1
|
Wiesli MG, Livio F, Achermann Y, Gautier E, Wahl P. Wound fluid ceftriaxone concentrations after local application with calcium sulphate as carrier material in the treatment of orthopaedic device-associated hip infections. Bone Joint Res 2022; 11:835-842. [DOI: 10.1302/2046-3758.1111.bjr-2022-0180.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aims There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO4) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO4 applied locally to treat ODAI. Methods A total of 30 operations with ceftriaxone-loaded CaSO4 had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results A total of 37 wound fluid concentrations from 16 operations performed in 14 patients were collected. The ceftriaxone concentrations remained approximately within a range of 100 to 200 mg/l up to three weeks. The median concentration was 108.9 mg/l (interquartile range 98.8 to 142.5) within the first ten days. No systemic adverse reactions were observed. Conclusion Our study highlights new clinical data of locally administered ceftriaxone with CaSO4 as carrier material. The near-constant release of ceftriaxone from CaSO4 observed in vitro could be confirmed in vivo. The concentrations remained below known local toxicity thresholds. Cite this article: Bone Joint Res 2022;11(11):835–842.
Collapse
Affiliation(s)
- Matthias G. Wiesli
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Clinic for Craniomaxillofacial and Oral Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Françoise Livio
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yvonne Achermann
- Department of Internal Medicine, Hospital Zollikerberg, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Emanuel Gautier
- Department of Orthopaedics, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Peter Wahl
- Department of Orthopaedics, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| |
Collapse
|
2
|
Li W, Wang Y, Li W, Liu L, Wang X, Song S. Nanoparticle-Containing Hyaluronate Solution for Improved Lubrication of Orthopedic Ceramics. Polymers (Basel) 2022; 14:polym14173485. [PMID: 36080559 PMCID: PMC9460720 DOI: 10.3390/polym14173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Premature failure caused by inadequate lubrication of an artificial joint is a major problem. Inspired by engine lubrication, in which various additives are used to enforce the oil lubricant, here, a bench test of a biomimetic lubricating fluid containing different substances was carried out. Bovine serum albumin (BSA), in the form of both molecules and nanoparticles, was used as a functional additive. Compared with BSA molecules, BSA nanoparticles dispersed in HA solution served as more effective additives in the biomimetic lubrication fluid to minimize the friction and wear of ceramic orthopedic materials made of zirconium dioxide (ZrO2). Meanwhile, a tribo-acoustic study indicated that the “squeaking” problem associated with ZrO2 could be suppressed by the biomimetic fluid. Together with a cytotoxicity assessment, the BSA nanoparticle-incorporated biomimetic fluid was confirmed as a potential reagent for use in the clinic to maintain an even longer service life of artificial joints.
Collapse
Affiliation(s)
- Weihua Li
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng 475001, China
| | - Yingying Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wenwen Li
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (L.L.); or (S.S.); Tel.: +86-371-23882100 (L.L. & S.S.)
| | - Xiao Wang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng 475001, China
| | - Shiyong Song
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China
- Correspondence: (L.L.); or (S.S.); Tel.: +86-371-23882100 (L.L. & S.S.)
| |
Collapse
|
3
|
Ranuša M, Čípek P, Vrbka M, Paloušek D, Křupka I, Hartl M. Tribological behaviour of 3D printed materials for small joint implants: A pilot study. J Mech Behav Biomed Mater 2022; 132:105274. [DOI: 10.1016/j.jmbbm.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
4
|
Radice S, Neto MQ, Fischer A, Wimmer MA. Nickel-free high-nitrogen austenitic steel outperforms CoCrMo alloy regarding tribocorrosion in simulated inflammatory synovial fluids. J Orthop Res 2022; 40:1397-1408. [PMID: 34449923 PMCID: PMC8882197 DOI: 10.1002/jor.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023]
Abstract
CoCrMo alloys are well-established biomaterials used for orthopedic joint replacement implants. However, such alloys have been associated with clinical problems related to wear and corrosion. A new generation of austenitic high-nitrogen steels (AHNSs) has been developed for biomedical applications. Here, we have addressed influences of hyaluronic acid, combined with inflammatory (oxidizing) conditions, on tribocorrosion of the high-nitrogen FeCrMnMoN0.9 steel (DIN/EN X13CrMnMoN18-14-3, 1.4452), and of the low carbon CoCrMo0.03 alloy (ISO 5832-12). We aimed to elucidate critical and clinically relevant conditions affecting the implant's performance in certain orthopedic applications. Tribocorrosion tests were conducted in triplicate, with discs under reciprocating sliding wear against a ceramic ball. Different lubricants were prepared from standardized bovine serum solution (ISO 14242-1), with variable additions of hyaluronic acid (HA) and hydrogen peroxide (H2 O2 ). Test conditions were: 37°C, 86,400 cycles, 37 N load (20-40 MPa after run-in phase). Volumetric wear was quantified; surfaces were evaluated by electrochemical parameters and microscopy/spectroscopy analyses (SEM/EDS). Factorial analysis of variance tests was conducted to examine the effects of HA, H2 O2 , and test material on wear- and corrosion-related dependent variables. Tribocorrosion performances of CoCrMo0.03 and FeCrMnMoN0.9 were comparable in fluids without H2 O2 . With higher H2 O2 concentrations, tribocorrosion increased for CoCrMo0.03 , while this was not the case for FeCrMnMoN0.9 . HA significantly enhanced wear of CoCrMo0.03 in the absence of H2 O2 , while it mitigated the tribocorrosive action of 3 mM H2 O2 ; HA had no impact on FeCrMnMoN0.9 . These results indicate a favorable performance of FeCrMnMoN0.9 compared to CoCrMo0.03 , and encourage further research on AHNS for certain orthopedic applications.
Collapse
Affiliation(s)
- Simona Radice
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison Street, Chicago, IL 60612, USA
| | - Mozart Q. Neto
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison Street, Chicago, IL 60612, USA
| | - Alfons Fischer
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison Street, Chicago, IL 60612, USA
| | - Markus A. Wimmer
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison Street, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Hu F, Lu H, Ye Z, Zhang S, Wang W, Gao L. Slow-release lubrication of artificial joints using self-healing polyvinyl alcohol/polyethylene glycol/ graphene oxide hydrogel. J Mech Behav Biomed Mater 2021; 124:104807. [PMID: 34492404 DOI: 10.1016/j.jmbbm.2021.104807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
New fabrication methods and lubrication materials must be developed to improve the lubrication performance of artificial joints and increase the lubrication duration. Herein, a novel polyvinyl alcohol/polyethylene glycol/graphene oxide (PVA/PEG/GO) hydrogel was prepared by a physical cross-linking method, and then the hydrogel and its sustained-release solution were used as lubricant for friction evaluation. The results demonstrated that the slow-release gel solution has good lubrication performance, and coefficient of friction (COF) is only 0.04, which is much lower than the COF of distilled water (about 0.08) under the same conditions. The structure characterization results revealed that no new materials are formed in the gel. The results of thermogravimetric analyses and differential scanning calorimetry demonstrated that the addition of GO may improve the network crosslinking structure of the PVA/PEG hydrogel and improve its mechanical strength. In addition, PVA/PEG/GO hydrogel has superior self-healing function. The self-healing hydrogel did not break again after being pulled under 200 G of weights. The PVA/PEG/GO hydrogel with excellent slow-release lubricating performance and self-healing properties provides a novel candidate for design of long-term lubricating artificial joints, and is expected to promote the progress of artificial joint lubrication applications.
Collapse
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China.
| | - Zishuo Ye
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Shoujing Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Li Gao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
6
|
Deng F, Li K, Feng Q, Yang K, Huang F. Evaluation of frictional and rheological properties of choline/N-acetyl-l-proline ionic liquid modified with molecular aggregates of tea saponin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Wimmer M, Radice S, Janssen D, Fischer A. Fretting-corrosion of CoCr-alloys against TiAl6V4: The importance of molybdenum in oxidative biological environments. WEAR : AN INTERNATIONAL JOURNAL ON THE SCIENCE AND TECHNOLOGY OF FRICTION LUBRICATION AND WEAR 2021; 477:203813. [PMID: 34690379 PMCID: PMC8528050 DOI: 10.1016/j.wear.2021.203813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periprosthetic fluids often contain reactive oxygen species, including H2O2, that are generated during inflammatory processes. Here, we investigated the fretting-corrosion behavior of CoCrX-alloys (X = Mo, Fe) in a complex protein-containing lubricant, with and without the addition of H2O2. Given the known protective role of molybdenum as an alloying element in metal degradation, we considered its effects by designing a two-way factorial experiment. The aim of the study was to investigate tribocorrosive mechanisms in modular joints of knee and hip prostheses. A previously described test-rig was used to run fretting corrosion tests of CoCrX-alloys with (X=Mo) and without (X=Fe) molybdenum against TiAl6V4 in bovine calf serum (BCS) with and without a physiological relevant H2O2 level (3 mM) in gross slip mode (4 Hz, ±50 μm, pmax=0.18 GPa, 37 °C, 50,000 cycles). Two CoCr-pins were pressed against a cylindrical TiAl6V4-rod, forming a line contact. Normal and frictional forces, the displacement, and the open circuit potential (OCP) were measured and recorded continuously. The dissipated frictional work was independent of alloy composition. The addition of H2O2 lowered the dissipated frictional work and increased wear, and this was significant in the absence of Mo. The mean OCP value was lower with Mo-containing than with Mo-free alloy in both pure BCS (p = .042), and BCS ± H2O2 (p < .0005). The wear scar was deeper for the Mo-free alloy, and this was significant (p = .013) in the presence of H2O2. These findings suggest a marked weakening of the passive film in the presence of H2O2, which is mitigated by the availability of Mo.
Collapse
Affiliation(s)
- M.A. Wimmer
- Rush University Medical Center, Chicago, IL, USA
| | - S. Radice
- Rush University Medical Center, Chicago, IL, USA
| | - D. Janssen
- University of Duisburg-Essen, Materials Science and Engineering, Duisburg, Germany
| | - A. Fischer
- Rush University Medical Center, Chicago, IL, USA
- University of Duisburg-Essen, Materials Science and Engineering, Duisburg, Germany
| |
Collapse
|
8
|
Rufaqua R, Vrbka M, Hemzal D, Choudhury D, Rebenda D, Křupka I, Hartl M. Raman analysis of chemisorbed tribofilm for metal‐on‐polyethylene hip joint prostheses. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Risha Rufaqua
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Martin Vrbka
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Dušan Hemzal
- Department of Condensed Matter Physics Faculty of Science Masaryk University Brno Czech Republic
| | - Dipankar Choudhury
- Nano Mechanics and Tribology Laboratory Department of Mechanical Engineering University of Arkansas Fayetteville Arkansas USA
| | - David Rebenda
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Ivan Křupka
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| | - Martin Hartl
- Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
| |
Collapse
|
9
|
Rufaqua R, Vrbka M, Hemzal D, Choudhury D, Rebenda D, Křupka I, Hartl M. Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy. J Funct Biomater 2021; 12:jfb12020029. [PMID: 34062752 PMCID: PMC8167604 DOI: 10.3390/jfb12020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
To understand the possible lubricant mechanism in ceramic-on-ceramic hip joint prostheses, biochemical reactions of the synovial fluid and the corresponding frictional coefficients were studied. The experiments were performed in a hip joint simulator using the ball-on-cup configuration with balls and cups made from two types of ceramics, BIOLOX®forte and BIOLOX®delta. Different lubricants, namely albumin, γ-globulin, hyaluronic acid and three model synovial fluids, were studied in the experiments and Raman spectroscopy was used to analyze the biochemical responses of these lubricants at the interface. BIOLOX®delta surface was found less reactive to proteins and model fluid lubricants. In contrast, BIOLOX®forte ball surface has shown chemisorption with both proteins, hyaluronic acid and model fluids imitating total joint replacement and osteoarthritic joint. There was no direct correlation between the measured frictional coefficient and the observed chemical reactions. In summary, the study reveals chemistry of lubricant film formation on ceramic hip implant surfaces with various model synovial fluids and their components.
Collapse
Affiliation(s)
- Risha Rufaqua
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
- Correspondence:
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Dušan Hemzal
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic;
| | - Dipankar Choudhury
- Nano Mechanics and Tribology Laboratory, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Ivan Křupka
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (M.V.); (D.R.); (I.K.); (M.H.)
| |
Collapse
|
10
|
Radice S, Westrick J, Ebinger K, Mathew MT, Wimmer MA. In-vitro studies on cells and tissues in tribocorrosion processes: A systematic scoping review. ACTA ACUST UNITED AC 2020; 24. [PMID: 33015276 DOI: 10.1016/j.biotri.2020.100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tribocorrosion of implants has been widely addressed in the orthopedic and dental research fields. This study is a systematic scoping review about research methods that combine tribocorrosion tests with cells/tissues cultures, aimed to identify related current problems and future challenges. We used 4 different databases to identify 1022 records responding to an articulated keywords search-strategy. After removing the duplicates and the articles that didn't meet the search-criteria, we assessed 20 full-text articles for eligibility. Of the 20 eligible articles, we charted 8 records on cell cultures combined with tribocorrosion tests on implant materials (titanium, CoCrMo, and/or stainless steel). The year of publication ranged from 1991 to 2019. The cell line used was mostly murine. Two records used fretting tests, while 6 used reciprocating sliding with pin-on-disc tribometers. An electrochemical three-electrode setup was used in 4 records. We identified overall two experimental approaches: cells cultured on the metal (5 records), and cells cultured near the metal (3 records). Research activities on tribocorrosion processes in the presence of cells have been undertaken worldwide by a few groups. After a limited initial interest on this topic in the 1990's, research activities have restarted in the last decade, renewing the topic with technologically more advanced setups and analytical tools. We identified the main problems to be the lack of test reproducibility and wear particle characterization. We believe that the main challenges lay in the interdisciplinary approach, the inter-laboratory validation of experiments, and the interpretation of results, particularly in relation to potential clinical significance.
Collapse
Affiliation(s)
- S Radice
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - J Westrick
- Library of Rush University Medical Center, 600 S. Paulina St., Chicago, IL 60612, USA
| | - K Ebinger
- Klinikum Garmisch-Partenkirche, Auenstraße 6, 82467 Garmisch-Partenkirchen, Germany
| | - M T Mathew
- College of Medicine at Rockford, University of Illinois, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - M A Wimmer
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison St., Chicago, IL 60612, USA
| |
Collapse
|
11
|
Nečas D, Sadecká K, Vrbka M, Galandáková A, Wimmer MA, Gallo J, Hartl M. The effect of albumin and γ-globulin on synovial fluid lubrication: Implication for knee joint replacements. J Mech Behav Biomed Mater 2020; 113:104117. [PMID: 33065468 DOI: 10.1016/j.jmbbm.2020.104117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Total knee arthroplasty has become a routine procedure for patients suffering from joint diseases. Although the number of operations continuously increases, a limited service-life of implants represents a persisting challenge for scientists. Understanding of lubrication may help to suitably explain tribological processes on the way to replacements that become durable well into the third decade of service. The aim of the present study is to assess the formation of protein lubricating film in the knee implant. A developed knee simulator was used to observe the contact of real femoral and transparent polymer tibial component using fluorescent microscopy. The contact was lubricated by various protein solutions with attention to the behaviour of albumin and γ-globulin. In order to suitably mimic a human synovial fluid, hyaluronic acid and phospholipids were subsequently added to the solutions. Further, the change in shape and the migration of the contact zone were studied. The results showed considerable appearance differences of the contact over the swing phase of the simplified gait cycle. Regarding film formation, a strong interaction of the various molecules of synovial fluid was observed. It was found that the thickness of the lubricating layer stabilizes within around 50 s. Throughout the contact zone, protein agglomerations were present and could be clearly visualised using the applied optical technique.
Collapse
Affiliation(s)
- D Nečas
- Dept of Tribology, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic.
| | - K Sadecká
- Dept of Tribology, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic
| | - M Vrbka
- Dept of Tribology, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic
| | - A Galandáková
- Dept of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - M A Wimmer
- Dept of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - J Gallo
- Dept of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic
| | - M Hartl
- Dept of Tribology, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic
| |
Collapse
|
12
|
Wiegand MJ, Khullar P, Mercuri JJ, Gilbert JL. Synthetic periprosthetic synovial fluid development for in vitro cell-tribocorrosion testing using the Taguchi array approach. J Biomed Mater Res A 2020; 109:551-561. [PMID: 32946189 DOI: 10.1002/jbm.a.37039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
Synovial fluid is dynamic in vivo with biological components changing in ratio and size depending on the health of the joint space, making it difficult to model in vitro. Previous efforts to develop synthetic synovial fluid have typically focused on single organic-tribological interactions with implant surfaces, thus ignoring interplay between multiple solution components. Using a Taguchi orthogonal array, we were able to isolate the individual effects of five independent synovial fluid composition variables: ratios of (1) hyaluronic acid to phospholipids (HA:PL) and (2) albumin to globulin (A:G), and concentrations of (3) hydrogen peroxide (H2 O2 ), (4) cobalt (Co2+ ) and (5) chromium (Cr3+ ) ions on macrophage viability and reduced glutathione production, local solution pH and the comprehensive CoCrMo alloy electrochemical response. While no single synovial fluid variable significantly affected the collective response, HA:PL ratio resulted in the largest impact factor (Δ) on 12 of the 13 measured responses with significant effects (p < .05) on the average macrophage survival rate and electrochemical capacitive state of the CoCrMo surface. Cluster analysis separated significant responses from all trials into three groups, corresponding to healthy, mild, or severely inflamed fluids, respectively; with the healthy synovial fluid composition having mid-range HA:PL ratios with no Co2+ ions, and the severely inflamed fluids consisting of low and high HA:PL ratios with H2 O2 and Co2+ ions. By utilizing the Taguchi approach in combination with cluster analysis, we were able to advance our knowledge of complex multivariate synthetic synovial fluids influence on macrophage and electrochemical behavior at the cell-solution-metal interface.
Collapse
Affiliation(s)
- Michael J Wiegand
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Piyush Khullar
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jeremy J Mercuri
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Rebenda D, Vrbka M, Čípek P, Toropitsyn E, Nečas D, Pravda M, Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2659. [PMID: 32545213 PMCID: PMC7321645 DOI: 10.3390/ma13112659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/27/2023]
Abstract
Hyaluronic acid (HA) injections represent one of the most common methods for the treatment of osteoarthritis. However, the clinical results of this method are unambiguous mainly because the mechanism of action has not been clearly clarified yet. Viscosupplementation consists, inter alia, of the improvement of synovial fluid rheological properties by injected solution. The present paper deals with the effect of HA molecular weight on the rheological properties of its solutions and also on friction in the articular cartilage model. Viscosity and viscoelastic properties of HA solutions were analyzed with a rotational rheometer in a cone-plate and plate-plate configuration. In total, four HA solutions with molecular weights between 77 kDa and 2010 kDa were tested. The frictional measurements were realized on a commercial tribometer Bruker UMT TriboLab, while the coefficient of friction (CoF) dependency on time was measured. The contact couple consisted of the articular cartilage pin and the plate made from optical glass. The contact was fully flooded with tested HA solutions. Results showed a strong dependency between HA molecular weight and its rheological properties. However, no clear dependence between HA molecular weight and CoF was revealed from the frictional measurements. This study presents new insight into the dependence between rheological and frictional behavior of the articular cartilage, while such an extensive investigation has not been presented before.
Collapse
Affiliation(s)
- David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Pavel Čípek
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - David Nečas
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| |
Collapse
|
14
|
Furmann D, Nečas D, Rebenda D, Čípek P, Vrbka M, Křupka I, Hartl M. The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1334. [PMID: 32183442 PMCID: PMC7143089 DOI: 10.3390/ma13061334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Articular cartilage ensures smooth motion of natural synovial joints operating at very low friction. However, the number of patients suffering from joint diseases, usually associated with cartilage degradation, continuously increases. Therefore, an understanding of cartilage tribological behaviour is of great interest in order to minimize its degradation, preserving the reliable function of the joints. The aim of the present study is to provide a comprehensive comparison of frictional behaviour of articular cartilage, focusing on the effect of synovial fluid composition (i), speed (ii), and load (iii). The experiments were realized using a pin-on-plate tribometer with reciprocating motion. The articular cartilage pin was loaded against smooth glass plate while the tests consisted of loading and unloading phases in order to enable cartilage rehydration. Various model fluids containing albumin, γ-globulin, hyaluronic acid, and phospholipids were prepared in two different concentrations simulating physiologic and osteoarthritic synovial fluid. Two different speeds, 5 mm/s and 10 mm/s were applied, and the tests were carried out under 5 N and 10 N. It was found that protein-based solutions exhibit almost no difference in friction coefficient, independently of the concentration of the constituents. However, the behaviour is considerably changed when adding hyaluronic acid and phospholipids. Especially when interacting with γ-globulin, friction coefficient decreased substantially. In general, an important role of the interaction of fluid constituents was observed. On the other hand, a limited effect of speed was detected for most of the model fluids. Finally, it was shown that elevated load leads to lower friction, which corresponds well with previous observations. Further study should concentrate on specific explored phenomena focusing on the detailed statistical evaluation.
Collapse
Affiliation(s)
- Denis Furmann
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - David Nečas
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Pavel Čípek
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Ivan Křupka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| |
Collapse
|
15
|
Effects of bovine serum albumin and hyaluronic acid on the electrochemical response of a CoCrMo alloy to cathodic and anodic excursions. ACTA ACUST UNITED AC 2019; 5. [PMID: 31828005 DOI: 10.1007/s40735-019-0299-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The problem of wear and corrosion of CoCrMo-implant surfaces in the human body following total joint replacement has been commonly investigated with tribocorrosion tests, using different lubricants meant to simulate the pseudo-synovial fluid. While results considering the synovial fluid components separately have highlighted their individual influence on the tribological performance of CoCrMo-alloy, an understanding about the influence of the synovial fluid components under the electrochemical point of view is missing. This work aims to investigate the effect of bovine serum albumin (BSA) and hyaluronic acid (HA) on electrochemical potential variations of CoCrMo alloys tested in a model synovial fluid. To simulate the environment inside the synovial capsule, the tests were performed inside a CO2 incubator at 37°C. Open circuit potential, electrochemical impedance spectroscopy, cathodic and anodic potentiodynamic measurements were performed with different electrolytes, prepared with cell culture medium (RMPI-1640), BSA and HA. The final CoCrMo-surface was analyzed by SEM/EDS and infrared spectroscopy. The influence of HA on the corrosion of the CoCrMo-alloy depended on the presence of BSA proteins adsorbed on the CoCrMo-surface: EIS and anodic polarization results showed a corrosive action of HA in the absence of adsorbed proteins. In the presence of both BSA and HA, organometallic precipitates were found on the CoCrMo surface following reverse anodic polarization, which remind of corrosion products found in-vivo. These results indicate that HA affects the interaction of CoCrMo implant alloys with protein-containing model synovial fluids, and suggest that HA needs to be considered in tribocorrosion studies for more clinically relevant outcomes.
Collapse
|
16
|
Akhbari P, Jaggard MK, Boulangé CL, Vaghela U, Graça G, Bhattacharya R, Lindon JC, Williams HRT, Gupte CM. Differences in the composition of hip and knee synovial fluid in osteoarthritis: a nuclear magnetic resonance (NMR) spectroscopy study of metabolic profiles. Osteoarthritis Cartilage 2019; 27:1768-1777. [PMID: 31491490 DOI: 10.1016/j.joca.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The hip and knee joints differ biomechanically in terms of contact stresses, fluid lubrication and wear patterns. These differences may be reflected in the synovial fluid (SF) composition of the two joints, but the nature of these differences remains unknown. The objective was to identify differences in osteoarthritic hip and knee SF metabolites using metabolic profiling with Nuclear Magnetic Resonance (NMR) spectroscopy. DESIGN Twenty-four SF samples (12 hip, 12 knee) were collected from patients with end-stage osteoarthritis (ESOA) undergoing hip/knee arthroplasty. Samples were matched for age, gender, ethnicity and had similar medical comorbidities. NMR spectroscopy was used to analyse the metabolites present in each sample. Principal Component Analysis and Orthogonal Partial Least Squares Discriminant Analysis were undertaken to investigate metabolic differences between the groups. Metabolites were identified using 2D NMR spectra, statistical spectroscopy and by comparison to entries in published databases. RESULTS There were significant differences in the metabolic profile between the groups. Four metabolites were found in significantly greater quantities in the knee group compared to the hip group (N-acetylated molecules, glycosaminoglycans, citrate and glutamine). CONCLUSIONS This is the first study to indicate differences in the metabolic profile of hip and knee SF in ESOA. The identified metabolites can broadly be grouped into those involved in collagen degradation, the tricarboxylic acid cycle and oxidative metabolism in diseased joints. These findings may represent a combination of intra and extra-articular factors.
Collapse
Affiliation(s)
- P Akhbari
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - M K Jaggard
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - C L Boulangé
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - U Vaghela
- School of Medicine, Imperial College London, London, United Kingdom.
| | - G Graça
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - R Bhattacharya
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - J C Lindon
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - H R T Williams
- Department of Digestive Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - C M Gupte
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
17
|
Chen CT, Chen CH, Sheu C, Chen JP. Ibuprofen-Loaded Hyaluronic Acid Nanofibrous Membranes for Prevention of Postoperative Tendon Adhesion through Reduction of Inflammation. Int J Mol Sci 2019; 20:E5038. [PMID: 31614502 PMCID: PMC6834315 DOI: 10.3390/ijms20205038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
A desirable multi-functional nanofibrous membrane (NFM) for prevention of postoperative tendon adhesion should be endowed with abilities to prevent fibroblast attachment and penetration and exert anti-inflammation effects. To meet this need, hyaluronic acid (HA)/ibuprofen (IBU) (HAI) NFMs were prepared by electrospinning, followed by dual ionic crosslinking with FeCl3 (HAIF NFMs) and covalent crosslinking with 1,4-butanediol diglycidyl ether (BDDE) to produce HAIFB NFMs. It is expected that the multi-functional NFMs will act as a physical barrier to prevent fibroblast penetration, HA will reduce fibroblast attachment and impart a lubrication effect for tendon gliding, while IBU will function as an anti-inflammation drug. For this purpose, we successfully fabricated HAIFB NFMs containing 20% (HAI20FB), 30% (HAI30FB), and 40% (HAI40FB) IBU and characterized their physico-chemical properties by scanning electron microscopy, Fourier transformed infrared spectroscopy, thermal gravimetric analysis, and mechanical testing. In vitro cell culture studies revealed that all NFMs except HAI40FB possessed excellent effects in preventing fibroblast attachment and penetration while preserving high biocompatibility without influencing cell proliferation. Although showing significant improvement in mechanical properties over other NFMs, the HAI40FB NFM exhibited cytotoxicity towards fibroblasts due to the higher percentage and concentration of IBU released form the membrane. In vivo studies in a rabbit flexor tendon rupture model demonstrated the efficacy of IBU-loaded NFMs (HAI30FB) over Seprafilm® and NFMs without IBU (HAFB) in reducing local inflammation and preventing tendon adhesion based on gross observation, histological analyses, and biomechanical functional assays. We concluded that an HAI30FB NFM will act as a multi-functional barrier membrane to prevent peritendinous adhesion after tendon surgery.
Collapse
Affiliation(s)
- Chien-Tzung Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University, College of Medicine, Keelung 20401, Taiwan.
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chialin Sheu
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
18
|
Fu J, Ni M, Chai W, Li X, Hao L, Chen J. Synovial Fluid Viscosity Test is Promising for the Diagnosis of Periprosthetic Joint Infection. J Arthroplasty 2019; 34:1197-1200. [PMID: 30837099 DOI: 10.1016/j.arth.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND So far there is no "gold standard" test for the diagnosis of periprosthetic joint infection (PJI), compelling clinicians to rely on several serological and synovial fluid tests with no 100% accuracy. Synovial fluid viscosity is one of the parameters defining the rheology properties of synovial fluid. We hypothesized that patients with PJI may have a different level of synovial fluid viscosity and aimed to investigate the sensitivity and specificity of synovial fluid viscosity in detecting PJI. METHODS This prospective study was initiated to enroll patients undergoing primary and revision arthroplasty. Our cohort consisted of 45 patients undergoing revision for PJI (n = 15), revision for aseptic failure (n = 15), and primary arthroplasty (n = 15). PJI was defined using the Musculoskeletal Infection Society criteria. In all patients, synovial fluid viscosity, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and plasma d-dimer levels were measured preoperatively. RESULTS The synovial fluid viscosity level was significantly lower (P = .0011) in patients with PJI (7.93 mPa·s, range 3.0-15.0) than in patients with aseptic failure (13.11 mPa·s, range 6.3-20.4). Using Youden's index, 11.80 mPa·s was determined as the optimal threshold value for synovial fluid viscosity for the diagnosis of PJI. Synovial fluid viscosity outperformed CRP, ESR, and plasma d-dimer, with a sensitivity of 93.33% and a specificity of 66.67%. CONCLUSION Synovial fluid viscosity seems to be on the same level of accuracy with CRP, ESR, and d-dimer regarding PJI detection and to be a promising marker for the diagnosis of PJI.
Collapse
Affiliation(s)
- Jun Fu
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| | - Ming Ni
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| | - Wei Chai
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| | - Xiang Li
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| | - Libo Hao
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| | - Jiying Chen
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital (301 Hospital), Beijing, PR China
| |
Collapse
|
19
|
Nečas D, Vrbka M, Gallo J, Křupka I, Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part II: Hard-on-hard bearing pairs. J Mech Behav Biomed Mater 2019; 89:249-259. [DOI: 10.1016/j.jmbbm.2018.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|
20
|
On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J Mech Behav Biomed Mater 2019; 89:237-248. [DOI: 10.1016/j.jmbbm.2018.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
|
21
|
Zieba J, Walczak M, Gordiienko O, Gerstenhaber JA, Smith GM, Krynska B. Altered Amniotic Fluid Levels of Hyaluronic Acid in Fetal Rats with Myelomeningocele: Understanding Spinal Cord Injury. J Neurotrauma 2018; 36:1965-1973. [PMID: 30284959 DOI: 10.1089/neu.2018.5894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myelomeningocele (MMC) is a devastating congenital neural tube defect that results in the exposure of spinal cord to the intrauterine environment, leading to secondary spinal cord injury and severe impairment. Although the mechanisms underlying the secondary pathogenesis are clinically relevant, the exact cause of in utero-acquired spinal cord damage remains unclear. The objective of this study was to determine whether the hyaluronic acid (HA) concentration in amniotic fluid (AF) in the retinoic acid-induced model of MMC is different from that in normal controls and whether these differences could have an impact on the viscosity of AF. Our data shows that the concentration of HA in AF samples from fetuses with MMC (MMC-AF) and normal control samples (Norm-AF) were not significantly different at embryonic day 18 (E18) and E20. Thereafter, the HA concentration significantly increased in Norm-AF but not in MMC-AF. Compared with Norm-AF, the concentration of HA in MMC-AF and the viscosity of MMC-AF were significantly lower at E21. Agarose gel electrophoresis confirmed a significant reduction in the HA level of MMC-AF compared with Norm-AF at E21. No HA-degrading activity was detected in MMC-AF. In summary, we identified a deficiency in the AF level of HA and the viscosity of AF in fetal rats with MMC. These data are discussed in relation to a potential role the reduction in the AF viscosity due to the low level of HA may play in the exacerbating effects of mechanical trauma on spinal cord damage at the MMC lesion site.
Collapse
Affiliation(s)
- Jolanta Zieba
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Maciej Walczak
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Oleg Gordiienko
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jonathan A Gerstenhaber
- 2 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - George M Smith
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Barbara Krynska
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
The development of a small-scale wear test for CoCrMo specimens with human synovial fluid. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biotri.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Peroglio M, Gaspar D, Zeugolis DI, Alini M. Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J Orthop Res 2018; 36:10-21. [PMID: 28718947 DOI: 10.1002/jor.23655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|