1
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
2
|
Liu B, Liu Z, Wei H, Meng Y, Hou Q, Wang A, Zhang Y, Han E, Hu S, Zhou J. Performance characterization and biocompatibility assessment of silicone polyurethanes for polymer heart valve applications. RSC Adv 2024; 14:10858-10873. [PMID: 38577430 PMCID: PMC10989511 DOI: 10.1039/d4ra00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Silicone polyurethanes have gained widespread application in the biomedical field due to their excellent biocompatibility. This study comprehensively investigates four silicone polyurethane materials suitable for polymer heart valves, each exhibiting distinct chemical compositions and structural characteristics, leading to significant differences, particularly in mechanical performance and biocompatibility. Surface analysis reveals an elevated surface silicon element content in all materials compared to the bulk, indicating a migration of silicon elements towards the surface, providing a structural basis for enhancing biological stability and biocompatibility. However, higher silicon content leads to a decrease in mechanical performance, potentially resulting in mechanical failure and rupture in artificial heart valves. Concerning biocompatibility, an increase in silicone content diminishes the material's adsorption capability for cells and proteins, consequently improving its biocompatibility and biological stability. In summary, while high silicone content leads to a reduction in mechanical performance, the formation of a "silicon protective layer" on the material surface mitigates cell and protein adsorption, thereby enhancing biocompatibility and biological stability. Through comprehensive testing of the four silicone polyurethane materials, this study aims to provide insightful perspectives and methods for selecting materials suitable for polymer heart valves. Additionally, the thorough performance exploration of these materials serves as a crucial reference for the performance assessment and biocompatibility research of polymeric artificial heart valve materials.
Collapse
Affiliation(s)
- Bixuan Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Zhihua Liu
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Haiyang Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Yana Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Qianwen Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Aili Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Yongkai Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Enhui Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Jianye Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| |
Collapse
|
3
|
Xu LC, Ochetto A, Chen C, Sun D, Allcock HR, Siedlecki CA. Surfaces modified with small molecules that interfere with nucleotide signaling reduce Staphylococcus epidermidis biofilm and increase the efficacy of ciprofloxacin. Colloids Surf B Biointerfaces 2023; 227:113345. [PMID: 37196462 PMCID: PMC10355139 DOI: 10.1016/j.colsurfb.2023.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Staphylococcus epidermidis are common bacteria associated with biofilm related infections on implanted medical devices. Antibiotics are often used in combating such infections, but they may lose their efficacy in the presence of biofilms. Bacterial intracellular nucleotide second messenger signaling plays an important role in biofilm formation, and interference with the nucleotide signaling pathways provides a possible way to control biofilm formation and to increase biofilm susceptibility to antibiotic therapy. This study synthesized small molecule derivates of 4-arylazo-3,5-diamino-1 H-pyrazole (named as SP02 and SP03) and found these molecules inhibited S. epidermidis biofilm formation and induced biofilm dispersal. Analysis of bacterial nucleotide signaling molecules showed that both SP02 and SP03 significantly reduced cyclic dimeric adenosine monophosphate (c-di-AMP) levels in S. epidermidis at doses as low as 25 µM while having significant effects on multiple nucleotides signaling including cyclic dimeric guanosine monophosphate (c-di-GMP), c-di-AMP, and cyclic adenosine monophosphate (cAMP) at high doses (100 µM or greater). We then tethered these small molecules to polyurethane (PU) biomaterial surfaces and investigated biofilm formation on the modified surfaces. Results showed that the modified surfaces significantly inhibited biofilm formation during 24 h and 7-day incubations. The antibiotic ciprofloxacin was used to treat these biofilms and the efficacy of the antibiotic (2 µg/mL) was found to increase from 94.8% on unmodified PU surfaces to > 99.9% on both SP02 and SP03 modified surfaces (>3 log units). Results demonstrated the feasibility of tethering small molecules that interfere with nucleotide signaling onto polymeric biomaterial surfaces and in a way that interrupts biofilm formation and increases antibiotic efficacy for S. epidermidis infections.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facilities (RRID: SCR_017831), The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biomedical Engineering, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Chen X, Liu C, Wadsworth M, Zeng EZ, Driscoll T, Zeng C, Li Y. Surface Engineering of Auxetic Scaffolds for Neural and Vascular Differentiation from Human Pluripotent Stem Cells. Adv Healthc Mater 2023; 12:e2202511. [PMID: 36403987 PMCID: PMC9992167 DOI: 10.1002/adhm.202202511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Auxetic materials are the materials that can display negative Poisson's ratio that describes the degree to which a material contracts (or expands) transversally when axially strained. Human stem cells sense the mechanical properties of the microenvironment, including material surface properties, stiffness, and Poisson's ratio. In this study, six different auxetic polyurethane (PU) foams with different elastic modulus (0.7-1.8 kPa) and Poisson's ratio (-0.1 to -0.5) are used to investigate lineage specification of human induced pluripotent stem cells (hiPSCs). The surfaces of the foams are modified with chitosan or heparin to enhance the adhesion and proliferation of hiPSCs. Then, the vascular and neural differentiation of hiPSCs are investigated on different foams with distinct elastic modulus and Poisson's ratio. With different auxetic foams, cells show differential adherent density and differentiation capacity. Chitosan and heparin surface functionalization promote the hindbrain and hippocampal markers, but not forebrain markers during neural patterning of hiPSCs. Properly surface engineered auxetic scaffolds can also promote vascular differentiation of hiPSCs. This study represents a versatile and multifunctional scaffold fabrication approach and can lead to a suitable system for establishing hiPSC culture models in applications of neurovascular disease modeling and drug screening.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Matthew Wadsworth
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Changchun Zeng
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
5
|
Xu LC, Siedlecki CA. Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials. FRONTIERS IN PHYSICS 2022; 10:994438. [PMID: 38250242 PMCID: PMC10798815 DOI: 10.3389/fphy.2022.994438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomaterial associated microbial infection and blood thrombosis are two of the barriers that inhibit the successful use of implantable medical devices in modern healthcare. Modification of surface topography is a promising approach to combat microbial infection and thrombosis without altering bulk material properties necessary for device function and without contributing to bacterial antibiotic resistance. Similarly, the use of other antimicrobial techniques such as grafting poly(ethylene glycol) (PEG) and nitric oxide (NO) release also improve the biocompatibility of biomaterials. In this review, we discuss the development of surface texturing techniques utilizing ordered submicron-size pillars for controlling bacterial adhesion and biofilm formation, and we present combinatorial approaches utilizing surface texturing in combination with poly(ethylene glycol) (PEG) grafting and NO release to improve the biocompatibility of biomaterials. The manuscript also discusses efforts towards understanding the molecular mechanisms of bacterial adhesion responses to the surface texturing and NO releasing biomaterials, focusing on experimental aspects of the approach.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
6
|
Abreu-Rejón AD, Herrera-Kao WA, May-Pat A, Ávila-Ortega A, Rodríguez-Fuentes N, Uribe-Calderón JA, Cervantes-Uc JM. Influence of Molecular Weight and Grafting Density of PEG on the Surface Properties of Polyurethanes and Their Effect on the Viability and Morphology of Fibroblasts and Osteoblasts. Polymers (Basel) 2022; 14:polym14224912. [PMID: 36433040 PMCID: PMC9698172 DOI: 10.3390/polym14224912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Grafting polyethylene glycol (PEG) onto a polymer's surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts. PEG formed a covering on the substrata which increased the hydrophilicity and surface energy of PUs. Among the results, it was observed that osteoblast viability increased for all MW and grafting densities of PEG employed compared with unmodified PU. However, fibroblast viability only increased at certain combinations of MW and grafting densities of PEG, suggesting an optimal level of these parameters. PEG grafting also promoted a more spread cell morphology than that exhibited by unmodified PU; nevertheless, cells became apoptotic-like as PEG MW and grafting density were increased. These effects on cells could be due to PEG affecting culture medium pH, which became more alkaline at higher MW and concentrations of PEG. Results support the hypothesis that surface energy of PU substrates can be tuned by controlling the MW and grafting density of PEG, but these parameters should be optimized to promote cell viability without inducing apoptotic-like behavior.
Collapse
Affiliation(s)
- Antonio David Abreu-Rejón
- Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
| | - Wilberth Antonio Herrera-Kao
- Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
| | - Alejandro May-Pat
- Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
| | - Alejandro Ávila-Ortega
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km 33.5 Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida C.P. 97203, Mexico
| | - Nayeli Rodríguez-Fuentes
- CONACYT-Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
| | - Jorge Alonso Uribe-Calderón
- Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
| | - José Manuel Cervantes-Uc
- Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
- Correspondence: ; Tel.: +52-999-981-3966
| |
Collapse
|
7
|
Sabab A, Liu S, Javadiyan S, McAdam CJ, Hanton LR, Jukes A, Vreugde S, Wormald PJ. The effect of chemical and structural modifiers on the haemostatic process and cytotoxicity of the beta-chitin patch. Sci Rep 2021; 11:18577. [PMID: 34535704 PMCID: PMC8448852 DOI: 10.1038/s41598-021-97781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Beta-chitin patch has previously been proven to be an effective haemostat, but whether modifying the patch affects its efficacy and safety, remains unanswered. In this study, the patch was modified using polyethylene oxide, Pluronic-F127, calcium, increased thickness or polyphosphate, and their effect on the process of haemostasis and cytotoxicity was tested and compared with standard-of-care, Surgicel and FloSeal. Whole blood collected from volunteers was applied to the patches to test their whole blood clotting and thrombin generation capacities, whilst platelet isolates were used to test their platelet aggregation ability. The fluid absorption capacity of the patches was tested using simulated body fluid. Cytotoxicity of the patches was tested using AlamarBlue assays and PC12 cells and the results were compared with the standard-of-care. In this study, beta-chitin patch modifications failed to improve its whole blood clotting, platelet aggregation and thrombin generation capacity. Compared to non-modified patch, modifications with polyethylene oxide or calcium reduced platelet aggregation and thrombin generation capacity, while increasing the thickness or adding polyphosphate decreased platelet aggregation capacity. The cytotoxicity assays demonstrated that the beta-chitin patches were non-toxic to cells. In vivo research is required to evaluate the safety and efficacy of the beta-chitin patches in a clinical setting.
Collapse
Affiliation(s)
- Ahad Sabab
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia.
| | - Sha Liu
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Shari Javadiyan
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - C John McAdam
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Lyall R Hanton
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Alistair Jukes
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants. Molecules 2021; 26:molecules26113145. [PMID: 34074062 PMCID: PMC8197332 DOI: 10.3390/molecules26113145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress.
Collapse
|
9
|
Ishihara K, Fukazawa K, Sharma V, Liang S, Shows A, Dunbar DC, Zheng Y, Ge J, Zhang S, Hong Y, Shi X, Wu JY. Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface. ACS OMEGA 2021; 6:7058-7067. [PMID: 33748619 PMCID: PMC7970573 DOI: 10.1021/acsomega.0c06327] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
Inspired by the cell membrane surface as well as the ocular tissue, a novel and clinically applicable antifouling silicone hydrogel contact lens material was developed. The unique chemical and biological features on the surface on a silicone hydrogel base substrate were achieved by a cross-linked polymer layer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), which was considered important for optimal on-eye performance. The effects of the polymer layer on adsorption of biomolecules, such as lipid and proteins, and adhesion of cells and bacteria were evaluated and compared with several conventional silicone hydrogel contact lens materials. The MPC polymer layer provided significant resistance to lipid deposition as visually demonstrated by the three-dimensional confocal images of whole contact lenses. Also, fibroblast cell adhesion was decreased to a 1% level compared with that on the conventional silicone hydrogel contact lenses. The movement of the cells on the surface of the MPC polymer-modified lens material was greater compared with other silicone hydrogel contact lenses indicating that lubrication of the contact lenses on ocular tissue might be improved. The superior hydrophilic nature of the MPC polymer layer provides improved surface properties compared to the underlying silicone hydrogel base substrate.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Fukazawa
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vinay Sharma
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | - Shuang Liang
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | - Amanda Shows
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | | | - Yang Zheng
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Junhao Ge
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Steve Zhang
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Ye Hong
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Xinfeng Shi
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | | |
Collapse
|
10
|
Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 2021; 9:643722. [PMID: 33644027 PMCID: PMC7907602 DOI: 10.3389/fbioe.2021.643722] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are structured microbial communities attached to surfaces, which play a significant role in the persistence of biofoulings in both medical and industrial settings. Bacteria in biofilms are mostly embedded in a complex matrix comprised of extracellular polymeric substances that provide mechanical stability and protection against environmental adversities. Once the biofilm is matured, it becomes extremely difficult to kill bacteria or mechanically remove biofilms from solid surfaces. Therefore, interrupting the bacterial surface sensing mechanism and subsequent initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Noting that the process of bacterial adhesion is influenced by many factors, including material surface properties, this review summarizes recent works dedicated to understanding the influences of surface charge, surface wettability, roughness, topography, stiffness, and combination of properties on bacterial adhesion. This review also highlights other factors that are often neglected in bacterial adhesion studies such as bacterial motility and the effect of hydrodynamic flow. Lastly, the present review features recent innovations in nanotechnology-based antifouling systems to engineer new concepts of antibiofilm surfaces.
Collapse
Affiliation(s)
- Sherry Zheng
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marwa Bawazir
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Atul Dhall
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hye-Eun Kim
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Le He
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Heo
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Geelsu Hwang
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility. MEMBRANES 2021; 11:membranes11010037. [PMID: 33406798 PMCID: PMC7824666 DOI: 10.3390/membranes11010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications.
Collapse
|
12
|
Zhu T, Gu H, Zhang H, Wang H, Xia H, Mo X, Wu J. Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomater 2021; 119:211-224. [PMID: 33181359 DOI: 10.1016/j.actbio.2020.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Rapid endothelialization of small-diameter vascular grafts remains a significant challenge in clinical practice. In addition, compliance mismatch causes intimal hyperplasia and finally leads to graft failure. To achieve compliance match and rapid endothelialization, we synthesized low-initial-modulus poly(ester-urethane)urea (PEUU) elastomer and prepared it into electrospun tubular grafts and then functionalized the grafts with poly(ethylene glycol) (PEG) and heparin via covalent grafting. The PEG- and heparin-functionalized PEUU (PEUU@PEG-Hep) graft had comparable mechanical properties with the native blood vessel. In vitro data demonstrated that the grafts are of good cytocompatibility and blood compatibility. Covalent grafting of PEG and heparin significantly promoted the adhesion, spreading, and proliferation of human umbilical vein endothelial cells (HUVECs) and upregulated the expression of vascular endothelial cell-related genes, as well as increased the capability of grafts in preventing platelet deposition. In vivo assessments indicated good biocompatibility of the PEUU@PEG-Hep graft as it did not induce severe immune responses. Replacement of resected carotid artery with the PEUU@PEG-Hep graft in a rabbit model showed that the graft was capable of rapid endothelialization, initiated vascular remodeling, and maintained patency. This study demonstrates the PEUU@PEG-Hep vascular graft with compliance match and efficacious antithrombosis might find opportunities for bioactive blood vessel substitutes.
Collapse
|
13
|
Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, González A, Irusta L. Microphase Arrangement of Smart Superhydrophilic Segmented Polyurethanes at Their Interface with Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13201-13209. [PMID: 33119316 DOI: 10.1021/acs.langmuir.0c01898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart coatings have aroused a growing interest because of the performance of predefined surface functions upon reacting to external stimuli. Among them, responsive polymer coatings to water, which often benefit from the presence of a mobile hydrophilic material, are of great interest. Polyurethanes (PUs) are versatile materials with respect to the structure-property relationship. Therefore, the incorporation of hydrophilic segments in PUs is a rational way to produce water-sensitive smart coatings; however, having a considerable amount of hydrophilic material deteriorates the physical properties because of a large amount of water uptake. In this study, we have analyzed previously synthesized smart PUs, based on hydrophobic polycarbonate (PC) and hydrophilic polyethylene glycol (PEG) soft segments, in which only a limited amount of PEG is used. These coatings maintain, more or less, zero water contact angle, whereas the water uptake remains below 15 wt %. The combination of experimental analysis and coarse-grained molecular dynamics (CG MD) simulations reveals that PEG segments migrate to the coating/water interface and partially cover the surface, whereas the hydrophobic nature of the PC keeps the bulk of the coating intact when the coating is covered with water. Moreover, our CG MD simulations and experimental analysis suggest a reversible phase arrangement under wet/dry cycles on molecular and macroscopic scales.
Collapse
Affiliation(s)
- Helma Vakili
- Department of Polymer and Color Engineering, Amirkabir University of Technology, 350, Hafez Avenue, Tehran, Iran, 15875-4413
| | - Mohsen Mohseni
- Department of Polymer and Color Engineering, Amirkabir University of Technology, 350, Hafez Avenue, Tehran, Iran, 15875-4413
| | - Hesam Makki
- Department of Polymer and Color Engineering, Amirkabir University of Technology, 350, Hafez Avenue, Tehran, Iran, 15875-4413
| | - Hossein Yahyaei
- Department of Polymer and Color Engineering, Amirkabir University of Technology, 350, Hafez Avenue, Tehran, Iran, 15875-4413
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Italia Street, Tehran, Iran, 1477-55469
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences (TUMS), Italia Street, Tehran, Iran, 1477-55469
| | - Alba González
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, Donostia-San Sebastian 20018, Spain
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, Donostia-San Sebastian 20018, Spain
| |
Collapse
|
14
|
Nath NN, Pocivavsek L, Pugar JA, Gao Y, Salem K, Pitre N, McEnaney R, Velankar S, Tzeng E. Dynamic Luminal Topography: A Potential Strategy to Prevent Vascular Graft Thrombosis. Front Bioeng Biotechnol 2020; 8:573400. [PMID: 32984298 PMCID: PMC7487362 DOI: 10.3389/fbioe.2020.573400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022] Open
Abstract
AIM Biologic interfaces play important roles in tissue function. The vascular lumen-blood interface represents a surface where dynamic interactions between the endothelium and circulating blood cells are critical in preventing thrombosis. The arterial lumen possesses a uniform wrinkled surface determined by the underlying internal elastic lamina. The function of this structure is not known, but computational analyses of artificial surfaces with dynamic topography, oscillating between smooth and wrinkled configurations, support the ability of this surface structure to shed adherent material (Genzer and Groenewold, 2006; Bixler and Bhushan, 2012; Li et al., 2014). We hypothesized that incorporating a luminal surface capable of cyclical wrinkling/flattening during the cardiac cycle into vascular graft technology may represent a novel mechanism of resisting platelet adhesion and thrombosis. METHODS AND RESULTS Bilayer silicone grafts possessing luminal corrugations that cyclically wrinkle and flatten during pulsatile flow were fabricated based on material strain mismatch. When placed into a pulsatile flow circuit with activated platelets, these grafts exhibited significantly reduced platelet deposition compared to grafts with smooth luminal surfaces. Constrained wrinkled grafts with static topography during pulsatile flow were more susceptible to platelet accumulation than dynamic wrinkled grafts and behaved similar to the smooth grafts under pulsatile flow. Wrinkled grafts under continuous flow conditions also exhibited marked increases in platelet accumulation. CONCLUSION These findings provide evidence that grafts with dynamic luminal topography resist platelet accumulation and support the application of this structure in vascular graft technology to improve the performance of prosthetic grafts. They also suggest that this corrugated structure in arteries may represent an inherent, self-cleaning mechanism in the vasculature.
Collapse
Affiliation(s)
- Nandan N. Nath
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Luka Pocivavsek
- Division of Vascular Surgery, The University of Chicago, Chicago, IL, United States
| | - Joseph A. Pugar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ya Gao
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karim Salem
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nandan Pitre
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryan McEnaney
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- VA Pittsburgh Healthcare Systems, Pittsburgh, PA, United States
| | - Sachin Velankar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edith Tzeng
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- VA Pittsburgh Healthcare Systems, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Lu Z, Quek AJ, Meaney SP, Tabor RF, Follink B, Teo BM. Polynorepinephrine as an Efficient Antifouling-Coating Material and Its Application as a Bacterial Killing Photothermal Agent. ACS APPLIED BIO MATERIALS 2020; 3:5880-5886. [DOI: 10.1021/acsabm.0c00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Adam J. Quek
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Shane P. Meaney
- Level 2, Rupert Myers Building (South Wing), UNSW, Sydney, NSW 2052, Australia
| | - Rico F. Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Bart Follink
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
Cheng CH, Chen GF, Lin JC. Studies of zwitterionic sulfobetaine functionalized polypropylene surface with or without polyethylene glycol spacer: surface characterization, antibacterial adhesion, and platelet compatibility evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2060-2077. [PMID: 32643548 DOI: 10.1080/09205063.2020.1793707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microbial adhesion reduction as well as platelet compatibility improvement have been suggested as the key requirements for developing blood-contacting synthetic biomaterials. Surface grafting of hydrophilic polyethylene glycol chains or alkyl chains with zwitterionic terminal ends has been proposed for reducing microbial or platelet adhesion. Nonetheless, none has been reported to incorporate both polyethylene glycol and zwitterionic terminal functionality on the same surface-grafted alkyl chain. In this investigation, a novel surface modification scheme was reported for grafting zwitterionic alkyl chains with or without polyethylene glycol as the spacer. It was noted the bacterial adhesion reduction capability on the zwitterionic modified surface was dependent upon the use of polyethylene glycol spacer or not and the strain of microbe tested. Besides, the zwitterionic modified ones all showed greater antimicrobial adhesion capability than the surface modified with polyethylene glycol alone. On the other hand, significantly reduced platelet adhesion and activation were found, but with no statistical differences noted among the polyethylene glycol-modified surface and zwitterionic ones, with or without polyethylene glycol spacer. These suggested that the use of polyethylene glycol spacer on the zwitterionic terminated surface could further enhance the antimicrobial adhesion against gram-negative bacterial while still keeping its platelet compatibility.
Collapse
Affiliation(s)
- Chi-Hui Cheng
- Department of Pediatrics, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Fu Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Siddiquie RY, Gaddam A, Agrawal A, Dimov SS, Joshi SS. Anti-Biofouling Properties of Femtosecond Laser-Induced Submicron Topographies on Elastomeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5349-5358. [PMID: 32343580 DOI: 10.1021/acs.langmuir.0c00753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial coatings are often employed to elastomer surfaces to inhibit bacterial attachment. However, such approaches could lead to increased antibiotic resistance. Surface micro-/nanotexturing is gaining significant attention recently, as it is a passive approach to reduce bacterial adhesion to surfaces. To this end, this work aims to assess the anti-biofouling functionality of femtosecond laser-induced submicron topographies on biomedical elastomer surfaces. Femtosecond laser processing was employed to produce two types of topographies on stainless-steel substrates. The first one was highly regular and single scale submicron laser-induced periodic surface structures (LIPSS) while the second one was multiscale structures (MSs) containing both submicron- and micron-scale features. Subsequently, these topographies were replicated on polydimethylsiloxane (PDMS) and polyurethane (PU) elastomers to evaluate their bacterial retention characteristics. The submicron textured PDMS and PU surfaces exhibited long-term hydrophobic durability up to 100 h under immersed conditions. Both LIPSS and MS topographies on PDMS and PU elastomeric surfaces were shown to substantially reduce (>89%) the adhesion of Gram-negative Escherichia coli bacteria. At the same time, the anti-biofouling performance of LIPSS and MS topographies was found to be comparable with that of lubricant-impregnated surfaces. The influence of physical defects on textured surfaces on the adhesion behavior of bacteria was also elucidated. The results presented here are significant because the polymeric biomedical components that can be produced by replication cost effectively, while their biocompatibility can be improved through femtosecond surface modification of the respective replication masters.
Collapse
Affiliation(s)
- Reshma Y Siddiquie
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Gaddam
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Stefan S Dimov
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Suhas S Joshi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
18
|
Vijayan VM, Tucker BS, Hwang PTJ, Bobba PS, Jun HW, Catledge SA, Vohra YK, Thomas V. Non-equilibrium organosilane plasma polymerization for modulating the surface of PTFE towards potential blood contact applications. J Mater Chem B 2020; 8:2814-2825. [PMID: 32163093 PMCID: PMC7453349 DOI: 10.1039/c9tb02757b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report a novel and facile organosilane plasma polymerization method designed to improve the surface characteristics of poly(tetrafluoroethylene) (PTFE). We hypothesized that the polymerized silane coating would provide an adhesive surface for endothelial cell proliferation due to a large number of surface hydroxyl groups, while the large polymer networks on the surface of PTFE would hinder platelet attachment. The plasma polymerized PTFE surfaces were then systematically characterized via different analytical techniques such as FTIR, XPS, XRD, Contact angle, and SEM. The key finding of the characterization is the time-dependent deposition of an organosilane layer on the surface of PTFE. This layer was found to provide favorable surface properties to PTFE such as a very high surface oxygen content, high hydrophilicity and improved surface mechanics. Additionally, in vitro cellular studies were conducted to determine the bio-interface properties of the plasma-treated and untreated PTFE. The important results of these experiments were rapid endothelial cell growth and decreased platelet attachment on the plasma-treated PTFE compared to untreated PTFE. Thus, this new surface modification technique could potentially address the current challenges associated with PTFE for blood contact applications, specifically poor endothelial cell growth and risk of thrombosis.
Collapse
Affiliation(s)
- Vineeth M Vijayan
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, AL 35294, USA. and Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bernabe S Tucker
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Pratheek S Bobba
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shane A Catledge
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Yogesh K Vohra
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, AL 35294, USA. and Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
20
|
A simple surface biofunctionalization strategy to inhibit the biofilm formation by Staphylococcus aureus on solid substrates. Colloids Surf B Biointerfaces 2019; 183:110432. [DOI: 10.1016/j.colsurfb.2019.110432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|
21
|
Barrios-Gumiel A, Sanchez-Nieves J, Pérez-Serrano J, Gómez R, de la Mata FJ. PEGylated AgNP covered with cationic carbosilane dendrons to enhance antibacterial and inhibition of biofilm properties. Int J Pharm 2019; 569:118591. [DOI: 10.1016/j.ijpharm.2019.118591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
22
|
De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, Quindós G. Effect of biomaterials hydrophobicity and roughness on biofilm development. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:77. [PMID: 31218489 DOI: 10.1007/s10856-019-6281-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Most hospitalized patients are carriers of biomedical devices. Infections associated with these devices cause great morbidity and mortality, especially in patients in intensive care units. Numerous strategies have been designed to prevent biofilm development on biodevices. However, biofilm formation is a complex process not fully clarified. In the current study, roughness and hydrophobicity of different biomaterials was analyzed to assess their influences on the biofilm formation of four leading etiological causes of healthcare-associated infections, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans, using a CDC biofilm reactor. Hydrophobic materials allowed the formation of more abundant and profuse biofilms. Roughness had effect on biofilm formation, but its influence was not significant when material hydrophobicity was considered.
Collapse
Affiliation(s)
- Iker De-la-Pinta
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Mónica Cobos
- Departamento de Ciencia y Tecnología de Polímeros, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, San Sebastián, Spain
| | - Julen Ibarretxe
- Departamento de Física aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | | | - Elena Eraso
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Teresa Guraya
- Departamento de Ingeniería Minera y Metalúrgica y Ciencia de los Materiales, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain.
| |
Collapse
|
23
|
Wang Y, Gu L, Xu F, Xin F, Ma J, Jiang M, Fang Y. Chemoenzymatic Synthesis of Branched Glycopolymer Brushes as the Artificial Glycocalyx for Lectin Specific Binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4445-4452. [PMID: 30845797 DOI: 10.1021/acs.langmuir.8b03704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The artificial glycocalyx fabricated by carbohydrates is of interest because it provides a platform to simulate the cell membranes that widely exist in the nature, and thus enable extensive applications to be implantable in bioengineering. Here, we present a green strategy combining two polymerization techniques, surface-initiated atom transfer radical polymerization (SI-ATRP) and enzyme-catalyzed elongation of polysaccharide, for fabricating densely packed branched glycopolymer brushes on the gold surface as the artificial glycocalyx. In this strategy, SI-ATRP is first performed to graft a linear polymer chain for anchoring maltose, which can be used as an enzyme acceptor for dextransucrase (DSase). Under DSase, a branched polysaccharide is efficiently formed through elongation of a sucrose substrate. Undoubtedly, enzymatic transglycosylation has unique advantages, such as being green, regio-, and stereo-selective, etc. The process of DSase-catalyzed polysaccharide is well monitored by a quartz crystal microbalance, and the grafting density of the glycopolymer brushes is estimated to be 0.7 chain nm-2 with 23.0 nm dry thickness. The polysaccharide brushes display a branched structure consisting of α-d-glucose residues with 5% of α-1,3-linked shorter chain branches, and the branched structure is well characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, Fourier transform infrared/mirror reflection, water contact angle analysis, and atomic force microscopy. Compared with the linear maltose-anchored brushes, the branched glycopolymer analog prepared here shows high specific binding capacity of concanavalin A recognition, which should be of use in biomedical application.
Collapse
|
24
|
Dai J, Qiao W, Shi J, Liu C, Hu X, Dong N. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Acta Biomater 2019; 88:280-292. [PMID: 30721783 DOI: 10.1016/j.actbio.2019.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Decellularized matrix is of great interest as a scaffold for the tissue engineering heart valves due to its naturally three-dimensional structure and bioactive composition. A primary challenge of tissue engineered heart valves based on decellularized matrix is to grow a physiologically appropriate cell population within the leaflet tissue. In this study, a composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with stromal cell-derived factor-1α (SDF-1α) and a mechanically supportive decellularized porcine aortic valve. Results demonstrated that the modified scaffold enhanced bone marrow mesenchymal stem cells (BMSC) adhesion, viability and proliferation, and promoted BMSC differentiate into valve interstitial-like cells. Furthermore, these modifications lead to enhanced protection of the scaffold from thrombosis. In vivo assessment by rat subdermal model showed the modified scaffold was highly biocompatible with tissue remodeling characterized by promoting mesenchymal stem cells recruitment and facilitating M2 macrophage phenotype polarization. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the potential of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. These findings suggest that the SDF-1α loaded MMP degradable PEG hydrogel modification could be an efficient approach to develop functional decellularized heart valve. STATEMENT OF SIGNIFICANCE: A composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with SDF-1α and a mechanically supportive decellularized porcine aortic valve. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the ability of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. This suggests that the extracellular matrix-based valve scaffolds have potential for clinical applications.
Collapse
Affiliation(s)
- Jinchi Dai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chungen Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
25
|
Francolini I, Silvestro I, Di Lisio V, Martinelli A, Piozzi A. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers. Int J Mol Sci 2019; 20:E1001. [PMID: 30823606 PMCID: PMC6412681 DOI: 10.3390/ijms20041001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in material sciences and clinical procedures for surgical hygiene, medical device implantation still exposes patients to the risk of developing local or systemic infections. The development of efficacious antimicrobial/antifouling materials may help with addressing such an issue. In this framework, polyethylene glycol (PEG)-grafted segmented polyurethanes were synthesized, physico-chemically characterized, and evaluated with respect to their bacterial fouling-resistance properties. PEG grafting significantly altered the polymer bulk and surface properties. Specifically, the PEG-grafted polyurethanes possessed a more pronounced hard/soft phase segregated microstructure, which contributed to improving the mechanical resistance of the polymers. The better flexibility of the soft phase in the PEG-functionalized polyurethanes compared to the pristine polyurethane (PU) was presumably also responsible for the higher ability of the polymer to uptake water. Additionally, dynamic contact angle measurements evidenced phenomena of surface reorganization of the PEG-functionalized polyurethanes, presumably involving the exposition of the polar PEG chains towards water. As a consequence, Staphylococcus epidermidis initial adhesion onto the surface of the PEG-functionalized PU was essentially inhibited. That was not true for the pristine PU. Biofilm formation was also strongly reduced.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valerio Di Lisio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
26
|
Pocivavsek L, Ye SH, Pugar J, Tzeng E, Cerda E, Velankar S, Wagner WR. Active wrinkles to drive self-cleaning: A strategy for anti-thrombotic surfaces for vascular grafts. Biomaterials 2019; 192:226-234. [PMID: 30458358 PMCID: PMC7248685 DOI: 10.1016/j.biomaterials.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
The inner surfaces of arteries and veins are naturally anti-thrombogenic, whereas synthetic materials placed in blood contact commonly experience thrombotic deposition that can lead to device failure or clinical complications. Presented here is a bioinspired strategy for self-cleaning anti-thrombotic surfaces using actuating surface topography. As a first test, wrinkled polydimethylsiloxane planar surfaces are constructed that can repeatedly transition between smooth and wrinkled states. When placed in contact with blood, these surfaces display markedly less platelet deposition than control samples. Second, for the specific application of prosthetic vascular grafts, the potential of using pulse pressure, i.e. the continual variation of blood pressure between systole and diastole, to drive topographic actuation was investigated. Soft cylindrical tubes with a luminal surface that transitioned between smooth and wrinkled states were constructed. Upon exposure to blood under continual pressure pulsation, these cylindrical tubes also showed reduced platelet deposition versus control samples under the same fluctuating pressure conditions. In both planar and cylindrical cases, significant reductions in thrombotic deposition were observed, even when the wrinkles had wavelengths of several tens of μm, far larger than individual platelets. We speculate that the observed thrombo-resistance behavior is attributable to a biofilm delamination process in which the bending energy within the biofilm overcomes interfacial adhesion. This novel strategy to reduce thrombotic deposition may be applicable to several types of medical devices placed into the circulatory system, particularly vascular grafts.
Collapse
Affiliation(s)
- Luka Pocivavsek
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA.
| | - Sang-Ho Ye
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joseph Pugar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Enrique Cerda
- Department of Physics, Universidad de Santiago de Chile, Santiago, Chile
| | - Sachin Velankar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - William R Wagner
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
27
|
Goudie MJ, Singha P, Hopkins SP, Brisbois EJ, Handa H. Active Release of an Antimicrobial and Antiplatelet Agent from a Nonfouling Surface Modification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4523-4530. [PMID: 30607929 PMCID: PMC7962626 DOI: 10.1021/acsami.8b16819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two major challenges faced by medical devices are thrombus formation and infection. In this work, surface-tethered nitric oxide (NO)-releasing molecules are presented as a solution to combat infection and thrombosis. These materials possess a robust NO release capacity lasting ca. 1 month while simultaneously improving the nonfouling nature of the material by preventing platelet, protein, and bacteria adhesion. NO's potent bactericidal function has been implemented by a facile surface covalent attachment method to fabricate a triple-action coating-surface-immobilized S-nitroso- N-acetylpenicillamine (SIM-S). Comparison of NO loading amongst the various branching configurations is shown through the NO release kinetics over time and the cumulative NO release. Biological characterization is performed using in vitro fibrinogen and Staphylococcus aureus assays. The material with the highest NO release, SIM-S2, is also able to reduce protein adhesion by 65.8 ± 8.9% when compared to unmodified silicone. SIM-S2 demonstrates a 99.99% (i.e., ∼4 log) reduction for S. aureus over 24 h. The various functionalized surfaces significantly reduce platelet adhesion in vitro, for both NO-releasing and non-NO-releasing surfaces (up to 89.1 ± 0.9%), demonstrating the nonfouling nature of the surface-immobilized functionalities. The ability of the SIM-S surfaces to retain antifouling properties despite gradual depletion of the bactericidal source, NO, demonstrates its potential use in long-term medical implants.
Collapse
Affiliation(s)
- Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J. Brisbois
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Corresponding Author: Dr. Hitesh Handa, Assistant Professor, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109,
| |
Collapse
|
28
|
Xu LC, Meyerhoff ME, Siedlecki CA. Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomater 2019; 84:77-87. [PMID: 30471478 PMCID: PMC6549232 DOI: 10.1016/j.actbio.2018.11.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
A dual functional polyurethane (PU) film that mimics aspects of blood vessel inner surfaces by combining surface texturing and nitric oxide (NO) release was fabricated through a soft lithography two-stage replication process. The fabrication of submicron textures on the polymer surface was followed by solvent impregnation with the NO donor, S-nitroso-N-acetylpenicillamine (SNAP). An in vitro plasma coagulation assay showed that the biomimetic surface significantly increased the plasma coagulation time and also exhibited reduced platelet adhesion and activation, thereby reducing the risk of blood coagulation and thrombosis. A contact activation assay for coagulation factor XII (FXII) demonstrated that both NO release and surface texturing also reduced FXII contact activation, which contributes to the inhibition of plasma coagulation. The biomimetic surface was also evaluated for bacterial adhesion in plasma and results demonstrate that this combined strategy enables a synergistic effect to reduce bacterial adhesion of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa microorganisms. The results strongly suggest that the biomimetic modification with surface texturing and NO release provides an effective approach to improve the biocompatibility of polymeric materials in combating thrombosis and microbial infection. STATEMENT OF SIGNIFICANCE: (1) Developed a dual functional polyurethane (PU) film that mimics blood vessel inner surface by combining surface texturing and nitric oxide (NO) release for combatting biomaterial associated thrombosis and microbial infection. (2) Studied the blood coagulation response and bacterial adhesion to such biomimetic PU surfaces, and demonstrated that the combination of surface texturing and NO release synergistically reduced the platelet adhesion and bacterial adhesion in plasma, providing an effective approach to improve the biocompatibility of biomaterials used in blood-contacting medical devices. (3) The NO releasing surface significantly inhibits the plasma coagulation via the reduction of contact activation of FXII, indicating the multifunctional roles of NO in improving the biocompatibility of biomaterials in blood-contacting medical devices.
Collapse
Affiliation(s)
- Li-Chong Xu
- Departments of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher A Siedlecki
- Departments of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA; Departments of Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
29
|
De Paula MMM, Bassous NJ, Afewerki S, Harb SV, Ghannadian P, Marciano FR, Viana BC, Tim CR, Webster TJ, Lobo AO. Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS One 2018; 13:e0209386. [PMID: 30571704 PMCID: PMC6301679 DOI: 10.1371/journal.pone.0209386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the morphology, chemical structure and wettability before and after UV photocrosslinking of the produced scaffolds. Results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation. Moreover, they were able to significantly reduce gram-positive, negative, and MRSA bacteria mainly after UV photocrosslinking (PCL:PEG:GelMa-UV). Furthermore, we performed a series of study for gaining a better mechanistic understanding of the scaffolds bactericidal activity through protein adsorption study and analysis of the reactive oxygen species (ROS) levels. Furthermore, the in vivo subcutaneous implantation performed in rats confirmed the biocompatibility of our designed scaffolds.
Collapse
Affiliation(s)
- Mirian Michelle Machado De Paula
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Joy Bassous
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Samson Afewerki
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Division of Gastroenterology, Brigham and Women´s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samarah Vargas Harb
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Chemistry, UNESP-São Paulo State University, Araraquara, São Paulo, Brazil
| | - Paria Ghannadian
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Fernanda Roberta Marciano
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Bartolomeu Cruz Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PI, Brazil
| | - Carla Roberta Tim
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Thomas Jay Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Anderson Oliveira Lobo
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: ,
| |
Collapse
|
30
|
Martín ML, Pfaffen V, Valenti LE, Giacomelli CE. Albumin biofunctionalization to minimize the Staphylococcus aureus adhesion on solid substrates. Colloids Surf B Biointerfaces 2018; 167:156-164. [DOI: 10.1016/j.colsurfb.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
|
31
|
Brancato L, Decrop D, Lammertyn J, Puers R. Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1109. [PMID: 29966223 PMCID: PMC6073716 DOI: 10.3390/ma11071109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
This paper investigates the effects on the blood compatibility of surface nanostructuring of Parylene-C coating. The proposed technique, based on the consecutive use of O₂ and SF₆ plasma, alters the surface roughness and enhances the intrinsic hydrophobicity of Parylene-C. The degree of hydrophobicity of the prepared surface can be precisely controlled by opportunely adjusting the plasma exposure times. Static contact angle measurements, performed on treated Parylene-C, showed a maximum contact angle of 158°. The nanostructured Parylene-C retained its hydrophobicity up to 45 days, when stored in a dry environment. Storing the samples in a body-mimicking solution caused the contact angle to progressively decrease. However, at the end of the measurement, the plasma treated surfaces still exhibited a higher hydrophobicity than the untreated counterparts. The proposed treatment improved the performance of the polymer as a water diffusion barrier in a body simulating environment. Modifying the nanotopography of the polymer influences the adsorption of different blood plasma proteins. The adsorption of albumin—a platelet adhesion inhibitor—and of fibrinogen—a platelet adhesion promoter—was studied by fluorescence microscopy. The adsorption capacity increased monotonically with increasing hydrophobicity for both studied proteins. The effect on albumin adsorption was considerably higher than on fibrinogen. Study of the proteins simultaneous adsorption showed that the albumin to fibrinogen adsorbed ratio increases with substrate hydrophobicity, suggesting lower thrombogenicity of the nanostructured surfaces. Animal experiments proved that the treated surfaces did not trigger any blood clot or thrombus formation when directly exposed to the arterial blood flow. The findings above, together with the exceptional mechanical and insulation properties of Parylene-C, support its use for packaging implants chronically exposed to the blood flow.
Collapse
Affiliation(s)
- Luigi Brancato
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium.
| | - Deborah Decrop
- Department of Biosystems⁻MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Jeroen Lammertyn
- Department of Biosystems⁻MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Robert Puers
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium.
| |
Collapse
|
32
|
Holt BA, Gregory SA, Sulchek T, Yee S, Losego MD. Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7709-7716. [PMID: 29433308 DOI: 10.1021/acsami.7b15871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl2-treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| | | | | | | | | |
Collapse
|
33
|
Xu LC, Li Z, Tian Z, Chen C, Allcock HR, Siedlecki CA. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomater 2018; 67:87-98. [PMID: 29229544 DOI: 10.1016/j.actbio.2017.11.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
A new poly[bis(octafluoropentoxy) phosphazene] (OFP) was synthesized for the purpose of blood contacting medical devices. OFP was further either developed into crosslinkable polyphosphazene (X-OFP) or blended with polyurethane (PU) as the mixture (OFP/PU) for improvement of mechanical property of polyphosphazene polymers. All the materials were fabricated as smooth films or further textured with submicron pillars for the assay of antimicrobial and antithrombotic properties. Results showed that crosslinkable OFP (X-OFP) and blends of OFP/PU successfully improved the mechanical strength of OFP and fewer defects of pillars were found on the textured polyphosphazene surfaces. The antithrombotic experiments showed that polyphosphazene OFP materials reduced human Factor XII activation and platelet adhesion, thereby being resistant to plasma coagulation and thrombosis. The bacterial adhesion and biofilm experiments demonstrated that OFP materials inhibited staphylococcal bacterial adhesion and biofilm formation. The surface texturing further reduced the platelet adhesion and bacterial adhesion, and inhibited biofilm formation up to 23 days. The data suggested that textured OFP materials may provide a practical approach to improve the biocompatibility of current biomaterials in the application of blood contacting medical devices with significant reduction in risk of pathogenic infection and thrombosis. STATEMENT OF SIGNIFICANCE The thromboembolic events and microbial infection have been the significant barriers for the long term use of biomaterials in blood-contacting medical devices. The development of new materials with multiple functions including anti-thrombosis and antibacterial surfaces is a high research priority. This study synthesized new biostable and biocompatible polyphosphazene polymers, poly[bis(octafluoropentoxy)phosphazene] (OFP) and crosslinkable OFP, and successfully improved the mechanical strength of polyphosphazenes. Polymers were fabricated into textured films with submicron pillars on the surfaces. The antimicrobial and antithrombotic assays demonstrated that new materials combined with surface physical modification have significant reduction in risk of pathogenic infection and thrombosis, and improve the biocompatibility of current biomaterials in the application of blood-contacting medical devices. It would be interest to biomaterials and bioengineering related communities.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Zhicheng Tian
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States; Department of Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
34
|
Abstract
Toward improving implantable medical devices as well as diagnostic performance, the development of polymeric biomaterials having resistance to proteins remains a priority. Herein, we highlight key strategies reported in the recent literature that have relied upon improvement of surface hydrophilicity via direct surface modification methods or with bulk modification using surface modifying additives (SMAs). These approaches have utilized a variety of techniques to incorporate the surface hydrophilization agent, including physisorption, hydrogel network formation, surface grafting, layer-by-layer (LbL) assembly and blending base polymers with SMAs. While poly(ethylene glycol) (PEG) remains the gold standard, new alternatives have emerged such as polyglycidols, poly(2-oxazoline)s (POx), polyzwitterions, and amphiphilic block copolymers. While these new strategies provide encouraging results, the need for improved correlation between in vitro and in vivo protein resistance is critical. This may be achieved by employing complex protein solutions as well as strides to enhance the sensitivity of protein adsorption measurements.
Collapse
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
35
|
Wang J, Chen Y, An J, Xu K, Chen T, Müller-Buschbaum P, Zhong Q. Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13647-13656. [PMID: 28358475 DOI: 10.1021/acsami.7b01922] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Comfort regulation and inhibition of bacterial adhesion to textiles is realized by cross-linking thermoresponsive random copolymer to the cotton fabrics. By introduction of ethylene glycol methacrylate (EGMA) monomers into n-isopropylacrylamide (NIPAM) with a molar ratio of 2:18, the obtained random copolymer poly(n-isopropylacrylamide-co-ethylene glycol methacrylate), abbreviated as P(NIPAM-co-EGMA), presents a transition temperature (TT) of 40 °C in an aqueous solution with a concentration of 1 mg/mL. Because of the additional EGMA in the copolymer, the obtained P(NIPAM-co-EGMA) shows a glass transition temperature (Tg) of 0 °C, which is much lower than that of pure PNIPAM (Tg = 140 °C). Therefore, the introduction of P(NIPAM-co-EGMA) into the cotton fabrics will have little influence on the softness of the fabrics. Due to the cross-linked P(NIPAM-co-EGMA) layer on the cotton fabrics, the porosity of the polymer layer can be adjusted by varying the external temperature below or above TT, showing that regulation of the air and moisture permeability as well as the body comfort are feasible in the cotton fabrics cross-linked with P(NIPAM-co-EGMA). In addition, the cross-linked P(NIPAM-co-EGMA) layer is capable of absorbing moisture in the ambient atmosphere to form a hydrated layer on top, which can inhibit bacterial adhesion to the textiles.
Collapse
Affiliation(s)
- Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Yangyi Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Jie An
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Ke Xu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Tao Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| |
Collapse
|