed that titanium or PCL for the scaffold and barium titanate (BT) for the piezoelectric patches are a promising material combination to generate favorable ranges of voltage, as reported in experimental studies. Furthermore, the analysis of variance showed the thickness of the piezoelectric patches to be the most influential geometrical parameter on the generation of electrical signals in the scaffold. This study shows the potential of computer tools for the optimization of scaffold designs and suggests that patches of piezoelectric material, attached to the scaffold surfaces, can deliver favorable ranges of electrical stimuli to the cells that might promote bone regeneration.
Collapse
Affiliation(s)
- Vahid Badali
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred M. Zehn
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Dragan Marinkovic
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Melika Mohammadkhah
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Zheng L, Wang C, Hu M, Apicella A, Wang L, Zhang M, Fan Y. An innovative additively manufactured implant for mandibular injuries: Design and preparation processes based on simulation model. Front Bioeng Biotechnol 2022; 10:1065971. [PMID: 36507282 PMCID: PMC9729797 DOI: 10.3389/fbioe.2022.1065971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: For mandibular injury, how to utilize 3D implants with novel structures to promote the reconstruction of large mandibular bone defect is the major focus of clinical and basic research. This study proposed a novel 3D titanium lattice-like implant for mandibular injuries based on simulation model, which is designed and optimized by a biomechanical/mechanobiological approach, and the working framework for optimal design and preparation processes of the implant has been validated to tailored to specific patient biomechanical, physiological and clinical requirements. Methods: This objective has been achieved by matching and assembling different morphologies of a lattice-like implant mimicking cancellous and cortical bone morphologies and properties, namely, an internal spongy trabecular-like structure that can be filled with bone graft materials and an external grid-like structure that can ensure the mechanical bearing capacity. Finite element analysis has been applied to evaluate the stress/strain distribution of the implant and bone graft materials under physiological loading conditions to determine whether and where the implant needs to be optimized. A topological optimization approach was employed to improve biomechanical and mechanobiological properties by adjusting the overall/local structural design of the implant. Results: The computational results demonstrated that, on average, values of the maximum von-Mises stress in the implant model nodes could be decreased by 43.14% and that the percentage of optimal physiological strains in the bone graft materials can be increased from 35.79 to 93.36% since early regeneration stages. Metal additive manufacturing technology was adopted to prepare the 3D lattice-like implant to verify its feasibility for fabrication. Following the working framework proposed in this study, the well-designed customized implants have both excellent biomechanical and mechanobiological properties, avoiding mechanical failure and providing sufficient biomechanical stimuli to promote new bone regeneration. Conclusion: This study is expected to provide a scientific and feasible clinical strategy for repairing large injuries of mandibular bone defects by offering new insights into design criteria for regenerative implants.
Collapse
Affiliation(s)
- Lingling Zheng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Chao Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China,*Correspondence: Chao Wang, ; Yubo Fan,
| | - Min Hu
- The First Medical Center of PLA General Hospital, Department of Stomatology, Beijing, China
| | - Antonio Apicella
- Polytechnique School of Engineering and Base Science, University of Campania, Aversa, CE, Italy
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Ming Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China,*Correspondence: Chao Wang, ; Yubo Fan,
| |
Collapse
|
3
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
4
|
Pires T, Dunlop JWC, Fernandes PR, Castro APG. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc Math Phys Eng Sci 2022; 478:20210607. [PMID: 35153613 PMCID: PMC8791047 DOI: 10.1098/rspa.2021.0607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John W C Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | | | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Wieja F, Jacobs G, Stein S, Kopp A, van Gaalen K, Kröger N, Zinser M. Development and validation of a parametric human mandible model to determine internal stresses for the future design optimization of maxillofacial implants. J Mech Behav Biomed Mater 2022; 125:104893. [PMID: 34715640 DOI: 10.1016/j.jmbbm.2021.104893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/26/2022]
Abstract
Large segmental mandible bone defects still represent a challenge for endogenous regeneration. Despite the bone's capacity to heal in many clinical situations, bone defects over a critical size do not heal spontaneously. An emerging treatment of critically sized mandibular defects is the implantation of individually manufactured scaffolds consisting of biodegradable magnesium alloys. Biomedical engineers faced the challenge of developing a scaffold structure that not only provides sufficient stability, but also stimulates and promotes bone growth while considering the degradation of the magnesium alloy. The porosity of the scaffold must also support bone ingrowth and neovascularization. For an optimal design and subsequent structural optimization knowledge of external load cases is essential. However, currently the muscle and joint forces of the mandible cannot be measured directly. The aim of our study was therefore the development of a parametric human mandible model to determine the relevant boundary conditions for the subsequent structural optimization of individual jawbone implants. Using a model-based approach, determining the essential external load of the mandible as a function of the age and sex of a patient individually and the realistic simulation of the mechanical stress for patient-specific loads and anatomies has been realized. The developed model is successfully validated by evaluating the deformations and stresses of the lower jaw of a possible patient and comparing them with the results of dental research. Based on the results of the modelling, in a subsequent optimization process section forces at the interface between the bone tissue and jawbone implant can be determined and used to optimize the design of the jawbone implant.
Collapse
Affiliation(s)
- Franziska Wieja
- Institute for Machine Elements and Systems Engineering, RWTH Aachen University, 52062, Aachen, Germany.
| | - Georg Jacobs
- Institute for Machine Elements and Systems Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Sebastian Stein
- Institute for Machine Elements and Systems Engineering, RWTH Aachen University, 52062, Aachen, Germany.
| | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937, Cologne, Germany.
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
6
|
Lu F, Wu R, Shen M, Xie L, Liu M, Li Y, Xu S, Wan L, Yang X, Gao C, Gou Z. Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Metz C, Duda GN, Checa S. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration. Acta Biomater 2020; 101:117-127. [PMID: 31669697 DOI: 10.1016/j.actbio.2019.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Substantial tissue loss, such as in large bone defects, represents a clinical challenge for which regenerative therapies and tissue engineering strategies aim at offering treatment alternatives to conventional replacement approaches by metallic implants. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. Here, we aim at giving a more comprehensive overview summarizing current computer optimization framework technologies. We confront these with the most recent advances in scaffold mechano-biological optimization, discuss their limitations and provide suggestions for future development. We conclude that the field needs to move forward to not only optimize scaffolds to avoid implant failures but to improve their mechano-biological behaviour: providing an initial stimulus for fast tissue organisation and healing and accounting for remodelling, scaffold degradation and consecutive filling with host tissue. So far, modelling approaches fall short in including the various scales of tissue dynamics. With this review, we wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds. STATEMENT OF SIGNIFICANCE: Large bone defects represent a clinical challenge for which tissue engineering strategies aim at offering alternatives to conventional treatment strategies. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. This review summarizes current computer optimization frameworks and most recent advances in mechano-biological optimization of bone scaffolds to better stimulate bone regeneration. We wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds.
Collapse
Affiliation(s)
- Camille Metz
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; MINES ParisTech - PSL Research University, Paris, France
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
8
|
Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular large defect: A simulated study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109934. [DOI: 10.1016/j.msec.2019.109934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
|
9
|
Weber FE. Reconsidering Osteoconduction in the Era of Additive Manufacturing. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:375-386. [PMID: 30997857 PMCID: PMC6784493 DOI: 10.1089/ten.teb.2019.0047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Bone regeneration procedures in clinics and bone tissue engineering stand on three pillars: osteoconduction, osteoinduction, and stem cells. In the last two decades, the focus in this field has been on osteoinduction, which is realized by the use of bone morphogenetic proteins and the application of mesenchymal stem cells to treat bone defects. However, osteoconduction was reduced to a surface phenomenon because the supposedly ideal pore size of osteoconductive scaffolds was identified in the 1990s as 0.3-0.5 mm in diameter, forcing bone formation to occur predominantly on the surface. Meanwhile, additive manufacturing has evolved as a new tool to realize designed microarchitectures in bone substitutes, thereby enabling us to study osteoconduction as a true three-dimensional phenomenon. Moreover, by additive manufacturing, wide-open porous scaffolds can be produced in which bone formation occurs distant to the surface at a superior bony defect-bridging rate enabled by highly osteoconductive pores 1.2 mm in diameter. This review provides a historical overview and an updated definition of osteoconduction and related terms. In addition, it shows how additive manufacturing can be instrumental in studying and optimizing osteoconduction of bone substitutes, and provides novel optimized features and boundaries of osteoconductive microarchitectures. Impact Statement This review updates the definition of osteoconduction and draws clear lines to discriminate between osteoconduction, osseointegration, and osteoinduction. Moreover, additively manufactured libraries of scaffolds revealed that: osteoconduction is more a three-dimensional than a surface phenomenon; microarchitecture dictates defect bridging, which is the measure for osteoconduction; pore diameter or the diagonal of lattice microarchitectures of osteoconductive bone substitutes should be ∼1.2 mm.
Collapse
Affiliation(s)
- Franz E. Weber
- Oral Biotechnology and Bioengineering, Center of Dental Medicine Department of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Bouet G, Cabanettes F, Bidron G, Guignandon A, Peyroche S, Bertrand P, Vico L, Dumas V. Laser-Based Hybrid Manufacturing of Endosseous Implants: Optimized Titanium Surfaces for Enhancing Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:4376-4385. [PMID: 33438403 DOI: 10.1021/acsbiomaterials.9b00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Additive manufacturing (AM) is becoming increasingly important in the orthopedic and dental sectors thanks to two major advantages: the possibility of custom manufacturing and the integration of complex structures. However, at smaller scales, surface conditions of AM products are not mastered. Numerous non-fused powder particles give rise to roughness values (Sa) greater than 10 μm, thus limiting biomedical applications since the surface roughness of, e.g., metal implants plays a major role in the quality and rate of osseointegration. In this study, an innovative hybrid machine combining AM and a femtosecond laser (FS) was used to obtain Ti6Al4V parts with biofunctional surfaces. During the manufacturing process, the FS laser beam "neatly" ablates the surface, leaving in its path nanostructures created by the laser/matter interaction. This step decreases the Sa from 11 to 4 μm and increases the surface wettability. The behavior of human mesenchymal stem cells was evaluated on these new AM+FS surfaces and compared with that on AM surfaces and also on polished surfaces. The number of cells attached 24 h after plating is equivalent on all surfaces, but cell spreading is higher on AM+FS surfaces compared with their AM counterparts. In the longer term (days 7 and 14), fibronectin and collagen synthesis increase on AM+FS surfaces as opposed to AM alone. Alkaline phosphatase activity, osteocalcin production, and mineralization, markers of osteogenic differentiation, are significantly lower on raw AM surfaces, whereas on the AM+FS specimens they display a level equivalent to that on the polished surface. Overall, these results indicate that using an FS laser beam during the fabrication of AM parts optimizes surface morphology to favor osteoblastic differentiation. This new hybrid machine could make it possible to produce AM implants with functional surfaces directly at the end of AM, thereby limiting their post-treatments.
Collapse
Affiliation(s)
- Guenaelle Bouet
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Frédéric Cabanettes
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Guillaume Bidron
- GIE Manutech-USD (Ultrafast Surface Design), 20 Rue Professeur Benoît Lauras, 42000 Saint-Etienne, France
| | - Alain Guignandon
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Sylvie Peyroche
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Philippe Bertrand
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Virginie Dumas
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| |
Collapse
|
11
|
Pobloth AM, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K, Windolf M, Tatai AÁ, Roth CP, Schaser KD, Duda GN, Schwabe P. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med 2019; 10:10/423/eaam8828. [PMID: 29321260 DOI: 10.1126/scitranslmed.aam8828] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/21/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) titanium-mesh scaffolds offer many advantages over autologous bone grafting for the regeneration of challenging large segmental bone defects. Our study supports the hypothesis that endogenous bone defect regeneration can be promoted by mechanobiologically optimized Ti-mesh scaffolds. Using finite element techniques, two mechanically distinct Ti-mesh scaffolds were designed in a honeycomb-like configuration to minimize stress shielding while ensuring resistance against mechanical failure. Scaffold stiffness was altered through small changes in the strut diameter only. Honeycombs were aligned to form three differently oriented channels (axial, perpendicular, and tilted) to guide the bone regeneration process. The soft scaffold (0.84 GPa stiffness) and a 3.5-fold stiffer scaffold (2.88 GPa) were tested in a critical size bone defect model in vivo in sheep. To verify that local scaffold stiffness could enhance healing, defects were stabilized with either a common locking compression plate that allowed dynamic loading of the 4-cm defect or a rigid custom-made plate that mechanically shielded the defect. Lower stress shielding led to earlier defect bridging, increased endochondral bone formation, and advanced bony regeneration of the critical size defect. This study demonstrates that mechanobiological optimization of 3D additive manufactured Ti-mesh scaffolds can enhance bone regeneration in a translational large animal study.
Collapse
Affiliation(s)
- Anne-Marie Pobloth
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hajar Razi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - James C Weaver
- Wyss Institute, Center for Life Science Building, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Markus Windolf
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Andras Á Tatai
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claudia P Roth
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Klaus-Dieter Schaser
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Department of Orthopaedic and Trauma Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. .,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Philipp Schwabe
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
12
|
Jin Z, Wu R, Shen J, Yang X, Shen M, Xu W, Huang R, Zhang L, Yang G, Gao C, Gou Z, Xu S. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties. J Mech Behav Biomed Mater 2018; 88:140-149. [PMID: 30170193 DOI: 10.1016/j.jmbbm.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 02/06/2023]
Abstract
Controllable mechanical strength and biodegradation of bioceramic scaffolds is a great challenge to treat the load-bearing bone defects. Herein a new strategy has been developed to fabricate porous bioceramic scaffolds with adjustable component distributions based on varying the core-shell-structured nozzles in three-dimensional (3D) direct ink writing platform. The porous bioceramic scaffolds composed of different nonstoichiometic calcium silicate (nCSi) with 0%, 4% or 10% of magnesium-substituting-calcium ratio (CSi, CSi-Mg4, CSi-Mg10) was fabricated. Beyond the mechanically mixed composite scaffolds, varying the different nCSi slurries through the coaxially aligned bilayer nozzle makes it easy to create core-shell bilayer bioceramic filaments and better control of the different nCSi distribution in pore strut after sintering. It was evident that the magnesium substitution in CSi contributed to the increase of compressive strength for the single-phasic scaffolds from 11.2 MPa (CSi), to 39.4 MPa (CSi-Mg4) and 80 MPa (CSi-Mg10). The nCSi distribution in pore struts in the series of core-shell-strut scaffolds could significantly adjust the strength [e.g. CSi@CSi-Mg10 (58.9 MPa) vs CSi-Mg10@CSi (30.4 MPa)] and biodegradation ratio in Tris buffer for a long time stage (6 weeks). These findings demonstrate that the nCSi components with different distributions in core or shell layer of pore struts lead to tunable strength and biodegradation inside their interconnected macropore architectures of the scaffolds. It is possibly helpful to develop new bioactive scaffolds for time-dependent tailoring mechanical and biological performances to significantly enhance bone regeneration and repair applications, especially in some load-bearing bone defects.
Collapse
Affiliation(s)
- Zhouwen Jin
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronghuan Wu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jianhua Shen
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Miaoda Shen
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Wangqiong Xu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
| | - Lei Zhang
- Department of Orthopdedic Surgery, The 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Guojing Yang
- Department of Orthopdedic Surgery, The 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Changyou Gao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
13
|
Bray JP, Kersley A, Downing W, Crosse KR, Worth AJ, House AK, Yates G, Coomer AR, Brown IWM. Clinical outcomes of patient-specific porous titanium endoprostheses in dogs with tumors of the mandible, radius, or tibia: 12 cases (2013–2016). J Am Vet Med Assoc 2017; 251:566-579. [DOI: 10.2460/javma.251.5.566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Uth N, Mueller J, Smucker B, Yousefi AM. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication 2017; 9:015023. [DOI: 10.1088/1758-5090/9/1/015023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
O'Reilly A, Kelly DJ. A Computational Model of Osteochondral Defect Repair Following Implantation of Stem Cell-Laden Multiphase Scaffolds. Tissue Eng Part A 2017; 23:30-42. [DOI: 10.1089/ten.tea.2016.0175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Adam O'Reilly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniel John Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Yánez A, Herrera A, Martel O, Monopoli D, Afonso H. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:445-448. [DOI: 10.1016/j.msec.2016.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
|
17
|
He D, Zhuang C, Xu S, Ke X, Yang X, Zhang L, Yang G, Chen X, Mou X, Liu A, Gou Z. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioact Mater 2016; 1:85-92. [PMID: 29744398 PMCID: PMC5883955 DOI: 10.1016/j.bioactmat.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
Mechanical strength and its long-term stability of bioceramic scaffolds is still a problem to treat the osteonecrosis of the femoral head. Considering the long-term stability of diopside (DIO) ceramic but poor mechanical strength, we developed the DIO-based porous bioceramic composites via dilute magnesium substituted wollastonite reinforcing and three-dimensional (3D) printing. The experimental results showed that the secondary phase (i.e. 10% magnesium substituting calcium silicate; CSM10) could readily improve the sintering property of the bioceramic composites (DIO/CSM10-x, x = 0-30) with increasing the CSM10 content from 0% to 30%, and the presence of the CSM10 also improved the biomimetic apatite mineralization ability in the pore struts of the scaffolds. Furthermore, the flexible strength (12.5-30 MPa) and compressive strength (14-37 MPa) of the 3D printed porous bioceramics remarkably increased with increasing CSM10 content, and the compressive strength of DIO/CSM10-30 showed a limited decay (from 37 MPa to 29 MPa) in the Tris buffer solution for a long time stage (8 weeks). These findings suggest that the new CSM10-reinforced diopside porous constructs possess excellent mechanical properties and can potentially be used to the clinic, especially for the treatment of osteonecrosis of the femoral head work as a bioceramic rod.
Collapse
Affiliation(s)
- Dongshuang He
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chen Zhuang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, 310003, China
| | - Xiurong Ke
- Rui'an People's Hospital, The 3rd Hospital Affiliated to Wenzhou Medical College, Rui'an, 325200, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lei Zhang
- Rui'an People's Hospital, The 3rd Hospital Affiliated to Wenzhou Medical College, Rui'an, 325200, China
| | - Guojing Yang
- Rui'an People's Hospital, The 3rd Hospital Affiliated to Wenzhou Medical College, Rui'an, 325200, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, PR China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, PR China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Shao H, Yang X, He Y, Fu J, Liu L, Ma L, Zhang L, Yang G, Gao C, Gou Z. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Biofabrication 2015; 7:035010. [DOI: 10.1088/1758-5090/7/3/035010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|