1
|
Korte D, Swapna MNS, Budasheva H, Diaz PC, Chhikara M, Škorjanc T, Tripon C, Farcas A, Pavlica E, Tran CD, Franko M. Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules. Int J Biol Macromol 2024; 282:136649. [PMID: 39419139 DOI: 10.1016/j.ijbiomac.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40-80 mWm-1 K-1, while the thermal diffusivities were on the order of fractions of mm2s-1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Collapse
Affiliation(s)
- Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia.
| | | | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Patricia Cazon Diaz
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Manisha Chhikara
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Tina Škorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Ajdovscina SI-5270, Slovenia
| | - Carmen Tripon
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Alexandra Farcas
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
2
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
3
|
Liu A, Huang Z, Cui S, Xiao Y, Guo X, Pan G, Song L, Deng J, Xu T, Fan Y, Wang R. Ionically assembled hemostatic powders with rapid self-gelation, strong acid resistance, and on-demand removability for upper gastrointestinal bleeding. MATERIALS HORIZONS 2024; 11:5983-5996. [PMID: 39422136 DOI: 10.1039/d4mh00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Upper gastrointestinal bleeding (UGIB) is bleeding in the upper part of the gastrointestinal tract with an acidic and dynamic environment that limits the application of conventional hemostatic materials. This study focuses on the development of N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride/phytic acid (HTCC/PA, HP) powders with fast hemostatic capability and strong acid resistance, for potential applications in managing UGIB. Upon contact with liquids within 5 seconds, HP powders rapidly transform into hydrogels, forming ionic networks through electrostatic interactions. The ionic crosslinking process facilitates the HP powders with high blood absorption (3.4 times of self-weight), sufficient tissue adhesion (5.2 and 6.1 kPa on porcine skin and stomach, respectively), and hemostasis (within 15 seconds for in vitro clotting). Interestingly, the PA imparts the HP powders with strong acid resistance (69.8% mass remaining after 10 days of incubation at pH 1) and on-demand removable sealing while HTCC contributes to fast hemostasis and good wet adhesion. Moreover, the HP powders show good biocompatibility and promote wound healing. Therefore, these characteristics highlight the promising clinical potential of HP powders for effectively managing UGIB.
Collapse
Affiliation(s)
- Ashuang Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 325035, P. R. China
| | - Zhimao Huang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Shengyong Cui
- Department of Burn Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, P. R. China
| | - Ying Xiao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Xiangshu Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Gaoke Pan
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Lei Song
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 325035, P. R. China
| | - Ting Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Youfen Fan
- Department of Burn Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, P. R. China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| |
Collapse
|
4
|
Xing BB, Liu B, Liu JY, Zhang T, Jiao H, Xu L. Fluorescence Visualization Quantitative Detection of Tetracycline and Nitrofurantoin in Food and Natural Water by Zn 2+@Eu-bpdc Composite. Inorg Chem 2024; 63:19652-19664. [PMID: 39370726 DOI: 10.1021/acs.inorgchem.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Quantitative detection of tetracycline (TC) and nitrofurantoin (NFT) in food and water is of importance for food safety and environmental protection. Herein, Zn2+ was introduced into a europium metal-organic framework Eu-bpdc (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) to prepare a composite of Zn2+@Eu-bpdc, which was developed as a fluorescence sensor for TC and NFT. The fluorescence mechanism concerns with bpdc2- ligand-to-Eu(III) charge transfer, and the detection mechanism is the inner filter effect. Zn2+@Eu-bpdc is a ratiometric fluorescence sensor for TC with the linear fitting equation of I520/I618 = 1.94 × 104 M-1CTC, whose limit of detection (LOD) is 0.148 μmol·L-1 (μM); it is also a fluorescence "turn-off" sensor for NFT with the fitting equation of (I0-I)/I = 3.62 × 104 M-1CNFT and LOD = 0.0792 μM. Zn2+@Eu-bpdc can detect TC or NFT in lake water, honey, and milk with high accuracy. The emission color changes of paper-based Zn2+@Eu-bpdc depending on CTC or CNFT reveal the visualization detections of TC and NFT. With the red and green values as input signals, smartphone-assisted on-site detection is utilized to recognize the antibiotic residuals of TC and NFT by a self-programmed APP. Zn2+@Eu-bpdc is promising in a smartphone-assisted intelligent platform for on-site detection of TC and NFT.
Collapse
Affiliation(s)
- Bing-Bing Xing
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Bing Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Jing-Yi Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Tao Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Huan Jiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Ling Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| |
Collapse
|
5
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
6
|
Feng C, Yang L. State of the art, trends, hotspots, and prospects of injection materials for controlling bleeding. Int Wound J 2024; 21:e14644. [PMID: 38272794 PMCID: PMC10789653 DOI: 10.1111/iwj.14644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Traumatic haemorrhage is a prevalent clinical condition, and effective and timely haemostasis is crucial for the preservation of patients' lives. In recent years, injectable hemostatic materials have gained significant attention due to their excellent hemostatic efficacy, biocompatibility, and biodegradability, making them widely applied in the treatment of incompressible traumatic haemorrhage. Systematic analysis of injectable hemostatic materials is crucial for research in this area. This article provides a comprehensive review of the development and research trends of injectable hemostatic materials over the past 20 years using visualization techniques. Analysis of collaboration and co-citation networks revealed localized research collaboration networks, highlighting the need for enhanced international collaboration in the field of injectable hemostatic materials. Current research focuses primarily on hemostatic materials, hemostatic processes, and hemostatic mechanisms. Injectable hemostatic materials with excellent performance offer promising strategies for wound healing. This review provides a comprehensive and systematic summary of injectable hemostatic materials, offering valuable guidance for the development and clinical application of novel injectable hemostatic materials. Additionally, visualized methodology and mapping analysis are effective data mining methods that provide approaches and strategies for clear knowledge network analysis. These methods facilitate better understanding and interpretation of research dynamics in the field of injectable hemostatic materials, thereby guiding and inspiring future research.
Collapse
Affiliation(s)
- Changsheng Feng
- School of Physics and Electronic InformationYan'an UniversityYan'anChina
| | - Liang Yang
- School of Physics and Electronic InformationYan'an UniversityYan'anChina
| |
Collapse
|
7
|
Xing BB, Liu B, Luo GX, Ge T, Jiao H, Xu L. A Europium Metal-Organic Framework and Its Polymer Composite Membrane as Switch-Off Fluorescence Sensors for Antibiotic Detection in Lake Water. Inorg Chem 2023; 62:21277-21289. [PMID: 38054289 DOI: 10.1021/acs.inorgchem.3c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The detection of antibiotic residues is of great significance in monitoring their overuse in healthcare, livestock and poultry farming, and agricultural production. Herein, EuCl3 and 4,4'-dicarboxyl-diphenoxyethene (H2DPOE) ionothermally reacted in 1-methyl-3-butylimidazolium chloride to give a europium metal-organic framework (Eu-DPOE). Eu-DPOE shows different fluorescence quenching rates for sensing eight antibiotics under different excitation wavelengths. Eu-DPOE displays a fast response, high selectivity, and sensitivity in antibiotic detection by fluorescence quenching. Eu-DPOE can sensitively detect TCs (tetracyclines), NOR (norfloxacin), NFT (furazolidone), ODZ (ornidazole), SDZ (sulfadiazine), and CHL (chloramphenicol) with limits of detection below 0.5 μmol/L. It provides a convenient and rapid tool for sensing antibiotics in aqueous solution. The detection mechanism is a competition absorption between DPOE2- and antibiotics with the supports from powder X-ray diffraction (PXRD), UV-vis spectra, and fluorescence lifetime. With a composite membrane of poly(vinylidene fluoride) (PVDF) matrix loading Eu-DPOE (Eu-DPOE@PVDF), Eu-DPOE@PVDF exhibits a visual fluorescence response to NOR under a 254 nm UV lamp and NFT and CTC under 365 nm. Eu-DPOE@PVDF is applied in the quantitative detection of CTC, NOR, and NFT in lake water with recovery rates ranging from 88.37 to 113.8%. Totally, fluorescence-quenched Eu-DPOE@PVDF exhibits a fast response, high selectivity, and sensitivity in sensing CTC, NOR, and NFT.
Collapse
Affiliation(s)
- Bing-Bing Xing
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China
| | - Bing Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, P. R. China
| | - Guo-Xin Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China
| | - Tong Ge
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China
| | - Huan Jiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China
| | - Ling Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China
| |
Collapse
|
8
|
Fuest S, Smeets R, Gosau M, Aavani F, Knipfer C, Grust ALC, Kopp A, Becerikli M, Behr B, Matthies L. Layer-by-Layer Deposition of Regenerated Silk Fibroin─An Approach to the Surface Coating of Biomedical Implant Materials. ACS Biomater Sci Eng 2023; 9:6644-6657. [PMID: 37983947 DOI: 10.1021/acsbiomaterials.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Biomaterials and coating techniques unlock major benefits for advanced medical therapies. Here, we explored layer-by-layer (LbL) deposition of silk fibroin (SF) by dip coating to deploy homogeneous films on different materials (titanium, magnesium, and polymers) frequently used for orthopedic and other bone-related implants. Titanium and magnesium specimens underwent preceding plasma electrolytic oxidation (PEO) to increase hydrophilicity. This was determined as surface properties were visualized by scanning electron microscopy and contact angle measurements as well as Fourier transform infrared spectroscopy (FTIR) analysis. Finally, biological in vitro evaluations of hemocompatibility, THP-1 cell culture, and TNF-α assays were conducted. A more hydrophilic surface could be achieved using the PEO surface, and the contact angle for magnesium and titanium showed a reduction from 73 to 18° and from 58 to 17°, respectively. Coating with SF proved successful on all three surfaces, and coating thicknesses of up to 5.14 μm (±SD 0.22 μm) were achieved. Using FTIR analysis, it was shown that the insolubility of the material was achieved by post-treatment with water vapor annealing, although the random coil peak (1640-1649 cm-1) and the α-helix peak (at 1650 cm-1) were still evident. SF did not change hemocompatibility, regardless of the substrate, whereas the PEO-coated materials showed improved hemocompatibility. THP-1 cell culture showed that cells adhered excellently to all of the tested material surfaces. Interestingly, SF coatings induced a significantly higher amount of TNF-α for all materials, indicating an inflammatory response, which plays an important role in a variety of physiological processes, including osteogenesis. LbL coatings of SF are shown to be promising candidates to modulate the body's immune response to implants manufactured from titanium, magnesium, and polymers. They may therefore facilitate future applications for bioactive implant coatings. However, further in vivo studies are needed to confirm the proposed effects on osteogenesis in a physiological environment.
Collapse
Affiliation(s)
- Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
9
|
Eghbali H, Sadeghi M, Noroozi M, Movahedifar F. Vanillin crosslinked 3D porous chitosan hydrogel for biomedicine applications: Preparation and characterization. J Mech Behav Biomed Mater 2023; 145:106044. [PMID: 37506568 DOI: 10.1016/j.jmbbm.2023.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Crosslinked chitosan (CS) is one of the most useable hydrogels in biomedicine and tissue engineering. Unlike most chitosan crosslinkers that are toxic, such as glutaraldehyde, vanillin is a natural, biocompatible, and antimicrobial alternative. The crosslinking of chitosan and vanillin consists of Schiff base bonds between the amines of chitosan and the aldehydes of vanillin, in addition to hydrogen bonds formed across the network. In most studies, the combination of chitosan and vanillin has been investigated in small sizes (micro/nanoscale and biofilms). In this study, a chitosan-vanillin (CV) hydrogel was studied on a macroscale with a three-dimensional porous structure, and it was compared with chitosan crosslinked with glutaraldehyde (CG) on the same scale. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (FE-SEM) used to identify the bonds formed and examine the morphology of the hydrogels. The gel content, swelling, porosity, mechanical properties, cell viability (on L929 and mesenchymal cells), and antibacterial activity (against Escherichia coli and Staphylococcus aureus) of the samples were investigated. The results showed that the CV had both gel content and high porosity (>90%), with an interconnected porous network of uniform pore size. The CV hydrogel exhibited good antibacterial activity and cell viability. In terms of mechanical properties, CV has weaker mechanical properties compared to CG in the dry state, while the mechanical properties of CV have more improved in the swollen state compared to CG.
Collapse
Affiliation(s)
- Hadis Eghbali
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohsen Sadeghi
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mojgan Noroozi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fahimeh Movahedifar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
10
|
Chen R, Du F, Yuan Q. Multifunctional Sodium Hyaluronate/Chitosan Foam Used as an Absorbable Hemostatic Material. Bioengineering (Basel) 2023; 10:868. [PMID: 37508894 PMCID: PMC10376295 DOI: 10.3390/bioengineering10070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Absorbable hemostatic materials have great potential in clinical hemostasis. However, their single coagulation mechanism, long degradation cycles, and limited functionality mean that they have restricted applications. Here, we prepared a sodium hyaluronate/carboxymethyl chitosan absorbable hemostatic foam (SHCF) by combining high-molecular-weight polysaccharide sodium hyaluronate with carboxymethyl chitosan via hydrogen bonding. SHCFs have rapid liquid absorption performance and can enrich blood cells. They transform into a gel when it they come into contact with blood, and are more easily degraded in this state. Meanwhile, SHCFs have multiple coagulation effects and promote hemostasis. In a rabbit liver bleeding model, SHCFs reduced the hemostatic time by 85% and blood loss by 80%. In three severe and complex bleeding models of porcine liver injury, uterine wall injury, and bone injury, bleeding was well-controlled and anti-tissue adhesion effects were observed. In addition, degradation metabolism studies show that SHCFs are 93% degraded within one day and almost completely metabolized within three weeks. The absorbable hemostatic foam developed in this study is multifunctional; with rapid hemostasis, anti-adhesion, and rapid degradation properties, it has great clinical potential for in vivo hemostasis.
Collapse
Affiliation(s)
- Ran Chen
- Laboratory of Biosynthesis and Efficient Separation of Natural Active Ingrediens, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanglin Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- Laboratory of Biosynthesis and Efficient Separation of Natural Active Ingrediens, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Suneetha M, Won SY, Zo SM, Han SS. Fungal Carboxymethyl Chitosan-Impregnated Bacterial Cellulose Hydrogel as Wound-Dressing Agent. Gels 2023; 9:gels9030184. [PMID: 36975633 PMCID: PMC10048145 DOI: 10.3390/gels9030184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS–BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC’s improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS–BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS–BC hydrogels is shown using the CFU method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the CMCS–BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS–BC hydrogels can be considered suitable for antibacterial wound dressing applications.
Collapse
Affiliation(s)
- Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Correspondence: (M.S.); (S.S.H.); Tel.: +8253-810-2773 (S.S.H.); Fax: +8253-810-4686 (S.S.H.)
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Correspondence: (M.S.); (S.S.H.); Tel.: +8253-810-2773 (S.S.H.); Fax: +8253-810-4686 (S.S.H.)
| |
Collapse
|
13
|
Zheng Y, Wu J, Zhu Y, Wu C. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem Sci 2022; 14:29-53. [PMID: 36605747 PMCID: PMC9769395 DOI: 10.1039/d2sc04962g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
The challenge for the treatment of severe traumas poses an urgent clinical need for the development of biomaterials to achieve rapid hemostasis and wound healing. In the past few decades, active inorganic components and their derived composites have become potential clinical products owing to their excellent performances in the process of hemorrhage control and tissue repair. In this review, we provide a current overview of the development of inorganic-based biomaterials used for hemostasis and wound healing. We highlight the methods and strategies for the design of inorganic-based biomaterials, including 3D printing, freeze-drying, electrospinning and vacuum filtration. Importantly, inorganic-based biomaterials for rapid hemostasis and wound healing are presented, and we divide them into several categories according to different chemistry and forms and further discuss their properties, therapeutic mechanisms and applications. Finally, the conclusions and future prospects are suggested for the development of novel inorganic-based biomaterials in the field of rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| |
Collapse
|
14
|
Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 33:1595-1622. [DOI: 10.1080/09205063.2022.2068941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Pereira PFS, de Paula E Silva ACA, da Silva Pimentel BNA, Pinatti IM, Simões AZ, Vergani CE, Barreto-Vieira DF, da Silva MAN, Miranda MD, Monteiro MES, Tucci A, Doñate-Buendía C, Mínguez-Vega G, Andrés J, Longo E. Inactivation of SARS-CoV-2 by a chitosan/α-Ag 2WO 4 composite generated by femtosecond laser irradiation. Sci Rep 2022; 12:8118. [PMID: 35581241 PMCID: PMC9114143 DOI: 10.1038/s41598-022-11902-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.
Collapse
Affiliation(s)
- Paula Fabiana Santos Pereira
- CDMF, LIEC, Department of Chemistry, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, SP, 13565-905, Brazil.,Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain
| | - Ana Carolina Alves de Paula E Silva
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Bruna Natália Alves da Silva Pimentel
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Ivo Mateus Pinatti
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain.,Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), Guaratinguetá, SP, 12516-410, Brazil
| | - Alexandre Zirpoli Simões
- Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), Guaratinguetá, SP, 12516-410, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Débora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | | | - Milene Dias Miranda
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Maria Eduarda Santos Monteiro
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Amanda Tucci
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Carlos Doñate-Buendía
- GROC UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat sn, 12071, Castellón de la Plana, Spain.,Materials Science and Additive Manufacturing, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Gladys Mínguez-Vega
- GROC UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain
| | - Elson Longo
- CDMF, LIEC, Department of Chemistry, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
16
|
Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:874. [PMID: 35267697 PMCID: PMC8912483 DOI: 10.3390/polym14050874] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.
Collapse
Affiliation(s)
- Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Humaira Alias Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Abu Hassan Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Norzita Ngadi
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Mohamed Yusoff Mohd Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Salit Mohd Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| | - Edi Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, West Sumatra, Indonesia;
| | - Nasmi Herlina Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia;
| | - Mazlan Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Nuriah Abd Majid
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Zuliskandar Ramli
- Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Ashraf Azmi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Rushdan Ibrahim
- Pulp and Paper Branch, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia;
| |
Collapse
|
17
|
Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem 2021; 5:773-791. [PMID: 37117664 DOI: 10.1038/s41570-021-00323-z] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. The first step in wound healing is haemostasis, and the development of haemostatic materials that aid wound healing has accelerated in the past 5 years. Numerous haemostatic materials have been fabricated, composed of different active components (including natural polymers, synthetic polymers, silicon-based materials and metal-containing materials) and in various forms (including sponges, hydrogels, nanofibres and particles). In this Review, we provide an overview of haemostatic materials in wound healing, focusing on their chemical design and operation. We describe the physiological process of haemostasis to elucidate the principles that underpin the design of haemostatic wound dressings. We also highlight the advantages and limitations of the different active components and forms of haemostatic materials. The main challenges and future directions in the development of haemostatic materials for wound healing are proposed.
Collapse
|
18
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Zheng X, Chen Y, Dan N, Dan W, Li Z. Highly stable collagen scaffolds crosslinked with an epoxidized natural polysaccharide for wound healing. Int J Biol Macromol 2021; 182:1994-2002. [PMID: 34062157 DOI: 10.1016/j.ijbiomac.2021.05.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 01/13/2023]
Abstract
As a biocompatible and bioactive natural tissue engineering collagen scaffold, porcine acellular dermal matrix (pADM) has limitations for the application in tissue regeneration due to its low strength and rapid biodegradation. Herein, to get a good wound dressing, the epoxy group was added to N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to synthesize the epoxidized N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (EHTCC), and the porcine acellular dermal matrix was modified with EHTCC at different dosage of 0, 4, 8, 12, 16 and 20%. The properties of the EHTCC-pADM were evaluated. The results indicated that the thermal stability and mechanical properties of EHTCC-pADM were remarkably improved, and the natural conformation of the matrix was maintained, which was beneficial to natural and excellent biological properties of the pADM. According to the test results of water contact angle, the hydrophilicity of the material was improved, which is conducive to cell adhesion, proliferation and growth. Cytotoxicity experiments showed that the introduction of EHTCC would not adversely affect the biocompatibility of the materials. In vivo experiments showed that EHTCC-pADM could promote wound healing. In conclusion, EHTCC-pADM is a potential collagen-based dressing for wound healing.
Collapse
Affiliation(s)
- Xin Zheng
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| | - Yining Chen
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China.
| | - Weihua Dan
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China.
| | - Zhengjun Li
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Lai W, Deng R, He T, Wong W. A Bioinspired, Sustained-Release Material in Response to Internal Signals for Biphasic Chemical Sensing in Wound Therapy. Adv Healthc Mater 2021; 10:e2001267. [PMID: 33184990 DOI: 10.1002/adhm.202001267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Indexed: 12/25/2022]
Abstract
Biofluorescence in living entities is a functional process associated with information conveyance; whereas the capacity to respond to internal physiological signals is a unique property of a cell. By integrating these two biological features into materials design, a bioinspired material, namely CPS, is developed. Contrary to conventional luminescent polymeric systems whose emission comes from π-conjugated structures, this material displays clusterization-triggered emission. In the preclinical trial on a dermal punch model of tissue repair, it successfully increases the rate of wound closure, reduces inflammatory cell infiltration, and enhances collagen deposition. It can also relay changes in internal chemical signals into changes in its intrinsic luminescence for biphasic chemical sensing to prevent possible occurrence of skin hyperpigmentation caused by minocycline hydrochloride in wound therapy. Together with its ease of fabrication, high biocompatibility, high drug loading efficiency, and high release sustainability, CPS shows high potential to be developed into an intelligent solid-state device for wound treatment in the future.
Collapse
Affiliation(s)
- Wing‐Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| | - Ryan Deng
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Wing‐Tak Wong
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| |
Collapse
|
21
|
Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Mar Drugs 2020; 18:E346. [PMID: 32629815 PMCID: PMC7401240 DOI: 10.3390/md18070346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023] Open
Abstract
Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have emerged as platforms able to overcome those drawbacks, opening many routes to enlarge the use of marine-derived polymers as biomaterials, among other applications. From this perspective, ILs can be used as an efficient extraction media for polysaccharides from marine microalgae and wastes (e.g., crab shells, squid, and skeletons) or as solvents to process them in different shapes, such as films, hydrogels, nano/microparticles, and scaffolds. The resulting architectures can be applied in wound repair, bone regeneration, or gene and drug delivery systems. This review is focused on the recent research on the applications of ILs as processing platforms of biomaterials derived from marine polymers.
Collapse
Affiliation(s)
- Simone S. Silva
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Joana M. Gomes
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
22
|
Sakthiguru N, Sithique MA. Preparation and In Vitro Biological Evaluation of Lawsone Loaded O‐Carboxymethyl Chitosan/Zinc Oxide Nanocomposite for Wound‐Healing Application. ChemistrySelect 2020. [DOI: 10.1002/slct.201904159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nagarajan Sakthiguru
- PG and Research Department of ChemistryIslamiah College (Autonomous), Vaniyambadi- 635 752 Tamil Nadu India
| | | |
Collapse
|
23
|
Development and characterization of chitosan/polyvinyl alcohol polymer material with elastolytic and collagenolytic activities. Enzyme Microb Technol 2020; 132:109399. [DOI: 10.1016/j.enzmictec.2019.109399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022]
|
24
|
Becherini S, Mitmoen M, Tran CD. Natural Sporopollenin Microcapsules Facilitated Encapsulation of Phase Change Material into Cellulose Composites for Smart and Biocompatible Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44708-44721. [PMID: 31725254 DOI: 10.1021/acsami.9b15530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sporopollenin exine capsules (SECs) are empty microcapsules that are 25 μm in diameter and have extensive networks of ∼200 nm diameter holes obtained by chemically removing all external and internal cytoplastic materials from the natural pollen grains. We have demonstrated that a phase change material (PCM) such as n-eicosane (EIS), a natural paraffin wax, can be successfully encapsulated in the SECs to produce [EIS@SEC]. The high stability and robust nature of SECs retain EIS in the microcavity even during phase transitions, enabling EIS to fully maintain its phase change property while also protecting the EIS from elevated temperatures and corrosive environments. [EIS@SEC] can, therefore, be incorporated into cellulose (CEL) composites with a synthetic process that uses the simple ionic liquid butylmethylimmidazolium chloride to produce [CEL+EIS@SEC] composites. Similar to EIS alone, EIS in the [CEL+EIS@SEC] composites melts when heated and crystallizes when cooled. The energies associated with the crystallization and melting processes enable the [CEL+EIS@SEC] composites to fully exhibit the properties expected of PCMs, i.e., heating the surroundings when they cool and absorbing energy from the surroundings when they warm. The efficiency of latent heat storage and release of [CEL+EIS@SEC] composites was estimated to be around 57% relative to pure EIS. The fact that the DSC curves of the [CEL+EIS@SEC] composites remain the same after going through the heating-melting cycle 220 times clearly indicates that SEC effectively retains EIS in its cavity and protects it from leaking and that the [CEL+EIS@SEC] composites are highly stable and reliable as a phase change material. The [CEL+EIS@SEC] composites are superior to any other available materials based on encapsulated PCM because they are not only robust, reliable, and stable and have strong mechanical properties. They are also are sustainable and biocompatible because as they are synthesized from all naturally abundant materials using a green and recyclable synthesis. These features enable the [CEL+EIS@SEC] composites to be uniquely suited as high performance materials for such uses as dressings to treat burnt wounds, smart textiles for clothing, smart building materials, and energy storage.
Collapse
Affiliation(s)
- Stefano Becherini
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201 , United States
| | - Mark Mitmoen
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201 , United States
| | - Chieu D Tran
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201 , United States
| |
Collapse
|
25
|
Ali Khan Z, Jamil S, Akhtar A, Mustehsan Bashir M, Yar M. Chitosan based hybrid materials used for wound healing applications- A short review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1575828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Shahrin Jamil
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Amna Akhtar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
- Department of Chemical Engineering, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Muhammad Mustehsan Bashir
- Department of Plastic, Reconstructive surgery and Burn Unit, King Edward Medical University Lahore, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| |
Collapse
|
26
|
Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L. Fabrication of Cellulose Nanocrystal/Chitosan Hydrogel for Controlled Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E253. [PMID: 30781761 PMCID: PMC6409612 DOI: 10.3390/nano9020253] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
In this work, a novel nanocomposite hydrogel based on cellulose nanocrystal (CNC) and chitosan (CS) was fabricated and applied as a carrier for the controlled delivery of theophylline. CNC was firstly periodate-oxidized to obtain dialdehyde nanocellulose (DACNC). Then, chitosan was crosslinked using DACNC as both the matrix and crosslinker in different weight ratios, to fabricate CNC/CS composites. The prepared composites were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), zeta potential measurement and swelling ratio tests. FT-IR results confirmed the successful reaction between the free amino groups on chitosan and the aldehyde groups on DACNC. With the increase of chitosan percentage in the hydrogel, the isoelectric point was shifted towards an alkaline pH, which was probably caused by the higher content of free amino groups. The swelling ratio of the composite also increased, which may have been due to the decrease of crosslinking density. Because the swelling ratio of the drug-loaded hydrogels differed under varied pH values, the cumulative drug release percentage of the composite hydrogel was achieved to approximately 85% and 23% in the gastric (pH 1.5) and intestinal (pH 7.4) fluids, respectively. Therefore, CNC/CS hydrogel has application potential as a theophylline carrier.
Collapse
Affiliation(s)
- Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yunzhong Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qiucun Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yongjian Xu
- Shaanxi Province Key Lab of Paper Technology and Specialty Paper, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Liqiang Jin
- College of Leather Chemical and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
27
|
Chen X, Fu W, Cao X, Jiang H, Che X, Xu X, Ma B, Zhang J. Peptide SIKVAV-modified chitosan hydrogels promote skin wound healing by accelerating angiogenesis and regulating cytokine secretion. Am J Transl Res 2018; 10:4258-4268. [PMID: 30662668 PMCID: PMC6325526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Skin wound healing is complex and involves the processes of many factors, among which angiogenesis and inflammatory responses play important roles. New blood vessels provide nutrition and oxygen for skin wound repair. Cytokines in skin wounds, which include pro-inflammatory and anti-inflammatory factors, can modulate the inflammatory response. Therefore, treatment strategies that promote angiogenesis and modulate the inflammatory response in skin wounds can accelerate skin wound healing. This study explored the effects of peptide Ser-Ile-Lys-Val-Ala-Val (SIKVAV)-modified chitosan hydrogels in skin wound healing. General observation demonstrated that SIKVAV-modified chitosan hydrogels promoted the contraction of skin wounds compared with the negative and positive controls. Masson's trichrome staining indicated that peptide-modified chitosan hydrogels accelerated the deposition of more collagen fibers in the skin wounds compared with the negative and positive controls. Immunohistochemistry assays showed that more myofibroblasts were deposited and more angiogenesis was found in skin wounds treated with peptide-modified chitosan hydrogels compared with the negative and positive controls. In addition, qRT-PCR assays showed that peptide-modified chitosan hydrogels promoted the expression of TGF-β1 (transforming growth factor-β1) mRNA and inhibited the expression of TNF-α (tumor necrosis factor-α) mRNA and IL-1β (Interleukin-1β) mRNA and IL-6 (Interleukin-6) mRNA in skin wounds. Taken together, these results indicate the potential of SIKVAV-modified chitosan hydrogels in skin wound healing as complex biomaterials.
Collapse
Affiliation(s)
- Xionglin Chen
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Wenxue Fu
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Xiaoming Cao
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - He Jiang
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Xiangxin Che
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Xiaoyuan Xu
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Baicheng Ma
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| | - Jie Zhang
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang UniversityJiujiang 332000, China
| |
Collapse
|
28
|
A review on recent advances in chitosan based composite for hemostatic dressings. Int J Biol Macromol 2018; 124:138-147. [PMID: 30447365 DOI: 10.1016/j.ijbiomac.2018.11.045] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022]
Abstract
High mortality rate in potentially survivable casualties due to severe hemorrhage is a major challenge in today's battlefield because technological advancements have revolutionized the combat tactics and complicated the type and severity associated with wound grades. Quality of pre-hospital care prior to patient evacuation is crucial in determining the survival rate in injured patients. To deal with this challenge, considerable improvements in the hemostatic dressings have been introduced and pre-hospital care has been upgraded in many tactical combat casually care guidelines. Combat Gauze has been widely used bandage which is now been replaced by different chitosan based hemostatic dressings. It not only exhibits anti-bacterial activity but also induces hemostasis via direct interaction with erythrocytes and platelets. Its hemostasis mechanism is not dependent on host coagulation pathway which makes it an ideal dressing to stop bleeding in coagulopathic patients. Different generations of chitosan bandages have been developed to overcome the limitations of previous ones. This review provides performance analysis of chitosan bandage generations and discusses the progress made in its fabrication methods during the recent years.
Collapse
|
29
|
Chen X, Cao X, Jiang H, Che X, Xu X, Ma B, Zhang J, Huang T. SIKVAV-Modified Chitosan Hydrogel as a Skin Substitutes for Wound Closure in Mice. Molecules 2018; 23:E2611. [PMID: 30314388 PMCID: PMC6222830 DOI: 10.3390/molecules23102611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Skin wound healing is a complex and dynamic process that involves angiogenesis and growth factor secretion. Newly formed vessels can provide nutrition and oxygen for skin wound healing. Growth factors in skin wounds are important for keratinocytes and fibroblasts proliferation, epithelialization, extracellular matrix remodeling, and angiogenesis, which accelerate skin wound healing. Therefore, treatment strategies that enhance angiogenesis and growth factors secretion in skin wounds can accelerate skin wound healing. This study investigated the effects of a SIKVAV (Ser-Ile-Lys-Val-Ala-Val) peptide-modified chitosan hydrogel on skin wound healing. Hematoxylin and eosin (H&E) staining demonstrated that the SIKVAV-modified chitosan hydrogel accelerated the re-epithelialization of wounds compared with that seen in the negative and positive controls. Masson's trichrome staining showed that more collagen fibers were deposited in the skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. Immunohistochemistry assays demonstrated that more myofibroblasts were deposited and more angiogenesis occurred in skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. In addition, ELISA assays showed that the SIKVAV-modified chitosan hydrogels promoted the secretion of growth factors in skin wounds. Taken together, these results suggest that the SIKVAV-modified chitosan hydrogel has the potential to be developed as synthesized biomaterials for the treatment of skin wounds.
Collapse
Affiliation(s)
- Xionglin Chen
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Xiaoming Cao
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - He Jiang
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Xiangxin Che
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Xiaoyuan Xu
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Baicheng Ma
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Jie Zhang
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| | - Tao Huang
- Department of Histology & Embryology and Medical Genetics, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332000, China.
| |
Collapse
|
30
|
Giusto G, Beretta G, Vercelli C, Valle E, Iussich S, Borghi R, Odetti P, Monacelli F, Tramuta C, Grego E, Nebbia P, Robino P, Odore R, Gandini M. Pectin-honey hydrogel: Characterization, antimicrobial activity and biocompatibility. Biomed Mater Eng 2018; 29:347-356. [PMID: 29578463 DOI: 10.3233/bme-181730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Novel pectin-honey hydrogels have been developed and characterized as medical device. Ideally, a wound dressing should maintain optimal fluid affinity, permit moisture evaporation, protect the wound from microbes, and have shape-conformability, biocompatibility, and antibacterial activity. OBJECTIVE A novel, simple and fast method to produce pectin-honey wound dressings is described. METHODS The properties of these pectin-honey hydrogels were investigated, including swelling ability, water vapour transmission rate, hydrogen peroxide production, methylglyoxal content and antibacterial activity. Biocompatibility was assessed by proliferation assays using cultured fibroblast cells and by in vivo study with subcutaneous and intraperitoneal implantation in rats. RESULTS Hydrogel showed a good water vapour transmission rate, fluid uptake and were not cytotoxic for fibroblasts. The hydrogel demonstrated good antibacterial activity toward clinically relevant pathogens, including S. aureus and E. coli. Biocompatibility was confirmed by the measurement of plasma levels of interleukin (IL)1 beta, IL-6, tumour necrosis factor (TNF) alpha, and prostaglandin (PG)E2. No histological changes were observed. CONCLUSIONS The presence of a natural active component, conformability, and complete resorbability are the main characteristics of this new biocompatible biomaterial that is well tolerated by the body, possibly improves healing, may be used for surgical complications prevention, with a simple and inexpensive production process.
Collapse
Affiliation(s)
- Gessica Giusto
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences DISFARM, University of Milan, Via Mangiagalli 25, 20133 Milano (MI), Italy
| | - Cristina Vercelli
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Emanuela Valle
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Roberta Borghi
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Clara Tramuta
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Rosangela Odore
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Marco Gandini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| |
Collapse
|
31
|
Gianino E, Miller C, Gilmore J. Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering (Basel) 2018; 5:E51. [PMID: 29949930 PMCID: PMC6163915 DOI: 10.3390/bioengineering5030051] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Given their severity and non-healing nature, diabetic chronic wounds are a significant concern to the 30.3 million Americans diagnosed with diabetes mellitus (2015). Peripheral arterial diseases, neuropathy, and infection contribute to the development of these wounds, which lead to an increased incidence of lower extremity amputations. Early recognition, debridement, offloading, and controlling infection are imperative for timely treatment. However, wound characterization and treatment are highly subjective and based largely on the experience of the treating clinician. Many wound dressings have been designed to address particular clinical presentations, but a prescriptive method is lacking for identifying the particular state of chronic, non-healing wounds. The authors suggest that recent developments in wound dressings and biosensing may allow for the quantitative, real-time representation of the wound environment, including exudate levels, pathogen concentrations, and tissue regeneration. Development of such sensing capability could enable more strategic, personalized care at the onset of ulceration and limit the infection leading to amputation. This review presents an overview of the pathophysiology of diabetic chronic wounds, a brief summary of biomaterial wound dressing treatment options, and biosensor development for biomarker sensing in the wound environment.
Collapse
Affiliation(s)
- Elizabeth Gianino
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| | - Craig Miller
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| | - Jordon Gilmore
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| |
Collapse
|
32
|
Mehrabani MG, Karimian R, Rakhshaei R, Pakdel F, Eslami H, Fakhrzadeh V, Rahimi M, Salehi R, Kafil HS. Chitin/silk fibroin/TiO 2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. Int J Biol Macromol 2018; 116:966-976. [PMID: 29782987 DOI: 10.1016/j.ijbiomac.2018.05.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
Interconnected microporous biodegradable and biocompatible chitin/silk fibroin/TiO2 nanocomposite wound dressing with high antibacterial, blood clotting and mechanical strength properties were synthesized using freeze-drying method. The prepared nanocomposite dressings were characterized using SEM, FTIR, and XRD analysis. The prepared nanocomposite dressings showed high porosity above 90% with well-defined interconnected porous construction. Swelling and water uptake of the dressing were 93%, which is great for wound dressing applications. Haemostatic potential of the prepared dressings was studied and the results proved the higher blood clotting ability of the nanocomposites compared to pure components and commercially available products. Besides, cell viability, attachment and proliferation by MTT assay and DAPI staining on HFFF2 cell as a Human Caucasian Foetal Foreskin Fibroblast proved the cytocompatibility nature of the nanocomposite scaffolds with well improved proliferation and cell attachment. To determine the antimicrobial efficiencies, both disc diffusion method and colony counts were performed and results imply that nanocomposite scaffolds have high antimicrobial activity and could successfully inhibit the growth of E. coli, S. aureus, and C. albicans. Moreover, based on these results, the prepared chitin/silk fibroin/TiO2 nanocomposite dressing could serve as a kind of promising wound dressing with great antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Mojtaba Ghanbari Mehrabani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Rasul Rakhshaei
- Faculty of Chemistry, Department of Organic and Biochemistry, Tabriz University, Tabriz, Iran
| | - Farzaneh Pakdel
- Connective tissues Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Eslami
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Fakhrzadeh
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Rahimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Chemistry, Department of Organic and Biochemistry, Tabriz University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Park JU, Jeong SH, Song EH, Song J, Kim HE, Kim S. Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan-silica hybrid sponge in a porcine model. J Biomater Appl 2018; 32:1011-1023. [PMID: 29357774 DOI: 10.1177/0885328217751246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we evaluated the surface characterization of a novel chitosan-silica hybridized membrane and highlighted the substantial role of silica in the wound environment. The chemical coupling of chitosan and silica resulted in a more condensed network compared with pure chitosan, which was eventually able to stably maintain its framework, particularly in the wet state. In addition, we closely observed the wound-healing process along with the surface interaction between chitosan-silica and the wound site using large-surface-area wounds in a porcine model. Our evidence indicates that chitosan-silica exerts a synergetic effect of both materials to promote a remarkable wound-healing process. In particular, the silica in chitosan-silica accelerated wound closure including wound contraction, and re-epithelialization via enhancement of cell recruitment, epidermal maturity, neovascularization, and granulation tissue formation compared with pure chitosan and other commercial dressing materials. This advanced wound dressing material may lead to effective treatment for problematic cutaneous wounds and can be further applied for human skin regeneration.
Collapse
Affiliation(s)
- Ji-Ung Park
- 1 Department of Plastic and Reconstructive Surgery, 26725 Seoul National University , Boramae Hospital, Seoul, Republic of Korea
| | - Seol-Ha Jeong
- 2 Department of Materials Science and Engineering, 26725 Seoul National University , Seoul, Republic of Korea
| | - Eun-Ho Song
- 2 Department of Materials Science and Engineering, 26725 Seoul National University , Seoul, Republic of Korea
| | - Juha Song
- 3 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hyoun-Ee Kim
- 2 Department of Materials Science and Engineering, 26725 Seoul National University , Seoul, Republic of Korea.,4 Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, Republic of Korea
| | - Sukwha Kim
- 5 Department of Plastic and Reconstructive Surgery, 37990 Seoul National University College of Medicine , Republic of Korea
| |
Collapse
|
34
|
Sayadi LR, Banyard DA, Ziegler ME, Obagi Z, Prussak J, Klopfer MJ, Evans GR, Widgerow AD. Topical oxygen therapy & micro/nanobubbles: a new modality for tissue oxygen delivery. Int Wound J 2018; 15:363-374. [PMID: 29314626 DOI: 10.1111/iwj.12873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Up to 15 billion dollars of US health care expenditure each year is consumed by treatment of poorly healing wounds whose etiologies are often associated with aberrancies in tissue oxygenation. To address this issue, several modes of tissue oxygen delivery systems exist, including Hyperbaric Oxygen Therapy (HBOT) and Topical Oxygen Therapy (TOT), but their efficacies have yet to be fully substantiated. Micro/nanobubbles (MNBs), which range anywhere from 100 μm to <1 μm in diameter and are relatively stable for hours, offer a new mode of oxygen delivery to wounds. The aim of this article is to systematically review literature examining the use of TOT for wound healing and use of MNBs for tissue oxygenation using the MEDLINE database. The search yielded 87 articles (12 MNB articles and 75 TOT articles), of which 52 met the inclusion criteria for this literature review (12 MNB articles and 40 TOT articles). Additionally, we present an analysis on the efficacy of our MNB generating technology and propose its use as a wound healing agent.
Collapse
Affiliation(s)
- Lohrasb R Sayadi
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Derek A Banyard
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Mary E Ziegler
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Zaidal Obagi
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Jordyne Prussak
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Michael J Klopfer
- Biomedical Engineering Department, University of California, Irvine, California
| | - Gregory Rd Evans
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| | - Alan D Widgerow
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California
| |
Collapse
|
35
|
Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Colloid Interface Sci 2018; 510:237-245. [DOI: 10.1016/j.jcis.2017.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
|
36
|
Ai F, Liu T, Liu Y, Yang K, Liu Y, Wang W, Yuan F, Dong L, Xin H, Wang X. A 3D printed wound cooling system incorporated with injectable, adsorbable, swellable and broad spectrum antibacterial scaffolds for rapid hematischesis processing. J Mater Chem B 2018; 6:5940-5948. [DOI: 10.1039/c8tb01625a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrolled hemorrhage remains a leading cause of early death after trauma, and contamination further challenges the wounded.
Collapse
Affiliation(s)
- Fanrong Ai
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
- School of Mechanical & Electronic Engineering
| | - Tingwu Liu
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Yu Liu
- Department of Oncology
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Kang Yang
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Yishen Liu
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Wenyan Wang
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Fushan Yuan
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Lina Dong
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| | - Hongbo Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| | - Xiaolei Wang
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| |
Collapse
|
37
|
Zhang L, Ma Y, Pan X, Chen S, Zhuang H, Wang S. A composite hydrogel of chitosan/heparin/poly (γ-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym 2018; 180:168-174. [DOI: 10.1016/j.carbpol.2017.10.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 11/29/2022]
|
38
|
Investigation of chitosan’s antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohydr Polym 2017; 174:369-376. [DOI: 10.1016/j.carbpol.2017.06.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022]
|
39
|
Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J 2017; 14:1276-1289. [PMID: 28799228 DOI: 10.1111/iwj.12797] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chitin and chitosan are biopolymers with excellent bioactive properties, such as biodegradability, non-toxicity, biocompatibility, haemostatic activity and antimicrobial activity. A wide variety of biomedical applications for chitin and chitin derivatives have been reported, including wound-healing applications. They are reported to promote rapid dermal regeneration and accelerate wound healing. A number of dressing materials based on chitin and chitosan have been developed for the treatment of wounds. Chitin and chitosan with beneficial intrinsic properties and high potential for wound healing are attractive biopolymers for wound management. This review presents an overview of properties, biomedical applications and the role of these biopolymers in wound care.
Collapse
Affiliation(s)
- Rita Singh
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| | - Kirti Shitiz
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| | - Antaryami Singh
- Defence Laboratory, Defence Research and Development Organization, Jodhpur, India
| |
Collapse
|
40
|
Chen X, Zhang M, Chen S, Wang X, Tian Z, Chen Y, Xu P, Zhang L, Zhang L, Zhang L. Peptide-Modified Chitosan Hydrogels Accelerate Skin Wound Healing by Promoting Fibroblast Proliferation, Migration, and Secretion. Cell Transplant 2017; 26:1331-1340. [PMID: 28901187 PMCID: PMC5680980 DOI: 10.1177/0963689717721216] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Skin wound healing is a complicated process that involves a variety of cells and cytokines. Fibroblasts play an important role in this process and participate in transformation into myofibroblasts, the synthesis of extracellular matrix (ECM) and fibers, and the secretion of a variety of growth factors. This study assessed the effects of peptide Ser-Ile-Lys-Val-Ala-Val (SIKVAV)--modified chitosan hydrogels on skin wound healing. We investigated the capability of peptide SIKVAV to promote cell proliferation and migration, the synthesis of collagen, and the secretion of a variety of growth factors using fibroblasts in vitro. We also treated skin wounds established in mice using peptide SIKVAV-modified chitosan hydrogels. Hematoxylin and eosin staining showed that peptide-modified chitosan hydrogels enhanced the reepithelialization of wounds compared with negative and positive controls. Masson's trichrome staining demonstrated that more collagen fibers were deposited in the wounds treated with peptide-modified chitosan hydrogels compared with the negative and positive controls. Immunohistochemistry revealed that the peptide-modified chitosan hydrogels promoted angiogenesis in the skin wound. Taken together, these results suggest that peptide SIKVAV-modified chitosan hydrogels may be useful in wound dressing and the treatment of skin wounds.
Collapse
Affiliation(s)
- Xionglin Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shixuan Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xueer Wang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhihui Tian
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yinghua Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pengcheng Xu
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Chen X, Zhang M, Wang X, Chen Y, Yan Y, Zhang L, Zhang L. Peptide-modified chitosan hydrogels promote skin wound healing by enhancing wound angiogenesis and inhibiting inflammation. Am J Transl Res 2017; 9:2352-2362. [PMID: 28559985 PMCID: PMC5446517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Cutaneous wound healing following trauma is a complex and dynamic process involving multiple overlapping events following trauma. Two critical elements affecting skin wound healing are neovascularization and inflammation. A nascent vessel can provide nutrition and oxygen to a healing wound. Therefore, treatments strategies that enhance angiogenesis and inhibit inflammation can promote skin wound healing. Previous studies have shown that the SIKVAV peptide (Ser-Ile-Lys-Val-Ala-Val) from laminin can promote angiogenesis in vitro. This study evaluated the effects of peptide SIKVAV-modified chitosan hydrogels on skin wound healing. We established skin wounds established in mice and treated them with SIKVAV-modified chitosan hydrogels. H&E staining showed that peptide-modified chitosan hydrogels accelerated the reepithelialization of wounds compared with the negative and positive controls. Immunohistochemistry analysis demonstrated that more myofibroblasts were deposited at wounds treated with peptide-modified chitosan hydrogels that at those treated with negative and positive controls. In addition, peptide-modified chitosan hydrogels promoted angiogenesis as well as keratinocyte proliferation and differentiation, but inhibited inflammation in skin wounds. Taken together, these results suggest that SIKVAV-modified chitosan hydrogels are a promising treatment component for healing-impaired wounds.
Collapse
Affiliation(s)
- Xionglin Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Min Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Xueer Wang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Yinghua Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Yuan Yan
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, China
| |
Collapse
|
42
|
Wansapura PT, Dassanayake RS, Hamood A, Tran P, Moussa H, Abidi N. Preparation of chitin-CdTe quantum dots films and antibacterial effect onStaphylococcus aureusandPseudomonas aeruginosa. J Appl Polym Sci 2017. [DOI: 10.1002/app.44904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Poorna Tharaka Wansapura
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| | - Rohan Suranga Dassanayake
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| | - Abdul Hamood
- Department of Microbiology and Immunology; Texas Tech University Health Science Center; Lubbock Texas 79430
| | - Phat Tran
- Department of Microbiology and Immunology; Texas Tech University Health Science Center; Lubbock Texas 79430
| | - Hanna Moussa
- Department of Mechanical Engineering; Texas Tech University; Lubbock Texas 79409
| | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| |
Collapse
|
43
|
Luttrell TC, Khashwj H, Ingalls N, Coates J. Challenges of Complex Open Abdominal Wound Management in Trauma: A Novel Use of Chitosan and Hyaluronic Acid as a 3-Dimensional Scaffold to Overcome Resilient Open Abdomen Infections. J Am Coll Clin Wound Spec 2017; 7:25-29. [PMID: 28053865 DOI: 10.1016/j.jccw.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Case presentation of a novel method for the management of complex open abdomen technique. This Mmethod includes the combination of chitosan, hyaluronic acid and negative pressure wound therapy. Patient was initially managed with traditional operating room wash-outs and packing. Implementation of novel method achieved closure in 17 days with split-thickness-skin-graft.
Collapse
Affiliation(s)
| | - Hasan Khashwj
- TCL Consulting, 5500 N Hwy 1, Fort Collins, CO 80524, USA
| | - Nicole Ingalls
- TCL Consulting, 5500 N Hwy 1, Fort Collins, CO 80524, USA
| | - Jay Coates
- TCL Consulting, 5500 N Hwy 1, Fort Collins, CO 80524, USA
| |
Collapse
|
44
|
Tran CD, Prosenc F, Franko M, Benzi G. One-Pot Synthesis of Biocompatible Silver Nanoparticle Composites from Cellulose and Keratin: Characterization and Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34791-34801. [PMID: 27998108 DOI: 10.1021/acsami.6b14347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel, simple method was developed to synthesize biocompatible composites containing 50% cellulose (CEL) and 50% keratin (KER) and silver in the form of either ionic (Ag+) or Ag0 nanoparticles (Ag+NPs or Ag0NPs). In this method, butylmethylimmidazolium chloride ([BMIm+Cl-]), a simple ionic liquid, was used as the sole solvent and silver chloride was added to the [BMIm+Cl-] solution of [CEL+KER] during the dissolution process. The silver in the composites can be maintained as ionic silver (Ag+) or completely converted to metallic silver (Ag0) by reducing it with NaBH4. The results of spectroscopy [Fourier transform infrared and X-ray diffraction (XRD)] and imaging [scanning electron microscopy (SEM)] measurements confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. Powder XRD and SEM results show that the silver in the [CEL+KER+Ag+] and [CEL+KER+Ag0] composites is homogeneously distributed throughout the composites in either Ag+ (in the form of AgClNPs) or Ag0NPs form with sizes of 27 ± 2 or 9 ± 1 nm, respectively. Both composites were found to exhibit excellent antibacterial activity against many bacteria including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, methicillin-resistant S. aureus (MRSA), and vancomycin-resistant Enterococus faecalis (VRE). The antibacterial activity of both composites increases with the Ag+ or Ag0 content in the composites. More importantly, for the same bacteria and the same silver content, the [CEL+KER+AgClNPs] composite is relatively more toxic than [CEL+KER+Ag0NPs] composite. Experimental results confirm that there was hardly any Ag0NPs release from the [CEL+KER+Ag0NPs] composite, and hence its antimicrobial activity and biocompatibility is due not to any released Ag0NPs but rather entirely to the Ag0NPs embedded in the composite. Both AgClNPs and Ag0NPs were found to be toxic to human fibroblasts at higher concentration (>0.72 mmol), and for the same silver content, the [CEL+KER+AgClNPs] composite is relatively more toxic than the [CEL+KER+Ag0NPs] composite. As expected, by lowering the Ag0NPs concentration to 0.48 mmol or less, the [CEL+KER+Ag0NPs] composite can be made biocompatible while still retaining its antimicrobial activity against bacteria such as E. coli, S. aureus, P. aeruginosa, MRSA, and VRE. These results, together with our previous finding that [CEL+KER] composites can be used for the controlled delivery of drugs such as ciprofloxacin, clearly indicate that the [CEL+KER+Ag0NPs] composite possesses all of the required properties for it to be successfully used as a high-performance dressing to treat chronic ulcerous infected wounds.
Collapse
Affiliation(s)
- Chieu D Tran
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Franja Prosenc
- Laboratory for Environmental Research, University of Nova Gorica , Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Mladen Franko
- Laboratory for Environmental Research, University of Nova Gorica , Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Gerald Benzi
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
45
|
Cerchiara T, Abruzzo A, Ñahui Palomino RA, Vitali B, De Rose R, Chidichimo G, Ceseracciu L, Athanassiou A, Saladini B, Dalena F, Bigucci F, Luppi B. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. Eur J Pharm Sci 2016; 99:105-112. [PMID: 27931851 DOI: 10.1016/j.ejps.2016.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023]
Abstract
In this work, we propose as new wound dressing, the Spanish Broom fibers impregnated with vancomycin (VM) loaded chitosan nanoparticles. Spanish Broom fibers were extracted by patented method DiCoDe and the morphological, physical and mechanical properties were investigated. Chitosan nanoparticles were prepared by ionic gelation using different weight ratios between chitosan (CH) and tripolyphosphate (TPP). Nanoparticles were characterized in terms of size, zeta potential, yield, encapsulation efficiency, stability and drug release. Finally, the antibacterial activity against Staphylococcus aureus as well as in vitro cytotoxicity on HaCaT cells were evaluated. The best formulation CH/TPP 4:1 was selected based on the encapsulation efficiency and yield. Spanish Broom fibers impregnated with loaded nanoparticles showed an increased antibacterial activity against S. aureus compared to the same fibers containing VM without nanoparticles. Moreover, these fibers were not toxic to HaCaT keratinocytes cells. In conclusion, Spanish Broom fibers impregnated with VM loaded CH/TPP nanoparticles would appear to be a promising candidate for wound dressing application.
Collapse
Affiliation(s)
- Teresa Cerchiara
- Department of Pharmacy and Biotechnologies, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnologies, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | - Beatrice Vitali
- Department of Pharmacy and Biotechnologies, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppe Chidichimo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Ceseracciu
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | | | - Bruno Saladini
- PolyCrystalLine SpA, Via F.S. Fabri 127/1, 40059, Medicina, Bologna, Italy
| | - Francesco Dalena
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnologies, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
46
|
Bajpai S, Jyotishi P, Bajpai M. Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications. Carbohydr Polym 2016; 154:223-30. [DOI: 10.1016/j.carbpol.2016.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
|
47
|
Elviri L, Bianchera A, Bergonzi C, Bettini R. Controlled local drug delivery strategies from chitosan hydrogels for wound healing. Expert Opin Drug Deliv 2016; 14:897-908. [PMID: 27732106 DOI: 10.1080/17425247.2017.1247803] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications. A detailed overview of their behavior in terms of controlled drug delivery, divided by drug categories, and efficacy was provided and critically discussed. Expert opinion: The need to establish and exploit the advantages of natural biomaterials in combination with active compounds is playing a pivotal role in the regenerative medicine fields. The challenges posed by the many variables affecting tissue repair and regeneration need to be standardized and adhere to recognized guidelines to improve the quality of evidence in the wound healing process. Currently, different methodologies are followed to prepare innovative scaffold formulations and structures. Innovative technologies such as 3D printing or bio-electrospray are promising to create chitosan-based scaffolds with finely controlled structures with customizable shape porosity and thickness. Chitosan scaffolds could be designed in combination with a variety of polysaccharides or active compounds with selected and reproducible spacial distribution, providing active wound dressing with highly tunable controlled drug delivery.
Collapse
Affiliation(s)
- Lisa Elviri
- a Department of Pharmacy , University of Parma , Parma , Italy
| | - Annalisa Bianchera
- b Interdepartmental Centre Biopharmanet-Tec , University of Parma , Parma , Italy
| | - Carlo Bergonzi
- b Interdepartmental Centre Biopharmanet-Tec , University of Parma , Parma , Italy
| | - Ruggero Bettini
- a Department of Pharmacy , University of Parma , Parma , Italy
| |
Collapse
|
48
|
Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Gan L, Zhao L, Zhao Y, Li K, Tong Z, Yi L, Wang X, Li Y, Tian W, He X, Zhao M, Li Y, Chen Y. Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration. J Neural Eng 2016; 13:056019. [DOI: 10.1088/1741-2560/13/5/056019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Tran CD, Prosenc F, Franko M, Benzi G. Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Carbohydr Polym 2016; 151:1269-1276. [PMID: 27474680 DOI: 10.1016/j.carbpol.2016.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm(+)Cl(-)), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm(+)Cl(-)] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing.
Collapse
Affiliation(s)
- Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA.
| | - Franja Prosenc
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Mladen Franko
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Gerald Benzi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|