1
|
Byun WY, Liu L, Palutsis A, Tan ZH, Herster R, VanKoevering K, Manning A, Chiang T. Dynamic flow for efficient partial decellularization of tracheal grafts: A preliminary rabbit study. Laryngoscope Investig Otolaryngol 2024; 9:e1247. [PMID: 38618643 PMCID: PMC11015388 DOI: 10.1002/lio2.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Objective Bioengineered tracheal grafts are a potential solution for the repair of long-segment tracheal defects. A recent advancement is partially decellularized tracheal grafts (PDTGs) which enable regeneration of host epithelium and retain viable donor chondrocytes for hypothesized benefits to mechanical properties. We propose a novel and tunable 3D-printed bioreactor for creating large animal PDTG that brings this technology closer to the bedside. Methods Conventional agitated immersion with surfactant and enzymatic activity was used to partially decellularize New Zealand white rabbit (Oryctolagus cuniculus) tracheal segments (n = 3). In parallel, tracheal segments (n = 3) were decellularized in the bioreactor with continuous extraluminal flow of medium and alternating intraluminal flow of surfactant and medium. Unprocessed tracheal segments (n = 3) were also collected as a control. The grafts were assessed using the H&E stain, tissue DNA content, live/dead assay, Masson's trichrome stain, and mechanical testing. Results Conventional processing required 10 h to achieve decellularization of the epithelium and submucosa with poor chondrocyte viability and mechanical strength. Using the bioreactor reduced processing time by 6 h and resulted in chondrocyte viability and mechanical strength similar to that of native trachea. Conclusion Large animal PDTG created using our novel 3D printed bioreactor is a promising approach to efficiently produce tracheal grafts. The bioreactor offers flexibility and adjustability favorable to creating PDTG for clinical research and use. Future research includes optimizing flow conditions and transplantation to assess post-implant regeneration and mechanical properties. Level of Evidence NA.
Collapse
Affiliation(s)
- Woo Yul Byun
- College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Lumei Liu
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Amanda Palutsis
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- College of EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Zheng Hong Tan
- College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Rachel Herster
- College of EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Otolaryngology–Head & Neck SurgeryThe Ohio State University Medical CenterColumbusOhioUSA
| | - Kyle VanKoevering
- Department of Otolaryngology–Head & Neck SurgeryThe Ohio State University Medical CenterColumbusOhioUSA
| | - Amy Manning
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- Department of Pediatric OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| | - Tendy Chiang
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- Department of Pediatric OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| |
Collapse
|
2
|
Wang Y, Li J, Qian J, Sun Y, Xu J, Sun J. Comparison of the biological properties between 3D-printed and decellularized tracheal grafts. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02867-4. [PMID: 37171579 DOI: 10.1007/s00449-023-02867-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
This study sought to characterize the differences between the 3D-printed and decellularized tracheal grafts, providing the basis for the synthesis of the more reasonable and effective tissue-engineered trachea. We compared the biomechanical properties and biocompatibility of the 3D-printed tracheal graft and decellularized tracheal graft in vitro and evaluated the biocompatibility, immune rejection and inflammation of the two materials through in vivo implantation experiments. Compared with the decellularized tracheal graft, the 3D-printed tracheal graft was associated with obviously higher biomechanical properties. The results demonstrated enhanced growth of BMSCs in the decellularized tracheal graft compared to the 3D-printed one when co-culture with two tracheal graft groups. Moreover, the CCK-8 assay demonstrated significant cell proliferation on the decellularized tracheal graft. Serum IgG and IgM measured in vivo by implantation testing indicated that the 3D-Printed tracheal graft exhibited the most significant inflammatory response. HE staining indicated that the inflammatory response in the 3D-printed tracheal graft consisted mainly of eosinophils, while little inflammatory cell infiltrates were observed in the decellularized tracheal graft. CD68 immunohistochemical analysis indicated that the infiltration of macrophages was not significant in both tracheal grafts. Our findings suggest that the biomechanical properties of the 3D-printed tracheal grafts are better than the decellularized tracheal grafts. Nonetheless, the decellularized tracheal graft exhibited better biocompatibility than the 3D-printed tracheal graft.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianfeng Li
- Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, 211900, China
| | - Jun Qian
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Yunhao Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianning Xu
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jian Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China.
| |
Collapse
|
3
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Huang X, Lv ZT, Cheng P, Chen AM. A Novel Low Air Pressure-Assisted Approach for the Construction of Cells-Decellularized Tendon Scaffold Complex. Curr Med Sci 2022; 42:569-576. [DOI: 10.1007/s11596-022-2603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
5
|
Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater 2021; 19:22808000211064948. [PMID: 34903089 DOI: 10.1177/22808000211064948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, the trachea is a conduit for ventilation connecting the throat and lungs. However, certain congenital or acquired diseases may cause long-term tracheal defects that require replacement. Tissue engineering is considered a promising method to reconstruct long-segment tracheal lesions and restore the structure and function of the trachea. Decellularization technology retains the natural structure of the trachea, has good biocompatibility and mechanical properties, and is currently a hotspot in tissue engineering studies. This article lists various recent representative protocols for the generation of decellularized tracheal scaffolds (DTSs), as well as their validity and limitations. Based on the advancements in decellularization methods, we discussed the impact and importance of mechanical properties, revascularization, recellularization, and biocompatibility in the production and implantation of DTS. This review provides a basis for future research on DTS and its application in clinical therapy.
Collapse
Affiliation(s)
- Chenyang Lei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sheng Mei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chun Zhou
- Department of Geriatrics, The 903 Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Hangzhou, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
6
|
Yuan Z, Ren Y, Shafiq M, Chen Y, Tang H, Li B, El-Newehy M, El-Hamshary H, Morsi Y, Zheng H, Mo X. Converging 3D Printing and Electrospinning: Effect of Poly(l-lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromol Biosci 2021; 22:e2100342. [PMID: 34706143 DOI: 10.1002/mabi.202100342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Indexed: 12/28/2022]
Abstract
Recently, various tissue engineering based strategies have been pursued for the regeneration of tracheal tissues. However, previously developed tracheal scaffolds do not accurately mimic the microstructure and mechanical behavior of the native trachea, which restrict their clinical translation. Here, tracheal scaffolds are fabricated by using 3D printing and short nanofibers (SF) dispersion of poly(l-lactide)/gelatin (0.5-1.5 wt%) to afford tracheal constructs. The results display that the scaffolds containing 1.0 wt % of SF exhibit low density, good water absorption capacity, reasonable degradation rate, and stable mechanical properties, which were comparable to the native trachea. Moreover, the designed scaffolds possess good biocompatibility and promote the growth and infiltration of chondrocytes in vitro. The biocompatibility of tracheal scaffolds is further assessed after subcutaneous implantation in mice for up to 4 and 8 weeks. Histological assessment of tracheal constructs explanted at week 4 shows that scaffolds can maintain their structural integrity and support the formation of neo-vessels. Furthermore, cell-scaffold constructs gradually form cartilage-like tissues, which mature with time. Collectively, these engineered tracheal scaffolds not only possess appropriate mechanical properties to afford a stabilized structure but also a biomimetic extracellular matrix-like structure to accomplish tissue regeneration, which may have broad implications for tracheal regeneration.
Collapse
Affiliation(s)
- Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Baojie Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
7
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
8
|
Massaro MS, Pálek R, Rosendorf J, Červenková L, Liška V, Moulisová V. Decellularized xenogeneic scaffolds in transplantation and tissue engineering: Immunogenicity versus positive cell stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112203. [PMID: 34225855 DOI: 10.1016/j.msec.2021.112203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
Seriously compromised function of some organs can only be restored by transplantation. Due to the shortage of human donors, the need to find another source of organs is of primary importance. Decellularized scaffolds of non-human origin are being studied as highly potential biomaterials for tissue engineering. Their biological nature and thus the ability to provide a naturally-derived environment for human cells to adhere and grow highlights their great advantage in comparison to synthetic scaffolds. Nevertheless, since every biomaterial implanted in the body generates immune reaction, studying the interaction of the scaffold with the surrounding tissues is necessary. This review aims to summarize current knowledge on the immunogenicity of semi-xenografts involved in transplantation. Moreover, positive aspects of the interaction between xenogeneic scaffold and human cells are discussed, focusing on specific roles of proteins associated with extracellular matrix in cell adhesion and signalling.
Collapse
Affiliation(s)
- Maria Stefania Massaro
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic
| | - Richard Pálek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Lenka Červenková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Pathology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Vladimíra Moulisová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic.
| |
Collapse
|
9
|
Decellularized Fetal Matrix Suppresses Fibrotic Gene Expression and Promotes Myogenesis in a Rat Model of Volumetric Muscle Loss. Plast Reconstr Surg 2020; 146:552-562. [PMID: 32459729 DOI: 10.1097/prs.0000000000007093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic muscle loss often results in poor functional restoration. Skeletal muscle injuries cannot be repaired without substantial fibrosis and loss of muscle function. Given its regenerative properties, the authors evaluated outcomes of fetal tissue-derived decellularized matrix for skeletal muscle regeneration. The authors hypothesized that fetal matrix would lead to enhanced myogenesis and suppress inflammation and fibrosis. METHODS Composite tissue composed of dermis, subcutaneous tissue, and panniculus carnosus was harvested from the trunk of New Zealand White rabbit fetuses on gestational day 24 and from Sprague-Dawley rats on gestational day 18 and neonatal day 3, and decellularized using a sodium dodecyl sulfate-based negative-pressure protocol. Six, 10-mm-diameter, full-thickness rat latissimus dorsi wounds were created for each treatment, matrix was implanted (excluding the defect groups), and the wounds were allowed to heal for 60 days. Analyses were performed to characterize myogenesis, neovascularization, inflammation, and fibrosis at harvest. RESULTS Significant myocyte ingrowth was visualized in both allogeneic and xenogeneic fetal matrix groups compared to neonatal and defect groups based on myosin heavy chain immunofluorescence staining. Microvascular networks were appreciated within all implanted matrices. At day 60, expression of Ccn2, Col1a1, and Ptgs2 were decreased in fetal matrix groups compared to defect. Neonatal matrix-implanted wounds failed to show decreased expression of Col1a1 or Ptgs2, and demonstrated increased expression of Tnf, but also demonstrated a significant reduction in Ccn2 expression. CONCLUSIONS Initial studies of fetal matrices demonstrate promise for muscle regeneration in a rat latissimus dorsi model. Further research is necessary to evaluate fetal matrix for future translational use and better understand its effects.
Collapse
|
10
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Pan S, Zhong Y, Shan Y, Liu X, Xiao Y, Shi H. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. J Biomed Mater Res A 2018; 107:360-370. [PMID: 30485676 DOI: 10.1002/jbm.a.36536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
The influences of pore sizes and surface modifications on biomechanical properties and biocompatibility (BC) of porous tracheal scaffolds (PTSs) fabricated by polycaprolactone (PCL) using 3D printing technology. The porous grafts were surface-modified through hydrolysis, amination, and nanocrystallization treatment. The surface properties of the modified grafts were characterized by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The materials were cocultured with bone marrow mesenchymal stem cells (BMSCs). The effect of different pore sizes and surface modifications on the cell proliferation behavior was evaluated by the cell counting kit-8 (CCK-8). Compared to native tracheas, the PTS has good biomechanical properties. A pore diameter of 200 μm is the optimum for cell adhesion, and the surface modifications successfully improved the cytotropism of the PTS. Allogeneic implantation confirmed that it largely retains its structural integrity in the host, and the immune rejection reaction of the PTS decreased significantly after the acute phase. Nano-silicon dioxide (NSD)-modified PTS is a promising material for tissue engineering tracheal reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 360-370, 2019.
Collapse
Affiliation(s)
- Shu Pan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yi Zhong
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yibo Shan
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Xueying Liu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yuanfan Xiao
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
12
|
Leonel LCPC, Miranda CMFC, Coelho TM, Ferreira GAS, Caãada RR, Miglino MA, Lobo SE. Decellularization of placentas: establishing a protocol. ACTA ACUST UNITED AC 2017; 51:e6382. [PMID: 29185592 PMCID: PMC5685058 DOI: 10.1590/1414-431x20176382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Biological biomaterials for tissue engineering purposes can be produced through tissue and/or organ decellularization. The remaining extracellular matrix (ECM) must be acellular and preserve its proteins and physical features. Placentas are organs of great interest because they are discarded after birth and present large amounts of ECM. Protocols for decellularization are tissue-specific and have not been established for canine placentas yet. This study aimed at analyzing a favorable method for decellularization of maternal and fetal portions of canine placentas. Canine placentas were subjected to ten preliminary tests to analyze the efficacy of parameters such as the type of detergents, freezing temperatures and perfusion. Two protocols were chosen for further analyses using histology, scanning electron microscopy, immunofluorescence and DNA quantification. Sodium dodecyl sulfate (SDS) was the most effective detergent for cell removal. Freezing placentas before decellularization required longer periods of incubation in different detergents. Both perfusion and immersion methods were capable of removing cells. Placentas decellularized using Protocol I (1% SDS, 5 mM EDTA, 50 mM TRIS, and 0.5% antibiotic) preserved the ECM structure better, but Protocol I was less efficient to remove cells and DNA content from the ECM than Protocol II (1% SDS, 5 mM EDTA, 0.05% trypsin, and 0.5% antibiotic).
Collapse
Affiliation(s)
- L C P C Leonel
- Setor de Anatomia, Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - C M F C Miranda
- Setor de Anatomia, Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T M Coelho
- Universidade Metodista de São Paulo, São Paulo, SP, Brasil
| | | | - R R Caãada
- Universidade São Judas Tadeu, São Paulo, SP, Brasil
| | - M A Miglino
- Setor de Anatomia, Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - S E Lobo
- Setor de Anatomia, Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|