1
|
Soltani Khaboushan A, Azimzadeh A, Behboodi Tanourlouee S, Mamdoohi M, Kajbafzadeh AM, Slavin KV, Rahimi-Movaghar V, Hassannejad Z. Electrical stimulation enhances sciatic nerve regeneration using a silk-based conductive scaffold beyond traditional nerve guide conduits. Sci Rep 2024; 14:15196. [PMID: 38956215 PMCID: PMC11219763 DOI: 10.1038/s41598-024-65286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Melina Mamdoohi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave., Tehran, 11365-3876, Iran.
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| |
Collapse
|
2
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
3
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Rajabi M, Cabral JD, Saunderson S, Ali MA. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. J Biomed Mater Res A 2023; 111:1468-1481. [PMID: 37066870 DOI: 10.1002/jbm.a.37548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
To date, lack of functional hydrogel inks has limited 3D printing applications in tissue engineering. This study developed a series of photocurable hydrogel inks based on chitooligosaccharide (COS)-polyethylene glycol diacrylate (PEGDA) for extrusion-based 3D printing of bone tissue scaffolds. The scaffolds were prepared by aza-Michael addition of COS and PEGDA followed by photopolymerisation of unreacted PEGDA. The hydrogel inks showed sufficient shear thinning properties required for extrusion 3D printing. The printed scaffolds exhibited excellent shape fidelity and fine microstructure with a resolution of 250 μm. By increasing the COS content, the swelling ratio of the scaffolds decreased, while the compressive strength increased. 3D printed COS-PEGDA scaffolds showed high viability of human bone mesenchymal stem cells in vitro. In addition, scaffolds containing 2 wt% COS showed significantly higher alkaline phosphatase activity, calcium deposition, and bioactivity in simulated body fluid compared to the control (PEGDA). Altogether, 3D printed COS-PEGDA scaffolds represent promising candidates for bone tissue regeneration.
Collapse
Affiliation(s)
- Mina Rajabi
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Silva CS, Cerqueira MT, Reis RL, Martins A, Neves NM. Laminin-2 immobilized on a 3D fibrous structure impacts cortical thymic epithelial cells behaviour and their interaction with thymocytes. Int J Biol Macromol 2022; 222:3168-3177. [DOI: 10.1016/j.ijbiomac.2022.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
6
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
7
|
Lategan M, Kumar P, Choonara YE. Functionalizing nanofibrous platforms for neural tissue engineering applications. Drug Discov Today 2022; 27:1381-1403. [DOI: 10.1016/j.drudis.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022]
|
8
|
Rahimzadegan M, Mohammadi Q, Shafieian M, Sabzevari O, Hassannejad Z. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112634. [PMID: 35577691 DOI: 10.1016/j.msec.2021.112634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recorded advancements in nerve tissue regeneration have still not provided satisfactory results, and complete physiological recovery is not assured. The engineering of nanofibrous scaffolds provides a suitable platform for stem cell transplantation by controlling cell proliferation and differentiation to replace lost cells. In this study, a conductive scaffold was fabricated by in situ synthesis of gold nanoparticles (Au-NPs) on electrospun polycaprolactone/chitosan nanofibrous scaffolds and its effect on neural differentiation of mesenchymal stem cells was investigated. METHOD The conductive scaffold was prepared using polycaprolactone/chitosan solution containing soluble Au ions by electrospinning approach. In situ synthesis of Au-NPs was conducted using two reducing agents, Tetrakis(hydroxymethyl)phosphonium chloride (THPC) as an organophosphorus compound and formaldehyde, and also different reduction times. Morphology and distribution of the Au-NPs on the nanofibrous scaffolds were assessed using field emission scanning electron microscopy (FE-SEM) and energy dispersed X-ray spectroscopy (EDX). The hydrophilicity and biocompatibility of the scaffolds were determined by water contact angle and MTT assays respectively. The characterization of the scaffolds was proceeded by testing the porosity, tensile strength and electrical conductivity. Also, the scaffold's ability to support neural differentiation of mesenchymal stem cells was evaluated by immune-staining/blotting of Beta tubulin III. RESULTS & CONCLUSION FE-SEM and EDX results demonstrated the uniform distribution of Au-NPs on electrospun nanofibers made of a combination of polycaprolactone and chitosan (PCL/CS). We found that electrical conductivity of the scaffolds fabricated using THPC for 4 days and formaldehyde for 7 days was in the range of electrical conductivity of the scaffolds suitable for nerve regeneration. Contact angle measurements showed the effect of Au-NPs on the hydrophilic properties of the scaffolds, where the scaffold showed the porosity of 50% in the presence of Au-NPs. Au-NPs decoration on the scaffold decreased the mechanical properties with the ultimate strength of 14 (MPa). In vitro assessment demonstrated the potential of the fabricated conductive scaffold to enhance the attachment and proliferation of fibroblast cells, and differentiation potential of mesenchymal stem cells toward neuron-like cells. This designed scaffold holds promise as a future carrier and delivery platform in nerve tissue engineering.
Collapse
Affiliation(s)
- Milad Rahimzadegan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Qazal Mohammadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran..
| | - Zahra Hassannejad
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ghollasi M, Poormoghadam D. Enhanced neural differentiation of human-induced pluripotent stem cells on aligned laminin-functionalized polyethersulfone nanofibers; a comparison between aligned and random fibers on neurogenesis. J Biomed Mater Res A 2021; 110:672-683. [PMID: 34651431 DOI: 10.1002/jbm.a.37320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Despite the numerous attempts in nerve tissue engineering, no ideal strategy has been translated into effective therapy for neuronal regeneration yet. Here, we designed a novel nerve regeneration scaffold combining aligned laminin-immobilized polyethersulfone (PES) nanofibers and human-induced pluripotent stem cells (hiPSCs) for transplantation strategies. Aligned and random PES nanofibers were fabricated by electrospinning method with a diameter of 95-500 nm and were then modified with covalent laminin bounding subsequent to O2 plasma treatment. PES-functionalized fibers found to induce a remarkable higher rate of neuronal genes expression as compared to nontreated group. In addition, hiPSCs cultured on aligned pure fibers exhibited the extension of neurites along with fibers direction and an exponentially elevated expression of neuron specific enolase (early neuroectoderm marker), Tuj-1 (axonal marker), and microtubule-associated protein 2 (dendritic marker) in comparison with random pure fibers. The concomitant of increased hydrophilicity and biocompatibility along with exploiting topographical cues and directional guidance make aligned PES-plasma-laminin a versatile scaffold for adhesion, proliferation, spreading, and differentiation of hiPSCs into nerve cells.
Collapse
Affiliation(s)
- Marzieh Ghollasi
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Poormoghadam
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
10
|
Guo Y, Wang X, Shen Y, Dong K, Shen L, Alzalab AAA. Research progress, models and simulation of electrospinning technology: a review. JOURNAL OF MATERIALS SCIENCE 2021; 57:58-104. [PMID: 34658418 PMCID: PMC8513391 DOI: 10.1007/s10853-021-06575-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
In recent years, nanomaterials have aroused extensive research interest in the world's material science community. Electrospinning has the advantages of wide range of available raw materials, simple process, small fiber diameter and high porosity. Electrospinning as a nanomaterial preparation technology with obvious advantages has been studied, such as its influencing parameters, physical models and computer simulation. In this review, the influencing parameters, simulation and models of electrospinning technology are summarized. In addition, the progresses in applications of the technology in biomedicine, energy and catalysis are reported. This technology has many applications in many fields, such as electrospun polymers in various aspects of biomedical engineering. The latest achievements in recent years are summarized, and the existing problems and development trends are analyzed and discussed.
Collapse
Affiliation(s)
- Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200 People’s Republic of China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Kuo Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Linyi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Asmaa Ahmed Abdullah Alzalab
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
11
|
Li G, Zheng T, Wu L, Han Q, Lei Y, Xue L, Zhang L, Gu X, Yang Y. Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. SCIENCE ADVANCES 2021; 7:7/28/eabi5812. [PMID: 34233882 PMCID: PMC8262819 DOI: 10.1126/sciadv.abi5812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 06/02/2023]
Abstract
Anisotropic topographies and biological cues can simulate the regenerative microenvironment of nerve from physical and biological aspects, which show promising application in nerve regeneration. However, their synergetic influence on injured peripheral nerve is rarely reported. In the present study, we constructed a bionic microenvironment-inspired scaffold integrated with both anisotropic micro-nanocomposite topographies and IKVAV peptide. The results showed that both the topographies and peptide displayed good stability. The scaffolds could effectively induce the orientation growth of Schwann cells and up-regulate the genes and proteins relevant to myelination. Last, three signal pathways including the Wnt/β-catenin pathway, the extracellular signal-regulated kinase/mitogen-activated protein pathway, and the transforming growth factor-β pathway were put forward, revealing the main path of synergistic effects of anisotropic micro-nanocomposite topographies and biological cues on neuroregeneration. The present study may supply an important strategy for developing functional of artificial nerve implants.
Collapse
Affiliation(s)
- Guicai Li
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Jilin University, 130061 Changchun, P.R. China
| | - Tiantian Zheng
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Linliang Wu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Qi Han
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Luzhong Zhang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Xiaosong Gu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yumin Yang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| |
Collapse
|
12
|
Morelli A, Hawker MJ. Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomater Sci Eng 2021. [PMID: 33913325 DOI: 10.1021/acsbiomaterials.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies that utilize radio frequency plasma modification as a strategy to tune the surface properties of polymeric constructs with the goal of enhancing their use as biomedical devices have grown considerably in number over the past decade. In this Review, we present the importance of plasma surface treatment to biomedical applications, including tissue engineering and wound healing. First, we introduce several key polymeric materials of interest for use as biomaterials, including those that are naturally derived and synthetic. We, then, provide an overview of possible outcomes of plasma modification, such as surface activation, etching, and deposition of a thin film, all of which can be used to alter the surface properties of a given polymer. Following this discussion, we review the methods used to characterize plasma-treated polymer surface properties, as well as the techniques used to evaluate their interactions with biological species of interest such as mammalian cells, bacteria, and blood components. To close, we provide a perspective on future outlooks of this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Alyssa Morelli
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| | - Morgan J Hawker
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| |
Collapse
|
13
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
14
|
Pooshidani Y, Zoghi N, Rajabi M, Haghbin Nazarpak M, Hassannejad Z. Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:46. [PMID: 33847824 PMCID: PMC8043924 DOI: 10.1007/s10856-021-06519-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Peripheral nerve repair is still one of the major clinical challenges which has received a great deal of attention. Nerve tissue engineering is a novel treatment approach that provides a permissive environment for neural cells to overcome the constraints of repair. Conductivity and interconnected porosity are two required characteristics for a scaffold to be effective in nerve regeneration. In this study, we aimed to fabricate a conductive scaffold with controlled porosity using polycaprolactone (PCL) and chitosan (Chit), FDA approved materials for the use in implantable medical devices. A novel method of using tetrakis (hydroxymethyl) phosphonium chloride (THPC) and formaldehyde was applied for in situ synthesis of gold nanoparticles (AuNPs) on the scaffolds. In order to achieve desirable porosity, different percentage of polyethylene oxide (PEO) was used as sacrificial fiber. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM) results demonstrated the complete removing of PEO from the scaffolds after washing and construction of interconnected porosities, respectively. Elemental and electrical analysis revealed the successful synthesis of AuNPs with uniform distribution and small average diameter on the PCL/Chit scaffold. Contact angle measurements showed the effect of porosity on hydrophilic properties of the scaffolds, where the porosity of 75-80% remarkably improved surface hydrophilicity. Finally, the effect of conductive nanofibrous scaffold on Schwann cells morphology and vaibility was investigated using FE-SEM and MTT assay, respectively. The results showed that these conductive scaffolds had no cytotoxic effect and support the spindle-shaped morphology of cells with elongated process which are typical of Schwann cell cultures.
Collapse
Affiliation(s)
- Yasaman Pooshidani
- Departmant of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nastaran Zoghi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Rajabi
- Centre for Bioengineering and Nanomedicine, University of Otago, Dunedin, New Zealand
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Entekhabi E, Haghbin Nazarpak M, Shafieian M, Mohammadi H, Firouzi M, Hassannejad Z. Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration. J Biomed Mater Res A 2021; 109:300-312. [PMID: 32490587 DOI: 10.1002/jbm.a.37023] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 11/11/2022]
Abstract
Replacement of peripheral nerve autografts with tissue engineered nerve grafts will potentially resolve the lack of nerve tissue especially in patients with severe concomitant soft tissue injuries. This study attempted to fabricate a tissue engineered nerve graft composed of electrospun PCL conduit filled with collagen-hyaluronic acid (COL-HA) sponge with different COL-HA weight ratios including 100:0, 98:2, 95:5 and 90:10. The effect of HA addition on the sponge porosity, mechanical properties, water absorption and degradation rate was assessed. A good cohesion between the electrospun PCL nanofibers and COL-HA sponges were seen in all sponges with different HA contents. Mechanical properties of PCL nanofibrous layer were similar to the rat sciatic nerve; the ultimate tensile strength was 2.23 ± 0.35 MPa at the elongation of 35%. Additionally, Schwann cell proliferation and morphology on three dimensional (3D) composite scaffold were evaluated by using MTT and SEM assays, respectively. Rising the HA content resulted in higher water absorption as well as greater pore size and porosity, while a decrease in Schwann cell proliferation compared to pure collagen sponge, although reduction in cell proliferation was not statistically significant. The lower Schwann cell proliferation on the COL-HA was attributed to the greater degradation rate and pore size of the COL-HA sponges. Also, dorsal root ganglion assay showed that the engineered 3D construct significantly increases axon growth. Taken together, these results suggest that the fabricated 3D composite scaffold provide a permissive environment for Schwann cells proliferation and maturation and can encourage axon growth.
Collapse
Affiliation(s)
- Elahe Entekhabi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Haniye Mohammadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Firouzi
- Tissue Repair Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111517. [DOI: 10.1016/j.msec.2020.111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
|
17
|
Abstract
Tissue engineering refers to the attempt to create functional human tissue from cells in a laboratory. This is a field that uses living cells, biocompatible materials, suitable biochemical and physical factors, and their combinations to create tissue-like structures. To date, no tissue engineered skeletal muscle implants have been developed for clinical use, but they may represent a valid alternative for the treatment of volumetric muscle loss in the near future. Herein, we reviewed the literature and showed different techniques to produce synthetic tissues with the same architectural, structural and functional properties as native tissues.
Collapse
|
18
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
19
|
Santi S, Mancini I, Dirè S, Callone E, Speranza G, Pugno N, Migliaresi C, Motta A. A Bio-inspired Multifunctionalized Silk Fibroin. ACS Biomater Sci Eng 2021; 7:507-516. [PMID: 33476122 DOI: 10.1021/acsbiomaterials.0c01567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bio-inspired multifunctionalized silk fibroin (BMS) was synthesized in order to mimic the interaction of nidogen with the type IV collagen and laminin of basement membranes. The designed BMS consists of a motif of laminin α-chain-derived, called IK peptide, and type IV collagen covalently bound to the silk fibroin (SF) by using EDC/NHS coupling and a Cu-free click chemistry reaction, respectively. Silk fibroin was chosen as the main component of the BMS because it is versatile and biocompatible, induces an in vivo favorable bioresponse, and moreover can be functionalized with different methods. The chemical structure of BMS was analyzed by using X-ray photoelectron spectroscopy, attenuated total reflection-Fourier transform infrared, cross-polarization magic angle spinning nuclear magnetic resonance techniques, and colorimetric assay. The SF and BMS solutions were cross-linked by sonication to form hydrogels or casted to make films in order to evaluate and compare the early adhesion and viability of MRC5 cells. BMS hydrogels were also characterized by rheological and thermal analyses.
Collapse
Affiliation(s)
- Sofia Santi
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,BIOTech Research Center, University of Trento, via delle Regole 101, 38123 Trento, Italy
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,"Klaus Mueller" Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Emanuela Callone
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,"Klaus Mueller" Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Giorgio Speranza
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,FBK-irst, Via Sommarive 18, Povo, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab. & FBK CMM, via alla Cascata, 56/C Povo, 38123 Trento, Italy
| | - Nicola Pugno
- Laboratory of Bio-Inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1-4NS London, United Kingdom
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,BIOTech Research Center, University of Trento, via delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.,BIOTech Research Center, University of Trento, via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
20
|
Fu J, Chen J, Li W, Yang X, Yang J, Quan H, Huang H, Chen G. Laminin-Modified Dental Pulp Extracellular Matrix for Dental Pulp Regeneration. Front Bioeng Biotechnol 2021; 8:595096. [PMID: 33520954 PMCID: PMC7838611 DOI: 10.3389/fbioe.2020.595096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Native dental pulp extracellular matrix (DPEM) has proven to be an effective biomaterial for dental pulp regeneration. However, as a significant extracellular matrix glycoprotein, partial laminins were lost during the decellularization process, which were essential for odontoblast differentiation. Thereby, this study investigated the feasibility of LN supplementation to improve the surface of DPEM for odontoblast layer regeneration. The influences of laminin on cell adhesion and odontogenic differentiation were evaluated in vitro. Then, we fabricated laminin-modified DPEM based on the physical coating strategy and observed the location and persistency of laminin coating by immunofluorescent staining. Finally, laminin-modified DPEM combined with treated dentin matrix (TDM) was transplanted in orthotopic jaw bone of beagles (n = 3) to assess the effect of LNs on dental pulp tissue regeneration. The in vitro results showed that laminins could improve the adhesion of dental pulp stem cells (DPSCs) and promoted DPSCs toward odontogenic differentiation. Continuous odontoblastic layer-like structure was observed in laminin-modified DPEM group, expressing the markers for odontoblastogenesis, dentine matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). Overall, these studies demonstrate that the supplementation of laminins to DPEM contributes to the odontogenic differentiation of cells and to the formation of odontoblast layer in dental pulp regeneration.
Collapse
Affiliation(s)
- Jiahui Fu
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jianfeng Chen
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenjun Li
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaomin Yang
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingyan Yang
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huixin Quan
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haitao Huang
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Chen
- Department of Stomatology, First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Zou S, Wang X, Fan S, Yao X, Zhang Y, Shao H. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021; 9:5514-5527. [PMID: 34152355 DOI: 10.1039/d1tb00944c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinru Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China. and Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Materials Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
22
|
Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020; 8:4. [PMID: 33383759 PMCID: PMC7823609 DOI: 10.3390/bioengineering8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Derek W. Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
23
|
Ghane N, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Das O, Ramakrishna S. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. J Biomed Mater Res A 2020; 109:437-452. [PMID: 32856425 DOI: 10.1002/jbm.a.37092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, Singapore
| |
Collapse
|
24
|
Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E119. [PMID: 31936372 PMCID: PMC7023287 DOI: 10.3390/nano10010119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a comprehensive overview of nanofibrous structures for tissue engineering purposes and the role of non-thermal plasma technology (NTP) within this field. Special attention is first given to nanofiber fabrication strategies, including thermally-induced phase separation, molecular self-assembly, and electrospinning, highlighting their strengths, weaknesses, and potentials. The review then continues to discuss the biodegradable polyesters typically employed for nanofiber fabrication, while the primary focus lies on their applicability and limitations. From thereon, the reader is introduced to the concept of NTP and its application in plasma-assisted surface modification of nanofibrous scaffolds. The final part of the review discusses the available literature on NTP-modified nanofibers looking at the impact of plasma activation and polymerization treatments on nanofiber wettability, surface chemistry, cell adhesion/proliferation and protein grafting. As such, this review provides a complete introduction into NTP-modified nanofibers, while aiming to address the current unexplored potentials left within the field.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada;
| | - Silvia Grande
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| |
Collapse
|
25
|
Keratinous materials: Structures and functions in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110612. [PMID: 32204061 DOI: 10.1016/j.msec.2019.110612] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
Keratins are a family of fibrous proteins anticipated to possess wide-ranging biomedical applications due to their abundance, physicochemical properties and intrinsic biological activity. This review mainly focuses on the biomaterials derived from three major sources of keratins; namely human hair, wool and feather, that have effective applications in tissue engineering, wound healing and drug delivery. This article offers five viewpoints regarding keratin i) an introduction to keratin protein extraction and keratin-based scaffold fabrication methods ii) applications in nerve and bone tissue engineering iii) a review on the keratin dressings applied to different types of wounds to facilitate wound healing and thereby repair the skin iv) the utilization of keratinous materials as a carrier system for therapeutics with a controlled manner v) a discussion regarding the main challenges for using keratin in biomedical applications as well as its future prospects.
Collapse
|
26
|
Li G, Han Q, Lu P, Zhang L, Zhang Y, Chen S, Zhang P, Zhang L, Cui W, Wang H, Zhang H. Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2603048. [PMID: 32851386 PMCID: PMC7436332 DOI: 10.34133/2020/2603048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Liling Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Hongbo Zhang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
27
|
Zha F, Chen W, Zhang L, Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:519-548. [DOI: 10.1080/09205063.2019.1697170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangwen Zha
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
| | - Lifeng Zhang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, NC A&T State University, Greensboro, NC, USA
| | - Demei Yu
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
28
|
Li X, Zhang Q, Luo Z, Yan S, You R. Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth. Biointerphases 2019; 14:061001. [PMID: 31731836 DOI: 10.1063/1.5120738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. Silk fibroin is a promising natural protein material for nerve repair. However, the lack of specific bioactive cues significantly hinders its application. In this study, the electrospun silk fibroin nanofibers with both biochemical and topographical cues were prepared. The alignment of electrospun nanofibers was optimized by controlling the surface linear velocity of a rotating drum. The silk fibroin nanofibers were further functionalized with laminin through covalent binding, confirmed by immunostaining observation. Cell proliferation and neurite outgrowth assays confirmed that the functionalized aligned nanofibers significantly enhanced directional axonal extensions, providing physical and bioactive cues for neurite outgrowth. Furthermore, the tubular scaffolds with longitudinally aligned microchannels were designed by rolling the functionalized silk fibroin nanofibers. The neurite extension across the lumen of the conduit along the direction of the aligned fibers is apparent. These results highlight the ability of laminin-immobilized silk fibroin nanofibers to enhance neurite outgrowth and to control directional neurite extension, providing a useful approach to construct a regenerative microenvironment for nerve repair materials.
Collapse
Affiliation(s)
- Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zuwei Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
29
|
Deng L, Li Y, Zhang H. In vitro and in vivo assessment of glucose cross-linked gelatin/zein nanofibrous scaffolds for cranial bone defects regeneration. J Biomed Mater Res B Appl Biomater 2019; 108:1505-1517. [PMID: 31609542 DOI: 10.1002/jbm.b.34498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/07/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to evaluate the glucose cross-linked gelatin/zein scaffolds for bone regeneration in vitro and in vivo. The nanofibrous scaffolds exhibited fast mineralization in the concentrated simulated body fluid with the deposited octacalcium phosphate and dicalcium phosphate dehydrate. The nanofibrous scaffolds exhibited no cytotoxic effect on MC3T3e1 cells in a CCK-8 test. Additionally, scanning electron microscope and confocal laser scanning microscopy images revealed that all the scaffolds were biocompatible and showed excellent support for MC3T3e1 cells. In the osteogenesis characterizations, Alizarin Red staining experiments indicated the improved calcium deposits on the cross-linked scaffolds, while the alkaline phosphatase activity showed no difference. Furthermore, the in vivo cranial bone regeneration results suggested that the cross-linked gelatin/zein scaffolds presented a strong positive effect on the cranial bone regeneration with the increased new bone volume and connective tissue formation, but the incorporation of zein in the gelatin scaffolds did not favor the bone regeneration. Moreover, the cross-linked gelatin scaffold retarded the bone resorption as indicated by the higher levels of IFN-γ and lower levels of IL-6, which restricted the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Lingli Deng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
30
|
Serôdio R, Schickert SL, Costa-Pinto AR, Dias JR, Granja PL, Yang F, Oliveira AL. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:969-981. [DOI: 10.1016/j.msec.2019.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/07/2018] [Accepted: 01/12/2019] [Indexed: 01/23/2023]
|
31
|
Ghaffari-Bohlouli P, Shahrousvand M, Zahedi P, Shahrousvand M. Performance evaluation of poly (l-lactide-co-D, l-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Int J Biol Macromol 2019; 122:1008-1016. [DOI: 10.1016/j.ijbiomac.2018.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
32
|
Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids Surf B Biointerfaces 2019; 173:689-697. [DOI: 10.1016/j.colsurfb.2018.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 12/15/2022]
|
33
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
34
|
Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater 2018; 9:E50. [PMID: 30134538 PMCID: PMC6165026 DOI: 10.3390/jfb9030050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Giulia Ghiacci
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
35
|
Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:134. [PMID: 30120577 DOI: 10.1007/s10856-018-6144-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In the field of nerve tissue engineering, nanofibrous scaffolds could be a promising candidate when they are incorporated with electrical cues. Unique physico-chemical properties of gold nanoparticles (AuNPs) make them an appropriate component for increasing the conductivity of scaffolds to enhance the electrical signal transfer between neural cells. The aim of this study was fabrication of AuNPs-doped nanofibrous scaffolds for peripheral nerve tissue engineering. Polycaprolactone (PCL)/chitosan mixtures with different concentrations of chitosan (0.5, 1 and 1.5) were electrospun to obtain nanofibrous scaffolds. AuNPs were synthesized by the reduction of HAuCl4 using chitosan as a reducing/stabilizing agent. A uniform distribution of AuNPs with spherical shape was achieved throughout the PCL/chitosan matrix. The UV-Vis spectrum revealed that the amount of gold ions absorbed by nanofibrous scaffolds is in direct relationship with their chitosan content. Evaluation of electrical property showed that inclusion of AuNPs significantly enhanced the conductivity of scaffolds. Finally, after 5 days of culture, biological response of Schwann cells on the AuNPs-doped scaffolds was superior to that on as-prepared scaffolds in terms of improved cell attachment and higher proliferation. It can be concluded that the prepared AuNPs-doped scaffolds can be used to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Narges Saderi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Rajabi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Babak Akbari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Masoumeh Firouzi
- Tissue Repair Lab, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Fang Y, Xu L, Wang M. High-Throughput Preparation of Silk Fibroin Nanofibers by Modified Bubble-Electrospinning. NANOMATERIALS 2018; 8:nano8070471. [PMID: 29954106 PMCID: PMC6070844 DOI: 10.3390/nano8070471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
As a kind of natural macromolecular protein molecule extracted from silk, silk fibroin (SF) has been widely used as biological materials in recent years due to its good physical and chemical properties. In this paper, a modified bubble-electrospinning (MBE) using a cone-shaped gas nozzle combined with a copper solution reservoir was applied to obtain high-throughput fabrication of SF nanofibers. In the MBE process, sodium dodecyl benzene sulfonates (SDBS) were used as the surfactant to improve the spinnability of SF solution. The rheological properties and conductivity of the electrospun SF solutions were investigated. And the effects of gas flow volume, SF solution concentration and additive amounts of SDBS on the morphology, property and production of SF nanofibers were studied. The results showed the decrease of gas flow volume could decrease the nanofiber diameter, enhance the diameter distribution, and increase the production of nanofibers. And the maximum yield could reach 3.10 g/h at the SF concentration of 10 wt % and the SDBS concentration of 0.1 wt %.
Collapse
Affiliation(s)
- Yue Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, 178 Ganjiang Road, Suzhou 215021, China.
| |
Collapse
|
37
|
Lu C, Wang Y, Yang S, Wang C, Sun X, Lu J, Yin H, Jiang W, Meng H, Rao F, Wang X, Peng J. Bioactive Self-Assembling Peptide Hydrogels Functionalized with Brain-Derived Neurotrophic Factor and Nerve Growth Factor Mimicking Peptides Synergistically Promote Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2018; 4:2994-3005. [DOI: 10.1021/acsbiomaterials.8b00536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, PR China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, PR China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, PR China
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
- School of Medicine, Nankai University, Weijin Road no. 94, Tianjin 300071, PR China
| | - Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University, Nussbaumstrasse 20, Munich 80336, Germany
| | - Wenli Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, PR China
| | - Feng Rao
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Fuxing Road no. 28, Beijing 100853, PR China
- Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Fuxing Road no. 28, Beijing 100853, PR China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road no. 28, Beijing 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, PR China
| |
Collapse
|
38
|
Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:501-525. [DOI: 10.1007/978-981-13-0947-2_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|