1
|
Kurtz MA, Hallab NJ, Rainey JP, Pelt CE, Mihalko WM, Piuzzi NS, Mont MA, Spece H, Kurtz SM. Metal Release in Total Knee Arthroplasty: A Review of Mechanisms, Adverse Local Tissue Reactions, and Biological Effects. J Arthroplasty 2025:S0883-5403(25)00237-2. [PMID: 40090503 DOI: 10.1016/j.arth.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025] Open
Abstract
Compared to the hip, where investigators associate metal release with adverse local tissue reactions (ALTRs), metal related complications in total knee arthroplasty (TKA) remain controversial and underexplored. Primary TKA systems use monobloc components, limiting corrosion and subsequent concern. However, like the joints they replace, metal components degrade in vivo. In this narrative review, we aimed to summarize clinically relevant knowledge on metal release within the context of TKA for practicing orthopaedic surgeons. We asked: do ALTRs associated with metal release occur in the knee, and if so, to what extent? To answer this research question, we identified in vivo degradation mechanisms including wear, mechanically assisted crevice corrosion, and electrocautery damage. Next, we synthesized case reports and retrospective clinical studies documenting adverse local tissue reactions in primary and revision TKA. Then, we reviewed the biological response to cobalt chrome debris, focusing on genotoxicity, immune responses, and hypersensitivity. While clinical evidence suggests that patients rarely experience severe biological reactions like pseudotumors, ALTRs associated with metal release can and do occur following TKA. To overcome prevalence related knowledge gaps, prospective clinical trials are needed.
Collapse
Affiliation(s)
- Michael A Kurtz
- Drexel University Implant Research Core, 3401 Market St. Suite 345, Philadelphia, PA.
| | - Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Joshua P Rainey
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT
| | - Cristopher E Pelt
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT
| | - William M Mihalko
- University of Tennessee Health Science Center, Campbell Clinic Orthopaedics, Memphis, TN
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic Foundation, Cleveland, OH
| | - Michael A Mont
- The Rubin Institute, Sinai Hospital of Baltimore, Baltimore, MD
| | - Hannah Spece
- Drexel University Implant Research Core, 3401 Market St. Suite 345, Philadelphia, PA
| | - Steven M Kurtz
- Drexel University Implant Research Core, 3401 Market St. Suite 345, Philadelphia, PA
| |
Collapse
|
2
|
Kurtz PW, Aslani S, Kurtz MA, Taylor LM, Barnes ER, MacDonald DW, Piuzzi NS, Mihalko WM, Kurtz SM, Gilbert JL. Cobalt-Chromium-Molybdenum Femoral Knee Implant Damage Correlates With Elevated Periprosthetic Metal Concentrations. J Arthroplasty 2025:S0883-5403(25)00203-7. [PMID: 40054540 DOI: 10.1016/j.arth.2025.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Total knee arthroplasty (TKA) device systems frequently include cast cobalt chrome alloy (CoCrMo) femoral components. However, compared to total hip arthroplasty (THA), gaps persist in our understanding of the correlations between femoral component damage, local metal release, and potential biological effects. Additionally, it remains unclear how TKA metal release affects clinical success or patient satisfaction. In this study, we investigated the associations between implant damage and metal release in the periprosthetic tissues following TKA. We asked: (1) does damage severity correlate with increased metal concentrations within the periprosthetic tissue? and (2) does the magnitude of metal released from CoCrMo femoral components merit clinical concern? METHODS There were 51 CoCrMo femoral components and synovial samples that were prospectively collected by an institutional review board-exempt retrieval program. Devices received damage scores ranging from minimal (1) to severe (4). Tissue metal concentrations for cobalt (Co), chromium (Cr), molybdenum (Mo), and titanium (Ti) were quantified using inductively coupled plasma mass spectroscopy. RESULTS Visual damage correlated with increases in Co, Cr, and Mo concentrations in the periprosthetic tissue (P = 0.0008, 0.029, and 0.007, respectively). Within the tissue adjacent to severely damaged implants, we measured median Co, Cr, and Mo concentrations of 7.81, 5.26, and 0.713 μg/mL, respectively. For minimally damaged implants, we report median Co, Cr, and Mo concentrations of 0.111, 1.80, and 0.179 μg/mL, respectively. In several of the 51 (14%) tissue samples, we measured Co and Cr concentrations > 10 μg/mL. Additionally, within periprosthetic tissues of devices with Ti tibial trays, Ti concentrations increased (P = 0.0052) arising, in part, from tibial-femoral component contact during arthroplasty. CONCLUSIONS We (1) showed elevated periprosthetic tissue metal concentrations in TKA patients and (2) established a positive correlation between damage severity and subsequent metal release. Measured tissue metal concentrations approached the magnitudes reported following metal-on-metal THA.
Collapse
Affiliation(s)
- Peter W Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina
| | - Shabnam Aslani
- Department of Biomedical Engineering, Drexel University, Implant Research Core, Philadelphia, Pennsylvania
| | - Michael A Kurtz
- Department of Biomedical Engineering, Drexel University, Implant Research Core, Philadelphia, Pennsylvania
| | - Lilliana M Taylor
- Department of Bioengineering, Clemson University, Clemson, South Carolina; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina
| | - Emma R Barnes
- Department of Biomedical Engineering, Drexel University, Implant Research Core, Philadelphia, Pennsylvania
| | - Daniel W MacDonald
- Department of Biomedical Engineering, Drexel University, Implant Research Core, Philadelphia, Pennsylvania
| | - Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - William M Mihalko
- Campbell Clinic Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Steven M Kurtz
- Department of Biomedical Engineering, Drexel University, Implant Research Core, Philadelphia, Pennsylvania
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina
| |
Collapse
|
3
|
Kurtz MA, Aslani S, Smith JA, Klein GR, Spece H, Kurtz SM. Titanium-Titanium Junctions in the Knee Corrode, Generating Damage Similar to the Hip. J Arthroplasty 2025; 40:227-235. [PMID: 39053666 DOI: 10.1016/j.arth.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Previous studies identified corrosion between the modular tibial components of total knee arthroplasty devices. However, gaps persist. Compared to the hip, damage modes that occur within taper junctions in the knee remain poorly understood. In this study, we investigated corrosion on total knee arthroplasty components with titanium-titanium junctions. We asked the following question: under typical in vivo cyclic loading conditions, will the same alloy damage modes from total knee arthroplasty devices resemble those documented in the hip? METHODS A total of 50 paired titanium alloy tibial baseplates and stems were collected and semiquantitatively analyzed using Goldberg corrosion scoring. To characterize damage, a subsection of moderately and severely corroded components was sectioned and imaged using scanning electron and digital optical microscopy. RESULTS Of the 100 device components, 95% showed visual evidence of corrosion. The initial contact area between the stem and bore generally occurred 3 mm from the stem taper base. Scanning electron microscopy revealed 4 damage modes, including oxide film formation, crevice corrosion, selective dissolution, and pitting. CONCLUSIONS Each of the damage modes identified in modular titanium-titanium tibial junctions was previously reported by total hip arthroplasty retrieval studies. Cumulatively, our results suggest that mechanically assisted crevice corrosion promoted this damage in vivo.
Collapse
Affiliation(s)
- Michael A Kurtz
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Shabnam Aslani
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - James A Smith
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregg R Klein
- Department of Orthopaedic Surgery, Hackensack University Medical Center, Hackensack, New Jersey
| | - Hannah Spece
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Steven M Kurtz
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Lee H, Kurtz MA, Gilbert JL. Reactive oxygen species, electrode potential and pH affect CoCrMo alloy corrosion and semiconducting behavior in simulated inflammatory environments. Acta Biomater 2024; 186:507-519. [PMID: 39147253 DOI: 10.1016/j.actbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Crevice corrosion in modular taper junctions of hip or knee replacements using cobalt-chrome-molybdenum (CoCrMo) alloys remains a clinical concern. Non-mechanically-driven corrosion has been less explored compared to mechanically assisted crevice corrosion. This study hypothesized that solution chemistry within crevices, inflammation, and cathodic electrode potential shifts during fretting result in low pH and generate reactive oxygen species (ROS), affecting oxide film behavior. This study investigated how resistance and capacitance of the CoCrMo oxide film (i.e., corrosion resistance) are modified in simulated in vivo crevice environments of modular taper junctions. Six solutions were evaluated (two pH levels: 1 and 7.4 and four hydrogen peroxide (H2O2) concentrations: 0, 0.001, 0.01 and 0.1 M). Rp versus voltage and Mott-Schottky plots were created from symmetry-based electrochemical impedance spectroscopy (sbEIS). At pH 1, the semiconductor transition to p-type occurs at more anodic potentials and higher flat band potentials were found. H2O2 decreased the flat band potential and slope in the Mott-Schottky plot. Higher H2O2 in pH 7.4 solution significantly modified the oxide film, leading to increased donor density (p = 0.0004) and a 150-fold reduction in Rp in the cathodic potential range at -1 V (p = 0.0005). The most unfavorable condition (0.1 M H2O2 pH 1) resulted in a 250-fold lower resistance compared to phosphate buffered saline (PBS) pH 7.4 at -1 V (p = 0.0013). This study highlights the corrosion susceptibility of CoCrMo under adverse chemical and potential conditions, identifying increased defects in the oxide film due to ROS, hydrogen ions and electrode potential. STATEMENT OF SIGNIFICANCE: Corrosion of cobalt chrome molybdenum alloy caused by direct chemical attack in the crevice region of hip replacements, such as modular taper junctions, remains a clinical concern. The junction environment contains adverse chemical compositions, including high acidity and reactive oxygen species (ROS) due to inflammatory responses against the corrosion products. We simulate inflammatory environments with different pH levels and hydrogen peroxide, representative of ROS. We employ electrochemical impedance spectroscopy and apply stepwise voltage over the range induced by tribocorrosion processes. We relate the effect of adverse chemical components on corrosion and semiconducting behavior of the oxide film using Mott-Schottky analysis. This study shows how pH and ROS concentration compromises the oxide film potentially leading to non-mechanically induced corrosion.
Collapse
Affiliation(s)
- Hwaran Lee
- Clemson - Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Bioengineering Building, 101D, MSC 501, 68 Presidents St, BE 325, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael A Kurtz
- Clemson - Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Bioengineering Building, 101D, MSC 501, 68 Presidents St, BE 325, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jeremy L Gilbert
- Clemson - Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Bioengineering Building, 101D, MSC 501, 68 Presidents St, BE 325, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Terhune EB, Serino J, Hall DJ, Nam D, Della Valle CJ, Jacobs JJ, Pourzal R. Fretting and Tribocorrosion of Modular Dual Mobility Liners: Role of Design, Microstructure, and Malseating. J Arthroplasty 2024; 39:2368-2376. [PMID: 38640966 DOI: 10.1016/j.arth.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Modular dual mobility (DM) bearings have a junction between a cobalt chrome alloy (CoCrMo) liner and titanium shell, and the risk of tribocorrosion at this interface remains a concern. The purpose of this study was to determine whether liner malseating and liner designs are associated with taper tribocorrosion. METHODS We evaluated 28 retrieved modular DM implants with a mean in situ duration of 14.6 months (range, 1 to 83). There were 2 manufacturers included (12 and 16 liners, respectively). Liners were considered malseated if a distinct divergence between the liner and shell was present on postoperative radiographs. Tribocorrosion was analyzed qualitatively with the modified Goldberg Score and quantitatively with an optical coordinate-measuring machine. An acetabular shell per manufacturer was sectioned for metallographic analysis. RESULTS There were 6 implants (22%) that had severe grade 4 corrosion, 6 (22%) had moderate grade 3, 11 (41%) had mild grade 2, and 5 (18.5%) had grade 1 or no visible corrosion. The average volumetric material loss at the taper was 0.086 ± 0.19 mm3. There were 7 liners (25%) that had radiographic evidence of malseating, and all were of a single design (P = .01). The 2 liner designs were fundamentally different from one another with respect to the cobalt chrome alloy type, taper surface finish, and shape deviations. Malseating was an independent risk factor for increased volumetric material loss (P = .017). CONCLUSIONS DM tribocorrosion with quantifiable material loss occurred more commonly in malseated liners. Specific design characteristics may make liners more prone to malseating, and the interplay between seating mechanics, liner characteristics, and patient factors likely contributes to the shell/liner tribocorrosion environment. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- E Bailey Terhune
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Joseph Serino
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Denis Nam
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Craig J Della Valle
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
6
|
Kurtz MA, Alaniz K, Kurtz PW, Wessinger AC, Moreno-Reyes A, Gilbert JL. Oxide degradation precedes additively manufactured Ti-6Al-4V selective dissolution: An unsupervised machine learning correlation of impedance and dissolution compared to Ti-29Nb-21Zr. J Biomed Mater Res A 2024; 112:1250-1264. [PMID: 37877770 DOI: 10.1002/jbm.a.37632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Additively manufactured (AM) Ti-6Al-4V devices are implanted with increasing frequency. While registry data report short-term success, a gap persists in our understanding of long-term AM Ti-6Al-4V corrosion behavior. Retrieval studies document β phase selective dissolution on conventionally manufactured Ti-6Al-4V devices. Researchers reproduce this damage in vitro by combining negative potentials (cathodic activation) and inflammatory simulating solutions (H2O2-phosphate buffered saline). In this study, we investigate the effects of these adverse electrochemical conditions on AM Ti-6Al-4V impedance and selective dissolution. We hypothesize that cathodic activation and H2O2 solution will degrade the oxide, promoting corrosion. First, we characterized AM Ti-6Al-4V samples before and after a 48 h -0.4 V hold in 0.1 M H2O2/phosphate buffered saline. Next, we acquired nearfield electrochemical impedance spectroscopy (EIS) data. Finally, we captured micrographs and EIS during dissolution. Throughout, we used AM Ti-29Nb-21Zr as a comparison. After 48 h, AM Ti-6Al-4V selectively dissolved. Ti-29Nb-21Zr visually corroded less. Structural changes at the AM Ti-6Al-4V oxide interface manifested as property changes to the impedance. After dissolution, the log-adjusted constant phase element (CPE) parameter, Q, significantly increased from -4.75 to -3.84 (Scm-2(s)α) (p = .000). The CPE exponent, α, significantly decreased from .90 to .84 (p = .000). Next, we documented a systematic decrease in oxide polarization resistance before pit nucleation and growth. Last, using k-means clustering, we established a structure-property relationship between impedance and the surface's dissolution state. These results suggest that AM Ti-6Al-4V may be susceptible to in vivo crevice corrosion within modular taper junctions.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Kazzandra Alaniz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Peter W Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Audrey C Wessinger
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Fischer A, Telouk P, Beckmann C, Heermant S, Wittrock A, Debus J, Wimmer MA. Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum. J Funct Biomater 2024; 15:110. [PMID: 38667567 PMCID: PMC11051106 DOI: 10.3390/jfb15040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Modular artificial hip joints are a clinical standard today. However, the release of wear products from the head-taper interface, which includes wear particles in the nm size range, as well as metal ions, have raised concerns. Depending on the loading of such taper joints, a wide variety of different mechanisms have been found by retrieval analyses. From these, this paper concentrates on analyzing the contribution of gross slip fretting corrosion at ultra-mild wear rates using a bovine calf serum solution (BCS) as the lubricant. The parameters were chosen based on biomechanical considerations, producing wear rates of some ng/m wear path. In parallel, the evolution of tribomaterial (third bodies) was analyzed as to its constituents and generation rates. It has already been shown earlier that, by an advantageous combination of wear mechanisms and submechanisms, certain constituents of the tribomaterial remain inside the contact area and act like extreme-pressure lubricant additives. For the known wear and corrosion resistance of austenitic high-nitrogen steels (AHNSs), which outperform CoCrMo alloys even under inflammatory conditions, we hypothesized that such steels will generate ultra-mild wear rates under gross slip fretting. While testing AHNSs against commercially available biomedical-grade materials of CoCrMo and TiAlV alloys, as well as zirconia-toughened alumina (ZTA) and against itself, it was found that AHNSs in combination with a Ti6Al4V alloy generated the smallest wear rate under gross slip fretting corrosion. This paper then discusses the wear behavior on the basis of ex situ analyses of the worn surfaces as to the acting wear mechanisms and submechanisms, as well as to the tribological reaction products.
Collapse
Affiliation(s)
- Alfons Fischer
- Max Planck Institute for Sustainable Materials, Microstructure Physics and Alloy Design, 40237 Duesseldorf, Germany
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Philipe Telouk
- Laboratoire de Géologie, Université de Lyon, 69342 Lyon, France;
| | - Christian Beckmann
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Saskia Heermant
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Adrian Wittrock
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Jörg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Markus A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA;
| |
Collapse
|
8
|
Kurtz MA, Alaniz K, Taylor LM, Moreno-Reyes A, Gilbert JL. Increasing temperature accelerates Ti-6Al-4V oxide degradation and selective dissolution: An Arrhenius-based analysis. Acta Biomater 2024; 178:352-365. [PMID: 38417644 DOI: 10.1016/j.actbio.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Ti-6Al-4V selective dissolution occurs in vivo on orthopedic implants as the leading edge of a pitting corrosion attack. A gap persists in our fundamental understanding of selective dissolution and pre-clinical tests fail to reproduce this damage. While CoCrMo clinical use decreases, Ti-6Al-4V and the crevice geometries where corrosion can occur remain ubiquitous in implant design. Additionally, most additively manufactured devices cleared by the FDA use Ti-6Al-4V. Accelerated preclinical testing, therefore, would aid in the evaluation of new titanium devices and biomaterials. In this study, using temperature, we (1) developed an accelerated pre-clinical methodology to rapidly induce dissolution and (2) investigated the structure-property relationship between the dissolving surface and the oxide layer. We hypothesized that solution temperature and H2O2 concentration would accelerate oxide degradation, increase corrosion kinetics and decrease experimental times. To assess this effect, we selected temperatures above (45 °C), below (24 °C), and at (37 °C) physiological levels. Then, we acquired electrochemical impedance spectra during active β dissolution, showing significant decreases in oxide polarization resistance (Rp) both over time (p = 0.000) and as temperature increased (p = 0.000). Next, using the impedance response as a guide, we quantified the extent of selective dissolution in scanning electron micrographs. As the temperature increased, the corrosion rate increased in an Arrhenius-dependent manner. Last, we identified three surface classes as the oxide properties changed: undissolved, transition and dissolved. These results indicate a concentration and temperature dependent structure-property relationship between the solution, the protective oxide film, and the substrate alloy. Additionally, we show how supraphysiological temperatures induce structurally similar dissolution to tests run at 37 °C in less experimental time. STATEMENT OF SIGNIFICANCE: Within modular taper junctions of total hip replacement systems, retrieval studies document severe corrosion including Ti-6AL-4V selective dissolution. Current pre-clinical tests and ASTM standards fail to reproduce this damage, preventing accurate screening of titanium-based biomaterials and implant designs. In this study, we induce selective dissolution using accelerated temperatures. Building off previous work, we use electrochemical impedance spectroscopy to rapidly monitor the oxide film during dissolution. We elucidate components of the dissolution mechanism, where oxide degradation precedes pit nucleation within the β phase. Using an Arrhenius approach, we relate these accelerated testing conditions to more physiologically relevant solution concentrations. In total, this study shows the importance of including adverse electrochemical events like cathodic activation and inflammatory species in pre-clinical testing.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Kazzandra Alaniz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Lilliana M Taylor
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA.
| |
Collapse
|
9
|
Godoy M, Sipek K, Gustafson JA, Yuh C, Levine BR, Pourzal R, Lundberg HJ. Effect of Femoral Head Material, Surgeon Experience, and Assembly Technique on Simulated Head-Neck Total Hip Arthroplasty Impaction Forces. J Arthroplasty 2024; 39:507-513.e1. [PMID: 37598779 PMCID: PMC10850914 DOI: 10.1016/j.arth.2023.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND There is no standard method for assembling the femoral head onto the femoral stem during total hip arthroplasty (THA). This study aimed to measure and record dynamic 3-dimensional (3D) THA head-neck assembly loads from residents, fellows, and attending surgeons, for metal and ceramic femoral heads. METHODS An instrumented apparatus measured dynamic 3D forces applied through the femoral stem taper in vitro for 31 surgeons (11 attendings, 14 residents, 6 fellows) using their preferred technique (ie, number of hits or mallet strikes). Outcome variables included peak axial force, peak resultant force, impulse of the resultant force, loading rate of the resultant force, and off-axis angle. They were compared between femoral head material, surgeon experience level, and the number of hits per trial. RESULTS Average peak axial force was 6.92 ± 2.11kN for all surgeons. No significant differences were found between femoral head material. Attendings applied forces more "on-axis" as compared to both residents and fellows. Nine surgeons assembled the head with 1 hit, 3 with 2 hits, 14 with 3 hits, 2 with 4 hits, and 3 with ≥5 hits. The first hit of multihit trials was significantly lower than single-hit trials for all outcome measures except the off-axis angle. The last hit of multihit trials had a significantly lower impulse of resultant force than single-hit trials. CONCLUSION Differences in applied 3D force-time curve dynamic characteristics were found between surgeon experience level and single and multihit trials. No significant differences were found between femoral head material.
Collapse
Affiliation(s)
- Michael Godoy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| | - Kirsten Sipek
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| | | | - Catherine Yuh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
10
|
Diaz-Lopez RA, Wen PH, Shelton JC. Influence of Taper surface topographies on contact deformation and stresses. J Mech Behav Biomed Mater 2023; 148:106213. [PMID: 37952504 DOI: 10.1016/j.jmbbm.2023.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
The role of bore and trunnion surface topography on the failure rate of total hip joint replacements due to trunnionosis is not clear despite significant variations in the design of taper components between manufacturers. Taper surface topography, along with other taper design parameters such as clearance, diameter, and assembly force, determine the initial interlock of the contacting surfaces after assembly; this has been related to relative motions that can cause fretting and corrosion at the taper interface. However, in most in-silico parametrical taper studies associated with taper micromotions, the bore and trunnion surfaces have been simplified using a flat surface and/or sinusoidal functions to mimic the surface roughness. The current study tests the hypothesis that the use of simple geometrical functions for the taper surface topography can predict the surface mechanics developed in assembled tapers. Measured and simulated surfaces of bores and trunnions were characterised using common roughness parameters and spectral density estimations. Using the same characterised surface profiles, 2D Finite Element (FE) models of CoCr alloy femoral heads and Ti alloy trunnions were developed. Models simulated assembly conditions at different resultant forces ranging from 0.5 to 4.0 kN, contact conditions were determined and associated with their topographical characteristics. Measured surfaces of bore and trunnion components comprise up to seven dominant spatial frequencies. Flattening of the trunnion microgrooved peaks was observed during the assembly of the taper. When the femoral head bore and trunnion topography were both considered a reduced number of microgrooved peaks were in contact, from 51 in an idealised taper surfaces to 35 in measured surfaces using an assembly reaction force of 4 kN. The contact points in the models developed high plastic strains, which were greater than that associated with failure of the material. Results showed that line and sine wave functions over estimate contact points at the taper interface compared to those surfaces that consider roughness and peak variation. These findings highlight the important role of modelling the full surface topography on the taper contact mechanics, as surface variations in the roughness and waviness change the performance of tapers.
Collapse
Affiliation(s)
- R A Diaz-Lopez
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | - P H Wen
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | - J C Shelton
- School of Engineering and Materials Science, Queen Mary University of London, UK.
| |
Collapse
|
11
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
12
|
Herbster M, Müller E, Jahn J, Buchholz A, Tootsi K, Lohmann CH, Halle T, Bertrand J. In vivo corrosion on retrieved hip endoprostheses and in vitro effects of corrosion products on bone mineralization. Bone 2023; 175:116852. [PMID: 37473933 DOI: 10.1016/j.bone.2023.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In vivo corrosion of modular endoprostheses remains a great concern, as the release of heavy metal ions can impair the implant's service life and the wellbeing of the patient. The detailed corrosion mechanisms that occur in vivo are so far not completely understood. In this context, the effects of implant released cobalt (Co) and chromium (Cr) ions on osteoblast mineralization and gene expression have not been investigated extensively. This comprehensive study aimed at furthering the understanding of in vivo implant corrosion from the clinical signs via prosthesis retrievals and histology of the synovial membranes down to the molecular processes instigated by corrosion products and its effects on bone mineralization. A detailed in vivo failure analysis was performed investigating 22 retrieved hip endoprostheses from different manufacturers and taper material combinations. The aim was to find a correlation of taper damage and especially corrosion to susceptible biomedical alloys and its effect on periprosthetic tissue as well as the clinical implant performance with regard to revision diagnosis and presence of radiolucent lines (RLL). A second part investigated the effects of Co and Cr ions on the in vitro mineralization process of osteoblasts. Cell cultures were exposed to relevant concentrations of CoCl2 and CrCl3 (0 μM, 100 μM, 200 μM) with and without addition of phosphate. Mineralization behavior was analyzed with Alizarin Red assay and Von Kossa staining of calcium depots, alkaline phosphatase activity of osteoblasts and gene expression was analyzed with real time quantitative PCR. The retrieval study provides evidence of in vivo fretting and crevice corrosion on all metallic tapers combined with either ceramic or metal femoral heads. Within the modular taper junctions, selective dissolution of the α phase occurred in wrought TiAl6V4 alloys, and etching of the fine-grained wrought CoCr28Mo6 alloy implants was observed in formed crevices. In addition, significant amounts of wear particles and corrosion products were detected in retrieved synovial membranes. An increased risk for the occurrence of a RLL in the proximal zones was determined for patients with a corroded mixed metal taper. Whereas Co ions have hardly any effects on mineralization, Cr ions cause a significant concentration dependent decrease in mineralization rate of osteoblasts. However, this effect is alleviated by addition of a phosphate source. Our data reveal that Cr ions depleted dissolved phosphates by forming an insoluble complex (CrPO4), which inhibits the phosphate dependent mineralization process. No significant effect of the heavy metal ions on osteoblast activity by means of alkaline phosphate activity as well as on gene expression is determined. This study broadens the understanding of in vivo corrosion of metallic modular implants and its clinically relevant effects on mineralization. Based on these findings, in vivo corrosion of CoCr28Mo6 endoprostheses should be limited to avoid inhibitory effects of Cr3+ on bone mineralization which can contribute to premature implant failure.
Collapse
Affiliation(s)
- Maria Herbster
- Institute of Materials and Joining Technology, Otto-von-Guericke University Magdeburg, Germany.
| | - Eva Müller
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Jannik Jahn
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Kaspar Tootsi
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany; Department of Traumatology and Orthopedics, University of Tartu, Tartu University Hospital, Tartu, Estonia
| | - Christoph H Lohmann
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Thorsten Halle
- Institute of Materials and Joining Technology, Otto-von-Guericke University Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
13
|
Kurtz MA, Wessinger AC, Mace A, Moreno-Reyes A, Gilbert JL. Additively manufactured Ti-29Nb-21Zr shows improved oxide polarization resistance versus Ti-6Al-4V in inflammatory simulating solution. J Biomed Mater Res A 2023; 111:1538-1553. [PMID: 37129046 DOI: 10.1002/jbm.a.37552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Retrieval studies in the past two decades show severe corrosion of titanium and its alloys in orthopedic implants. This damage is promoted by mechanically assisted crevice corrosion (MACC), particularly within modular titanium-titanium junctions. During MACC, titanium interfaces may be subject to negative potentials and reactive oxygen species (ROS), generated from cathodic activation and/or inflammation. Additive manufacturing (AM) may be able to produce new, corrosion-resistant titanium alloys and admixtures that are less susceptible to these adverse electrochemical events. In this study, we characterize the impedance and corrosion properties of three new AM titanium materials, including Ti-6Al-4V with added 1% nano-yttria stabilized ZrO2 , admixed Ti-29Nb-21Zr, and pre-alloyed Ti-29Nb-21Zr. We aim to elucidate how these materials perform when subjected to high ROS solutions. We include conventionally and additively manufactured Ti-6Al-4V in our study as comparison groups. A 0.1 M H2 O2 phosphate-buffered saline (PBS) solution, simulating inflammatory conditions, significantly increased biomaterial OCP (-0.14 V vs. Ag/AgCl) compared to PBS only (-0.38 V, p = .000). During anodic polarization, Ti-6Al-4V passive current density more than doubled from 1.28 × 10-7 to 3.81 × 10-7 A/cm2 when exposed to 0.1 M H2 O2 . In contrast, Ti-29Nb-21Zr passive current density remained relatively unchanged, slightly increasing from 7.49 × 10-8 in PBS to 9.31 × 10-8 in 0.1 M H2 O2 . Ti-29Nb-21Zr oxide polarization resistance (Rp ) was not affected by 0.1 M H2 O2 , maintaining a high value (1.09 × 106 vs. 1.89 × 106 Ω cm2 ), while Ti-6Al-4V in 0.1 M H2 O2 solution had significantly diminished Rp (4.38 × 106 in PBS vs. 7.24 × 104 Ω cm2 in H2 O2 ). These results indicate that Ti-29Nb-21Zr has improved corrosion resistance in ROS containing solutions when compared with Ti-6Al-4V based biomaterials.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Audrey C Wessinger
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Annsley Mace
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Olšovská E, Čabanová K, Motyka O, Kryštofová HB, Matějková P, Voves J, Židlík V, Madeja R, Demel J, Halfar J, Kukutschová J. Simple method for quantification of metal-based particles in biopsy samples of patients with long bone implants - Pilot study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104282. [PMID: 37769889 DOI: 10.1016/j.etap.2023.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The presence of particles fixed in tissue samples due to implant degradation or disintegration plays an important role in post-operative complications. The ability to determine the size, shape, chemical composition and, above all, the number of these particles can be used in many areas of medicine. This study presents a novel, simple metal-based particle detection method using scanning electron microscopy with energy dispersive spectrometer (SEM-EDS). The presence of metal particles in biopsy specimens from long bone nail-fixated implants (10 patients with titanium steel nails and 10 patients with stainless steel nails) was studied. The samples were analysed using automated area analysis based on image binarization and brightness to 255 grayscale. The results were supplemented with histological data and statistically analysed. The method based on the software used was found to be accurate and easy to use and, thus, appears to be very suitable for particle detection in similar samples.
Collapse
Affiliation(s)
- Eva Olšovská
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic.
| | - Kristina Čabanová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Oldřich Motyka
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Hana Bielniková Kryštofová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava and Faculty of Medicine, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Petra Matějková
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jiří Voves
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Vladimír Židlík
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava and Faculty of Medicine, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Roman Madeja
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Jiří Demel
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic; Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Jan Halfar
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jana Kukutschová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| |
Collapse
|
15
|
Holland CT, Shenoy A, Lachiewicz PF. Failure of a Femoral Revision Knee Component with Chemical Corrosion and Elevated Metal Ions: A Case Report and Literature Review. JBJS Case Connect 2023; 13:01709767-202309000-00006. [PMID: 37437076 DOI: 10.2106/jbjs.cc.23.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
CASE Failure of the modular junction in revision total knee arthroplasty is a rare complication. We report a patient with late, atraumatic failure of a modern, modular revision femoral component, with preoperative elevation of serum cobalt and chromium levels. Retrieval analysis showed extensive chemical corrosion. CONCLUSION Failure of a modern, modular femoral component may cause metal synovitis and elevated serum metal levels. Subtle radiographic changes and preoperative serum metal levels may identify this complication.
Collapse
Affiliation(s)
- Christopher T Holland
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Aarti Shenoy
- Department of Biomechanics, Hospital for Special Surgery, New York, New York
| | - Paul F Lachiewicz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
McCarthy SM, Hall DJ, Mell SP, Levine BR, Jacobs JJ, Pourzal R. Has Wrought Cobalt-Chromium-Molybdenum Alloy Changed for the Worse Over Time? J Arthroplasty 2023; 38:S280-S284. [PMID: 37028774 PMCID: PMC10330267 DOI: 10.1016/j.arth.2023.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Total hip arthroplasty (THA) failure due to tribocorrosion of modular junctions and resulting adverse local tissue reactions to corrosion debris have seemingly increased over the past few decades. Recent studies have found that chemically-induced column damage seen on the inner head taper is enabled by banding in the alloy microstructure of wrought cobalt-chromium-molybdenum alloy femoral heads, and is associated with more material loss than other tribocorrosion processes. It is unclear if alloy banding represents a recent phenomenon. The purpose of this study was to examine THAs implanted in the 1990s, 2000s, and 2010s to determine if alloy microstructure and implant susceptibility to severe damage has increased over time. METHODS Five hundred and forty-five modular heads were assessed for damage severity and grouped based on decade of implantation to serve as a proxy measure for manufacturing date. A subset of heads (n = 120) was then processed for metallographic analysis to visualize alloy banding. RESULTS We found that damage score distribution was consistent over the time periods, but the incidence of column damage significantly increased between the 1990s and 2000s. Banding also increased from the 1990s to 2000s, but both column damage and banding levels appear to recover slightly in the 2010s. CONCLUSION Banding, which provides preferential corrosion sites enabling column damage, has increased over the last 3 decades. No difference between manufacturers was seen, which may be explained by shared suppliers of bar stock material. These findings are important as banding can be avoidable, reducing the risk of severe column damage to THA modular junctions and failure due to adverse local tissue reactions.
Collapse
Affiliation(s)
- Stephanie M. McCarthy
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| | - Deborah J. Hall
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| | - Steven P. Mell
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| | - Brett R. Levine
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| | - Joshua J. Jacobs
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| | - Robin Pourzal
- Rush University Medical Center, 1620 W. Harrison St, Chicago, IL 60612, United States
| |
Collapse
|
17
|
Steele JR, Shenoy A, Pekmezian A, Wright T, Padgett DE. Evaluation of Mechanically-Assisted Crevice Corrosion of Different Modular Dual Mobility Constructs. J Arthroplasty 2023:S0883-5403(23)00392-3. [PMID: 37088224 DOI: 10.1016/j.arth.2023.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Modular dual mobility (MDM) acetabular component use is rising in total hip arthroplasty. However, concern of mechanically-assisted crevice corrosion (MACC) at the shell-liner interface remains. We investigated shell-liner corrosion using retrieval analyses and corrosion chamber testing. METHODS We analyzed fretting and corrosion on 10 matched pairs of two commercial modular dual mobility constructs (MDM1 and MDM2). Also, pristine pairs of Ti6Al4V shells and CoCrMo liners from three commercial dual mobility systems (MDM1, MDM2, MDM3) were tested in vitro to model MACC performance. Three pairs of each were placed into an electrochemical chamber with stepwise increasing cyclic compression loads, while measuring currents generated at the shell-liner taper. Onset fretting loads and fretting currents were calculated. RESULTS Corrosion damage scores on retrieved components were low, but higher in the MDM2 to MDM1 liners (P = 0.006), specifically outside the taper region (P = 0.00003). Fretting currents were higher in the MDM2 than in MDM1 or MDM3 (P = 0.011). Onset loads were also higher in the MDM2 (P = 0.001). CONCLUSION Among retrieved liners, MDM2 tapers seem prone to non-mechanical corrosion modes. Higher onset loads and fretting currents in MDM2 tapers indicate greater MACC resistance, but higher severity once corrosion begins. Differences among the devices were likely due to taper design and surface finish. Currents in all three were <5 μA, much lower than those observed with head-neck tapers. Our findings suggest that among the types of corrosion observed in these MDM designs, mechanically driven corrosion may not be the most significant.
Collapse
Affiliation(s)
- John R Steele
- Adult Reconstruction and Joint Replacement Division, 535 East 70(th) Street, Hospital for Special Surgery, New York, NY 10021 USA; Towson Orthopaedic Associates, 8322 Bellona Ave Suite 100, Orthopaedic Institute at St. Joseph's Medical Center, Towson, MD 21204 USA
| | - Aarti Shenoy
- Department of Biomechanics, 535 East 70(th) Street, Hospital for Special Surgery, New York, NY 10021 USA.
| | - Ashley Pekmezian
- Department of Biomechanics, 535 East 70(th) Street, Hospital for Special Surgery, New York, NY 10021 USA
| | - Timothy Wright
- Department of Biomechanics, 535 East 70(th) Street, Hospital for Special Surgery, New York, NY 10021 USA
| | - Douglas E Padgett
- Adult Reconstruction and Joint Replacement Division, 535 East 70(th) Street, Hospital for Special Surgery, New York, NY 10021 USA
| |
Collapse
|
18
|
Kurtz MA, Yang R, Elapolu MSR, Wessinger AC, Nelson W, Alaniz K, Rai R, Gilbert JL. Predicting Corrosion Damage in the Human Body Using Artificial Intelligence: In Vitro Progress and Future Applications. Orthop Clin North Am 2023; 54:169-192. [PMID: 36894290 DOI: 10.1016/j.ocl.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate AI's impact, few studies have led to improved clinical outcomes. In this review, we focus on how AI models implemented in nonorthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be implemented to study fretting, crevice, and pitting corrosion of titanium and cobalt chrome alloys.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, Charleston, SC 29425, USA
| | - Ruoyu Yang
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, SC 29607, USA
| | - Mohan S R Elapolu
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, SC 29607, USA
| | - Audrey C Wessinger
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, Charleston, SC 29425, USA
| | - William Nelson
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, Charleston, SC 29425, USA
| | - Kazzandra Alaniz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, Charleston, SC 29425, USA
| | - Rahul Rai
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, SC 29607, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, Charleston, SC 29425, USA.
| |
Collapse
|
19
|
Gustafson JA, Mell S, Levine BR, Pourzal R, Lundberg HJ. Interaction of surface topography and taper mismatch on head-stem modular junction contact mechanics during assembly in modern total hip replacement. J Orthop Res 2023; 41:418-425. [PMID: 35488727 PMCID: PMC9617811 DOI: 10.1002/jor.25357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Implant failure due to fretting corrosion at the head-stem modular junction is an increasing problem in modular total hip arthroplasty. The effect of varying microgroove topography on modular junction contact mechanics has not been well characterized. The aim of this study was to employ a novel, microgrooved finite element (FEA) model of the hip taper interface and assess the role of microgroove geometry and taper mismatch angle on the modular junction mechanics during assembly. A two-dimensional, axisymmetric FEA model was created using a modern 12/14 taper design of a CoCrMo femoral head taper and Ti6Al4V stem taper. Microgrooves were modeled at the contacting interface of the tapers and varied based on height and spacing measurements obtained from a repository of measured retrievals. Additionally, taper angular mismatch between the head and stem was varied to simulate proximal- and distal-locked engagement. Forty simulations were conducted to parametrically evaluate the effects of microgroove surface topography and angular mismatch on predicted contact area, contact pressure, and equivalent plastic strain. Multiple linear regression analysis was highly significant (p < 0.001; R2 > 0.74) for all outcome variables. The regression analysis identified microgroove geometry on the head taper to have the greatest influence on modular junction contact mechanics. Additionally, there was a significant second order relationship between both peak contact pressure (p < 0.001) and plastic strain (p < 0.001) with taper mismatch angle. These modeling techniques will be used to identify the implant parameters that maximize taper interference strength via large in-silico parametric studies.
Collapse
Affiliation(s)
| | - Steven Mell
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
20
|
Hornung AL, Hall DJ, Je M, Wright JL, Nicholson GP, Garrigues GE, Pourzal R. Do total shoulder arthroplasty implants corrode? J Shoulder Elbow Surg 2022; 31:2381-2391. [PMID: 35671932 PMCID: PMC9588611 DOI: 10.1016/j.jse.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Total shoulder arthroplasty (TSA) has become the gold-standard treatment to relieve joint pain and disability in patients with glenohumeral osteoarthritis who do not respond to conservative treatment. An adverse reaction to metal debris released due to fretting corrosion has been a major concern in total hip arthroplasty. To date, it is unclear how frequently implant corrosion occurs in TSA and whether it is a cause of implant failure. This study aimed to characterize and quantify corrosion and fretting damage in a single anatomic TSA design and to compare the outcomes to the established outcomes of total hip arthroplasty. METHODS We analyzed 21 surgically retrieved anatomic TSAs of the same design (Tornier Aequalis Pressfit). The retrieved components were microscopically examined for taper corrosion, and taper damage was scored. Head and stem taper damage was quantitatively measured with a non-contact optical coordinate-measuring machine. In selected cases, damage was further characterized at high magnifications using scanning electron microscopy. Energy-dispersive x-ray spectroscopy and metallographic evaluations were performed to determine underlying alloy microstructure and composition. Comparisons between groups with different damage features were performed with independent-samples t tests; Mann-Whitney tests and multivariate linear regression were conducted to correlate damage with patient factors. The level of statistical significance was set at P < .05. RESULTS The average material loss for head and stem tapers was 0.007 mm3 and 0.001 mm3, respectively. Material loss was not correlated with sex, age, previous implant, or time in situ (P > .05). We observed greater volume loss in head tapers compared with stem tapers (P = .002). Implants with evidence of column damage had larger volumetric material loss than those without such evidence (P = .003). Column damage aligned with segregation bands within the alloy (preferential corrosion sites). The average angular mismatch was 0.03° (standard deviation, 0.0668°), with negative values indicating distal engagement and positive values indicating proximal engagement. Implants with proximal engagement were significantly more likely to have column damage than those with distal engagement (P = .030). DISCUSSION This study has shown not only that the metal components of TSA implants can corrode but also that the risk of corrosion can be reduced by (1) eliminating preferential corrosion sites and (2) ensuring distal engagement to prevent fluid infiltration into the modular junction.
Collapse
Affiliation(s)
- Alexander L Hornung
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Deborah J Hall
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Mable Je
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jennifer L Wright
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Gregory P Nicholson
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA; Midwest Orthopedics at Rush, Chicago, IL, USA
| | - Grant E Garrigues
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA; Midwest Orthopedics at Rush, Chicago, IL, USA
| | - Robin Pourzal
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Fernandez-Fairen M. CORR Insights®: Insights into Imprinting: How Is the Phenomenon of Tribocorrosion at Head-Neck Taper Interfaces Related to Corrosion, Fretting, and Implant Design Parameters? Clin Orthop Relat Res 2022; 480:1601-1603. [PMID: 35638900 PMCID: PMC9278905 DOI: 10.1097/corr.0000000000002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023]
|
22
|
Kurtz MA, Khullar P, Gilbert JL. Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution. Acta Biomater 2022; 149:399-409. [PMID: 35842034 DOI: 10.1016/j.actbio.2022.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
In vivo retrievals of metallic orthopedic implants have shown selective dissolution of Ti-6Al-4V, where the vanadium-rich β phase preferentially corrodes from the surface. This damage, typically observed in crevices, is not directly caused by wear mechanics and the underlying electrochemical mechanism remains poorly understood. Previous studies show that fretting corrosion can cause negative potential drops, resulting in a decrease in surface oxide passivation resistance and the electrochemical generation of reactive oxygen species (ROS) at metallic surfaces. In this study, we combine cathodic activation and hydrogen peroxide to induce selective dissolution in vitro. After a 600 s -1 V hold and 4 h recovery in 20 °C 1 M H2O2 solution, the Ti-6Al-4V β phase was preferentially dissolved. An initial activation threshold of -0.5 V induced a significant increase in β dissolution (p = 0.000). Above this threshold, little selective dissolution occurred. In an Arrhenius-like fashion, decreasing solution concentration to 0.1 M required 72 h to generate β dissolution instead of 4 h at 1 M. Heating 0.1 M solution to body temperature (37 °C) resulted in a decrease in the time needed to replicate a similar level of β dissolution (>90%). Electrochemical impedance shows that both cathodic activation and inflammatory species are necessary to induce selective dissolution, where the combinatorial effect causes a significant drop in oxide passivation resistance from 106 to 102 (p = 0.000). STATEMENT OF SIGNIFICANCE: Though hip arthroplasties are considered a successful procedure, revision rates of 2-4% result in tens of thousands of additional surgeries within the United States, subjecting patients to increased risk of complications. Corrosion is associated with implant failure and retrieval studies show that titanium and its alloys can severely corrode in vivo in ways not yet duplicated in vitro. Here, we reproduce selective dissolution of Ti-6Al-4V β phase simulating key characteristics of in vivo degradation observed in orthopedic retrievals. We establish both cathodically activated corrosion, a relatively unexplored concept, and the presence of inflammatory species as prerequisites, furthering our understanding of this clinically relevant damage mode. We introduce an Arrhenius-based approach to assess the concentration-temperature-time interactions present.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States
| | - Piyush Khullar
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States.
| |
Collapse
|
23
|
Godoy M, Gustafson JA, Hertzler JS, Bischoff JE, Pourzal R, Lundberg HJ. Model validation for estimating taper microgroove deformation during total hip arthroplasty head-neck assembly. J Biomech 2022; 140:111172. [PMID: 35696772 PMCID: PMC9801958 DOI: 10.1016/j.jbiomech.2022.111172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/25/2022] [Accepted: 05/31/2022] [Indexed: 01/03/2023]
Abstract
Total hip arthroplasty (THA) failure and the need for revision surgery can result from fretting-corrosion damage of the head-neck modular taper junctions. Prior work has shown that implant geometry, such as microgrooves, influences damage on retrieved implants. Microgroove deformation within the modular taper junction occurs when the female head taper meets the male stem taper during THA surgical procedure. The objective of this work was to validate microgroove deformation after head-neck THA assembly as calculated by finite element analysis (FEA). Four 28 mm CoCrMo head tapers and four Ti6Al4V stem tapers were scanned via white light interferometry. Heads were assembled onto stem tapers until 6kN reaction force was achieved, followed by head removal using a cut-off machine. The stem tapers were then rescanned and analyzed. Simultaneously, a 2D axisymmetric FEA model was developed and assembled per implant geometries and experimental data. For experiments and FEA, the mean change in microgroove height was 1.23 µm and 1.40 µm, respectively. The largest microgroove height change occurred on the proximal stem taper due to the conical angles of the head and stem tapers. FEA showed that the head-stem assembly induced high stresses and microgroove peaks flattening. 76-89% and 91-100% of the microgrooves in the experiments and FEA, respectively, showed height changes along the contact length of the stem taper. A validated FEA model of THA head-neck modular junction contact mechanics is essential to identifying implant geometries and surface topographies that can potentially minimize the risk of fretting and fretting-corrosion at modular junctions.
Collapse
Affiliation(s)
- Michael Godoy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
Mace A, Khullar P, Bouknight C, Gilbert JL. Corrosion properties of low carbon CoCrMo and additively manufactured CoCr alloys for dental applications. Dent Mater 2022; 38:1184-1193. [PMID: 35710472 DOI: 10.1016/j.dental.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Additive manufacturing (AM) is being applied to metallic biomaterials and dental alloys, including CoCrMo. CoCrMo mechanical properties and corrosion resistance are vital to the structural integrity of implants and dental appliances. The goal of this work is to assess the resistivity of AM cobalt chromium alloys by comparing them with traditional CoCrMo, regarding electrochemical properties resulting from microstructural and oxide film differences. METHODS In this work, selective laser melting (SLM), was used to manufacture CoCrMoW. The corrosion characteristics of AM alloy were compared to that of wrought LC CoCrMo (ASTM F-1537) in both phosphate buffered saline (PBS) and PBS with 10 mM H2O2 to simulate increased inflammatory conditions. Anodic polarization and electrochemical impedance spectroscopy (EIS) were performed. RESULTS Both alloys were substantially similar in corrosion behavior in both solutions. They exhibited changes with the different solutions. Polarization resistances were statistically lower (RpAM = 1.4 MΩcm2 (PBS) vs. 0.72 MΩcm2 (H2O2), RpLC = 1.86 MΩcm2 (PBS) vs. 0.55 MΩcm2 (H2O2)), and open circuit potentials (OCP's) were statistically higher in 10 mM H2O2 for both alloys (0.20 V (in H2O2) vs. - 0.09 V in PBS). Chemistry variations were revealed by the corrosion tests indicating that wrought LC CoCrMo retained its casting-based chemical heterogeneity, while AM CoCrMoW had sub-cell structures within the solidified grains. SIGNIFICANCE As novel production methods like AM arise, it is necessary to understand any microstructural differences that may diminish the corrosion resistance properties. AM CoCrMoW alloys hold significant promise for use in dentistry where complex geometries are required.
Collapse
Affiliation(s)
- Annsley Mace
- Clemson University - MUSC Bioengineering Program, Charleston, SC, USA
| | - Piyush Khullar
- Clemson University - MUSC Bioengineering Program, Charleston, SC, USA
| | | | - Jeremy L Gilbert
- Clemson University - MUSC Bioengineering Program, Charleston, SC, USA.
| |
Collapse
|
25
|
Bormann T, Nebel L, Müller U, Mai PT, Gibmeier J, Renkawitz T, Kretzer JP. Influence of FeCl 3 and H 2O 2 in corrosion testing of modular taper connections in total hip arthroplasty: An in vitro study. Acta Biomater 2022; 145:427-435. [PMID: 35417798 DOI: 10.1016/j.actbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Corrosion at the modular taper junctions in total hip arthroplasty is clinically relevant because wear particles and ions generated at this interface can lead to adverse local tissue reactions or even implant failure. In vitro tribo-corrosion tests are usually accomplished in saline solutions or calf serum (CS), but the addition of H2O2 and FeCl3 have been suggested to mimic inflammatory conditions in the joint. Inflammatory conditions may aggravate corrosive processes and, therefore, should lead in vitro to a more severe and realistic tribo-corrosive material attack. Corrosion testing at 12/14 tapers comprising a CoCrMo head taper and a Ti6Al4V trunnion was accomplished in five electrolytes (Ringer's solution (RS), RS with 30 mM H2O2 and/or 0.7 mM FeCl3 and CS) under dynamical loading for five million cycles. Resulting material loss was determined gravimetrically and by ion analysis. The tribo-corrosive material degradation was investigated by light and electron microscopy. FeCl3 enhanced the material loss from taper connections while H2O2 did not lead to a significant alteration of total material loss. In comparison to pure RS, corrosion testing in CS decreased material loss at the head taper while it increased material loss at the trunnion. The combination of FeCl3 and H2O2 led to an enhanced occurrence of micro cracks at the trunnion surface. Adding FeCl3 and optionally also H2O2 aggravates material loss in in vitro corrosion testing of taper junctions and leads to harsher and probably more realistic testing conditions. STATEMENT OF SIGNIFICANCE: Tribo-corrosive processes at taper connections in hip implants are complex and can lead to major clinical implications. Joint inflammation is assumed to aggravate taper corrosion in vivo, why FeCl3 and H2O2 have been proposed as additives to electrolytes to simulate inflammatory conditions in vitro. Often used fretting test setups, however, do not involve real taper geometries. Besides, testing is often accomplished in saline solutions or calf serum, which do not induce a clinically significant amount of corrosive material degradation. This study presents an approach to increase tribo-corrosive processes at realistic taper connections by adding FeCl3 and/or H2O2. Unlike H2O2, FeCl3 increased material loss from taper connections. The combination of both additives enhanced micro crack formation at the trunnion surfaces.
Collapse
Affiliation(s)
- Therese Bormann
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg 69118, Germany.
| | - Laura Nebel
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg 69118, Germany
| | - Ulrike Müller
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg 69118, Germany
| | - Phuong Thao Mai
- Institute for Applied Materials, Karlsruhe Institute of Technology, Engelbert-Arnold-Strasse 4, Karlsruhe 76131, Germany
| | - Jens Gibmeier
- Institute for Applied Materials, Karlsruhe Institute of Technology, Engelbert-Arnold-Strasse 4, Karlsruhe 76131, Germany
| | - Tobias Renkawitz
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg 69118, Germany
| | - J Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg 69118, Germany
| |
Collapse
|
26
|
Parametric analysis of the effect of impaction load on the stability of head-neck junction in total hip arthroplasty. Clin Biomech (Bristol, Avon) 2022; 94:105633. [PMID: 35364404 DOI: 10.1016/j.clinbiomech.2022.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tribocorrosion at head-neck interface is one of the main causes leading to the failure of hip implants in total hip arthroplasty. Impaction load has been acknowledged as one of the key factors influencing the stability of the taper junction. It is understood that the magnitude of impaction force differs from the surgeon to surgeon in primary total hip arthroplasty or revision. Clinically, it is sufficient enough to keep the male and female tapers inseparable utilizing a low impaction, which seems to contradict previous researches. The objective of this study was to investigate the effect of impaction loads on the stability of taper junction during assembly and gaits. METHODS A finite element model with 12/14 taper and the taper mismatch of 4' was developed for investigation. The impaction force profiles were collected from surgeon as the inputs, and then the contact mechanics over one or multiple gaits was further analyzed and validated utilizing hip simulator test. FINDINGS Impaction force ranging from 200 to 2000 N could provide the same taper connection effect after the first gait due to the secondary seating. As for impaction loads of 3000 N and above, an increased impaction force would lead to the tighter taper connection. INTERPRETATION The effect of impaction load on the stability of head-neck junction is a piecewise function, indicating that the stability of taper junction is not affected by different impaction loads and tends to be consistent while its magnitude is below the threshold. Instead, the stability of taper junction is positively correlated with impaction force.
Collapse
|
27
|
Mai PT, Bormann T, Müller U, Kretzer JP, Gibmeier J. Effect of surface topography and residual stress on the taper connection stability in total hip arthroplasty. J Mech Behav Biomed Mater 2022; 128:105119. [DOI: 10.1016/j.jmbbm.2022.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
|
28
|
Neto MQ, Radice S, Hall DJ, Mathew MT, Mercuri LG, Pourzal R. Alloys used in different Temporomandibular joint reconstruction replacement prostheses exhibit variable microstructures and electrochemical properties. J Oral Maxillofac Surg 2021; 80:798-813. [DOI: 10.1016/j.joms.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/30/2023]
|
29
|
Skvortsova S, Orlov A, Valyano G, Spektor V, Mamontova N. Wear Resistance of Ti-6Al-4V Alloy Ball Heads for Use in Implants. J Funct Biomater 2021; 12:jfb12040065. [PMID: 34842763 PMCID: PMC8629003 DOI: 10.3390/jfb12040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
The effect of thermohydrogen treatment and vacuum ion–plasma nitriding on the determination of the volume and surface structure of ball heads made of Ti–6Al–4V alloy was studied. It was found that the submicrocrystalline structure formed in the head during thermohydrogen treatment makes it possible to achieve hardness values of 39–41 units HRC and a surface roughness of 0.02 μm. It was shown that the creation of a modified layer consisting of ε (TiN) and δ (Ti2N) titanium nitrides on the surface of a ball head and the solid interstitial solution of nitrogen in α-titanium makes it possible to completely eliminate material wear when testing for friction on ultra-high-molecular-weight polyethylene. The equivalent analysis was also conducted with a ball head that had been implanted in a human body for 12 years. It was found that the change in the color of the head, from slightly golden after nitriding to metallic, is due to the formation of an oxynitride nanoscale layer on the surface. It was shown that in contrast with films made of titanium oxide, the film developed in this study has high wear resistance.
Collapse
Affiliation(s)
- Svetlana Skvortsova
- Moscow Aviation Institute, National Research University, 4, Volokolamskoe Highway, 125993 Moscow, Russia; (S.S.); (V.S.); (N.M.)
| | - Aleksei Orlov
- Moscow Aviation Institute, National Research University, 4, Volokolamskoe Highway, 125993 Moscow, Russia; (S.S.); (V.S.); (N.M.)
- Correspondence: ; Tel.: +7-9032304151
| | - Georgii Valyano
- Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT), 13 Bd.2, Izhorskaya Str., 125412 Moscow, Russia;
| | - Victor Spektor
- Moscow Aviation Institute, National Research University, 4, Volokolamskoe Highway, 125993 Moscow, Russia; (S.S.); (V.S.); (N.M.)
| | - Natalia Mamontova
- Moscow Aviation Institute, National Research University, 4, Volokolamskoe Highway, 125993 Moscow, Russia; (S.S.); (V.S.); (N.M.)
| |
Collapse
|
30
|
McCarthy SM, Hall DJ, Mathew MT, Jacobs JJ, Lundberg HJ, Pourzal R. Are Damage Modes Related to Microstructure and Material Loss in Severely Damaged CoCrMo Femoral Heads? Clin Orthop Relat Res 2021; 479:2083-2096. [PMID: 34019490 PMCID: PMC8373544 DOI: 10.1097/corr.0000000000001819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fretting and corrosion in metal-on-polyethylene total hip arthoplasty (THA) modular junctions can cause adverse tissue reactions that are responsible for 2% to 5% of revision surgeries. Damage within cobalt-chromium-molybdenum (CoCrMo) alloy femoral heads can progress chemically and mechanically, leading to damage modes such as column damage, imprinting, and uniform fretting damage. At present, it is unclear which of these damage modes are most detrimental and how they may be linked to implant alloy metallurgy. The alloy microstructure exhibits microstructural features such as grain boundaries, hard phases, and segregation bands, which may enable different damage modes, higher material loss, and the potential risk of adverse local tissue reactions. QUESTIONS/PURPOSES In this study, we asked: (1) How prevalent is chemically dominated column damage compared with mechanically dominated damage modes in severely damaged metal-on-polyethylene THA femoral heads made from wrought CoCrMo alloy? (2) Is material loss greater in femoral heads that underwent column damage? (3) Do material loss and the presence of column damage depend on alloy microstructure as characterized by grain size, hard phase content, and/or banding? METHODS Surgically retrieved wrought CoCrMo modular femoral heads removed between June 2004 and June 2019 were scored using a modified version of the Goldberg visually based scoring system. Of the total 1002 heads retrieved over this period, 19% (190 of 1002) were identified as severely damaged, exhibiting large areas of fretting scars, black debris, pits, and/or etch marks. Of these, 43% (81 of 190) were excluded for metal-on-metal articulations, alternate designs (such as bipolar, dual-mobility, hemiarthroplasty, metal adaptor sleeves), or previous sectioning of the implant for past studies. One sample was excluded retroactively as metallurgical analysis revealed that it was made of cast alloy, yielding a total of 108 for further analysis. Information on patient age (57 ± 11 years) and sex (56% [61 of 108] were males), reason for removal, implant time in situ (99 ± 78 months), implant manufacturer, head size, and the CoCrMo or titanium-based stem alloy pairing were collected. Damage modes and volumetric material loss within the head tapers were identified using an optical coordinate measuring machine. Samples were categorized by damage mode groups by column damage, imprinting, a combination of column damage and imprinting, or uniform fretting. Metallurgical samples were processed to identify microstructural characteristics of grain size, hard phase content, and banding. Nonparametric Mann-Whitney U and Kruskal-Wallis statistical tests were used to examine volumetric material loss compared with damage mode and microstructural features, and linear regression was performed to correlate patient- and manufacturer-specific factors with volumetric material loss. RESULTS Chemically driven column damage was seen in 48% (52 of 108) of femoral heads, with 34% (37 of 108) exhibiting a combination of column damage and imprinting, 12% (13 of 108) of heads displaying column damage and uniform fretting, and 2% (2 of 108) exhibiting such widespread column damage that potentially underlying mechanical damage modes could not be verified. Implants with column damage showed greater material loss than those with mechanically driven damage alone, with median (range) values of 1.2 mm3 (0.2 to 11.7) versus 0.6 mm3 (0 to 20.7; p = 0.03). Median (range) volume loss across all femoral heads was 0.9 mm3 (0 to 20.7). Time in situ, contact area, patient age, sex, head size, manufacturer, and stem alloy type were not associated with volumetric material loss. Banding of the alloy microstructure, with a median (range) material loss of 1.1 mm3 (0 to 20.7), was associated with five times higher material loss compared with those with a homogeneous microstructure, which had a volume loss of 0.2 mm3 (0 to 4.1; p = 0.02). Hard phase content and grain size showed no correlation with material loss. CONCLUSION Chemically dominated column damage was a clear indicator of greater volume loss in this study sample of 108 severely damaged heads. Volumetric material loss strongly depended on banding (microstructural segregations) within the alloy. Banding of the wrought CoCrMo microstructure should be avoided during the manufacturing process to reduce volumetric material loss and the release of corrosion products to the periprosthetic tissue. CLINICAL RELEVANCE Approximately 30% of THAs rely on wrought CoCrMo femoral heads. Most femoral heads in this study exhibited a banded microstructure that was associated with larger material loss and the occurrence of chemically dominated column damage. This study suggests that elimination of banding from the alloy could substantially reduce the release of implant debris in vivo, which could potentially also reduce the risk of adverse local tissue reactions to implant debris.
Collapse
Affiliation(s)
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Joshua J. Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Wimmer M, Radice S, Janssen D, Fischer A. Fretting-corrosion of CoCr-alloys against TiAl6V4: The importance of molybdenum in oxidative biological environments. WEAR : AN INTERNATIONAL JOURNAL ON THE SCIENCE AND TECHNOLOGY OF FRICTION LUBRICATION AND WEAR 2021; 477:203813. [PMID: 34690379 PMCID: PMC8528050 DOI: 10.1016/j.wear.2021.203813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periprosthetic fluids often contain reactive oxygen species, including H2O2, that are generated during inflammatory processes. Here, we investigated the fretting-corrosion behavior of CoCrX-alloys (X = Mo, Fe) in a complex protein-containing lubricant, with and without the addition of H2O2. Given the known protective role of molybdenum as an alloying element in metal degradation, we considered its effects by designing a two-way factorial experiment. The aim of the study was to investigate tribocorrosive mechanisms in modular joints of knee and hip prostheses. A previously described test-rig was used to run fretting corrosion tests of CoCrX-alloys with (X=Mo) and without (X=Fe) molybdenum against TiAl6V4 in bovine calf serum (BCS) with and without a physiological relevant H2O2 level (3 mM) in gross slip mode (4 Hz, ±50 μm, pmax=0.18 GPa, 37 °C, 50,000 cycles). Two CoCr-pins were pressed against a cylindrical TiAl6V4-rod, forming a line contact. Normal and frictional forces, the displacement, and the open circuit potential (OCP) were measured and recorded continuously. The dissipated frictional work was independent of alloy composition. The addition of H2O2 lowered the dissipated frictional work and increased wear, and this was significant in the absence of Mo. The mean OCP value was lower with Mo-containing than with Mo-free alloy in both pure BCS (p = .042), and BCS ± H2O2 (p < .0005). The wear scar was deeper for the Mo-free alloy, and this was significant (p = .013) in the presence of H2O2. These findings suggest a marked weakening of the passive film in the presence of H2O2, which is mitigated by the availability of Mo.
Collapse
Affiliation(s)
- M.A. Wimmer
- Rush University Medical Center, Chicago, IL, USA
| | - S. Radice
- Rush University Medical Center, Chicago, IL, USA
| | - D. Janssen
- University of Duisburg-Essen, Materials Science and Engineering, Duisburg, Germany
| | - A. Fischer
- Rush University Medical Center, Chicago, IL, USA
- University of Duisburg-Essen, Materials Science and Engineering, Duisburg, Germany
| |
Collapse
|
32
|
Zachariah Z, Balachandran S, Liu Z, Pourzal R, McCarthy SM, Hall DJ, Fischer A, Raabe D, Herbig M. On the Formation Mechanism of Column Damage Within Modular Taper Junctions. J Arthroplasty 2021; 36:2603-2611.e2. [PMID: 33812716 PMCID: PMC9342686 DOI: 10.1016/j.arth.2021.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Column damage is a unique degradation pattern observed in cobalt-chromium-molybdenum (CoCrMo) femoral head taper surfaces that resemble column-like troughs in the proximal-distal direction. We investigate the metallurgical origin of this phenomenon. METHODS Thirty-two severely damaged CoCrMo femoral head retrievals from 7 different manufacturers were investigated for the presence of column damage and chemical inhomogeneities within the alloy microstructure via metallographic evaluation of samples sectioned off from the femoral heads. RESULTS Column damage was found to affect 37.5% of the CoCrMo femoral heads in this study. All the column-damaged femoral heads exhibited chemical inhomogeneities within their microstructures, which comprised of regions enriched or depleted in molybdenum and chromium. Column damage appears as a dissolution of the entire surface with preferential corrosion along the molybdenum and chromium depleted regions. CONCLUSION Molybdenum and chromium depleted zones serve as initiation sites for in vivo corrosion of the taper surface. Through crevice corrosion, the degradation spreads to the adjacent non-compositionally depleted areas of the alloy as well. Future improved alloy and processing recipes are required to ensure no chemical inhomogeneity due to segregation of solute elements are present in CoCrMo femoral heads.
Collapse
Affiliation(s)
- Zita Zachariah
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
- Corresponding author: (Zita Zachariah)
| | - Shanoob Balachandran
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Zhilong Liu
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - Stephanie M. McCarthy
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - Alfons Fischer
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - Dierk Raabe
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Michael Herbig
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| |
Collapse
|
33
|
Shenoy AA, Kurtz SM, Gilbert JL. Nontribological corrosion modes dominate wrought CoCrMo acetabular taper corrosion: A retrieval study. J Biomed Mater Res B Appl Biomater 2021; 109:2000-2013. [PMID: 33945667 DOI: 10.1002/jbm.b.34854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
Corrosion of modular metal-on-metal acetabular tapers in total hip arthroplasty (THA) systems is often attributed to mechanically driven processes. Recent findings suggest that mechanically assisted crevice corrosion (MACC) might not be the dominant cause of corrosion in shell-liner tapers. This study aims to document and present the corrosion modes observed in metal-metal acetabular liners. Twenty-one retrieved wrought CoCrMo liners were examined using digital optical microscopy (DOM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Corrosion-related damage was documented in nonengagement taper regions, outside of direct taper contact. Within engagement regions, nonmechanically driven corrosion features (pitting, intergranular corrosion) were observed adjacent to fretting and material transfer, which rely on mechanical contact; corrosion independent of MACC was observed even in contact regions. Corrosion types observed included intergranular corrosion (IGC), pitting attack, phase boundary dissolution, all both outside and inside of taper junctions, and MACC within contact regions of the taper. Typical fretting scars associated with MACC were mostly absent, and were not always associated with corrosion damage where present. Finally, hard phase particles (Mo-Si-O) released from the wrought CoCrMo microstructure had redeposited within regions with material loss. Acetabular taper corrosion modes differ significantly from those in head-neck tapers and are dominated by electrochemically driven processes, not mechanical processes, as indicated by corrosion in noncontact regions. With greater prevalence of dual mobility hip implants, acetabular taper corrosion processes must be understood in order to limit their impact on device performance.
Collapse
Affiliation(s)
- Aarti A Shenoy
- Department of Bioengineering, College of Engineering, Computing and Applied Science, Clemson University, Clemson, South Carolina, USA.,Clemson-MUSC Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven M Kurtz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.,Exponent, Inc., Philadelphia, Pennsylvania, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, College of Engineering, Computing and Applied Science, Clemson University, Clemson, South Carolina, USA.,Clemson-MUSC Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
34
|
Radzik B, Bijukumar D, Cheng KY, Badhe RV, Barba M, Mathew MT. The role of fretting-frequency on the damage modes of THR modular junction: In-vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112128. [PMID: 34082945 DOI: 10.1016/j.msec.2021.112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
According to the National Center for Health Statistics, currently, more than 250,000 total hip replacements annually in the US alone, with an estimated increase to 500,000 by the year 2030. The usage of tapered junctions between the femoral neck and head gives the surgeon flexibility in implant assembly. However, these modular junctions are subjected to micro-motion that may cause chemical and fretting-corrosion at the modular junction. Therefore, it is imperative to study these forces to mitigate their effects. The current study aims to understand the effects of fretting-corrosion as a function of fretting frequencies caused by common physical activities in an in-vitro model of hip modular junctions. The fretting system has a tribological contact condition of flat-on-flat, mounted to a load frame. CoCrMo pins were polished and immersed in a synovial fluid-like electrolyte solution (Bovine calf serum 30 g/l). Electrochemical measurements were made using a potentiostat. Samples then undergo 3600 cycles at 50 μm (to simulate gross slips), with a horizontal load at 200 N, and a frequency of 0.5 Hz, 0.7 Hz, 1 Hz, and 1.5 Hz to simulate Sit Down-Stand Up, Stair Climb, Walking, and Jogging, respectively. Worn surfaces were then examined under optical and scanning electron microscopy. The evolution of free potential as a function of time for tested frequencies shows the initial potential drop and stabilized trend in the potential evolution. The sample group at a higher frequency displays a higher tendency of corrosion than a lower frequency; however, the dissipation energy decreases as a function of fretting frequency. Both electrochemical and mechanical responses correlate to the variation in the fretting frequencies. Organometallic complexes were found on the surfaces of the samples that were subjected to a slower frequency of fretting, whereas mechanical grooving was noticed on samples with a faster frequency. Hence, these preliminary studies suggest that implant failure rates may be altered based on fretting-frequencies induced by physical activity. Further studies will be required to verify the findings and explore the potential role of fretting frequency in the damage modes of the modular junction.
Collapse
Affiliation(s)
- Bartlomiej Radzik
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UIC College of Medicine at Rockford, IL, United States of America
| | - Divya Bijukumar
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UIC College of Medicine at Rockford, IL, United States of America
| | - Kai-Yuan Cheng
- Department of Civil and Material Engineering, College of Engineering, UIC, Chicago, United States of America
| | - Ravindra V Badhe
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UIC College of Medicine at Rockford, IL, United States of America
| | - Mark Barba
- OrthoIllinois, Rockford, IL, United States of America
| | - Mathew T Mathew
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UIC College of Medicine at Rockford, IL, United States of America; Department of Civil and Material Engineering, College of Engineering, UIC, Chicago, United States of America; Rush University Medical Center, Chicago, IL, United States of America.
| |
Collapse
|
35
|
Royhman D, Pourzal R, Hall D, Lundberg HJ, Wimmer MA, Jacobs J, Hallab NJ, Mathew MT. Fretting-corrosion in hip taper modular junctions: The influence of topography and pH levels - An in-vitro study. J Mech Behav Biomed Mater 2021; 118:104443. [PMID: 33752094 DOI: 10.1016/j.jmbbm.2021.104443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Contemporary hip implants feature a modular design. Increased reported failure rates associated with the utilization of modular junctions have raised many clinical concerns. Typically, these modular interfaces contain circumferential machining marks (threads or microgrooves), but the effect of the machining marks on the fretting-corrosion behavior of total hip implant materials is unknown. This study reports the effects of microgrooves on the fretting-corrosion behavior of hip implant materials. The flat portions of two cylindrical, polished, CrCrMo alloy pins were loaded horizontally against one rectangular Ti alloy rod. Two surface preparation groups were used for the Ti6Al4V rod (polished and machined). The polished group was prepared using the same methods as the CoCrMo pins. The machined samples were prepared by creating parallel lines on the rod surfaces to represent microgrooves present on the stem tapers of head-neck modular junctions. Newborn calf serum (30 g/L protein content; 37 °C) at pH of levels of 7.6 and 3.0 were used to simulate the normal joint fluid and a lowered pH within a crevice, respectively. The samples were tested in a fretting corrosion apparatus under a 200N normal force and a 1Hz sinusoidal fretting motion with a displacement amplitude of 25 μm. All electrochemical measurements were performed with a potentiostat in a three-electrode configuration. The results show significant differences between machined samples and polished samples in both electrochemical and mechanical responses. In all cases, the magnitude of the drop in potential was greater in the machined group compared to the polished group. The machined group showed a lower total dissipated friction energy for the entire test compared to the polished group. Additionally, the potentiostatic test measurements revealed a higher evolved charge in the machined group compared to the polished group at both pH conditions (pH 7.6 and 3.0). The machined surfaces lowered the overall dissipated friction energy at pH 7.6 compared to pH 3.0, but also compromised electrochemical performance in the tested conditions. Therefore, the role of synergistic interaction of wear and corrosion with surface topographical changes is evident from the outcome of the study. Despite the shift towards higher electrochemical destabilization in the machined group, both polished and machined groups still exhibited a mechanically dominated degradation.
Collapse
Affiliation(s)
- Dmitry Royhman
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Deborah Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hannah J Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Markus A Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA.
| |
Collapse
|
36
|
Liu S, Hall DJ, Della Valle CJ, Walsh MJ, Jacobs JJ, Pourzal R. Simultaneous Characterization of Implant Wear and Tribocorrosion Debris within Its Corresponding Tissue Response Using Infrared Chemical Imaging. ACTA ACUST UNITED AC 2021; 26. [PMID: 33829077 DOI: 10.1016/j.biotri.2021.100163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotribology is one of the key branches in the field of artificial joint development. Wear and corrosion are among fundamental processes which cause material loss in a joint biotribological system; the characteristics of wear and corrosion debris are central to determining the in vivo bioreactivity. Much effort has been made elucidating the debris-induced tissue responses. However, due to the complexity of the biological environment of the artificial joint, as well as a lack of effective imaging tools, there is still very little understanding of the size, composition, and concentration of the particles needed to trigger adverse local tissue reactions, including periprosthetic osteolysis. Fourier transform infrared spectroscopic imaging (FTIR-I) provides fast biochemical composition analysis in the direct context of underlying physiological conditions with micron-level spatial resolution, and minimal additional sample preparation in conjunction with the standard histopathological analysis workflow. In this study, we have demonstrated that FTIR-I can be utilized to accurately identify fine polyethylene debris accumulation in macrophages that is not achievable using conventional or polarized light microscope with histological staining. Further, a major tribocorrosion product, chromium phosphate, can be characterized within its histological milieu, while simultaneously identifying the involved immune cell such as macrophages and lymphocytes. In addition, we have shown the different spectral features of particle-laden macrophages through image clustering analysis. The presence of particle composition variance inside macrophages could shed light on debris evolution after detachment from the implant surface. The success of applying FTIR-I in the characterization of prosthetic debris within their biological context may very well open a new avenue of research in the orthopedics community.
Collapse
Affiliation(s)
- Songyun Liu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States.,Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Craig J Della Valle
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Michael J Walsh
- Material Sciences and Biomedical Engineering Department, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
37
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. The mechanics of head-neck taper junctions: What do we know from finite element analysis? J Mech Behav Biomed Mater 2021; 116:104338. [PMID: 33524892 DOI: 10.1016/j.jmbbm.2021.104338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Modular hip implants are widely used in hip arthroplasty because of the advantages they can offer such as flexibility in material combinations and geometrical adjustments. The mechanical environment of the modular junction in the body is quite challenging due to the complex and varying off-axial mechanical loads of physical activities applied to a tapered interface of two contacting materials (head and neck) assembled by an impact force intraoperatively. Experimental analogies to the in-vivo condition of the taper junction are complex, expensive and time-consuming to implement; hence, computational simulations have been a preferred approach taken by researchers for studying the mechanics of these modular junctions that can help us understand their failure mechanisms and improve their design and longevity after implantation. This paper provides a clearer insight into the mechanics of the head-neck taper junction through a careful review on the finite element studies of the junction and their findings. The effects of various factors on the mechanical outputs namely: stresses, micromotions, and contact situations are reviewed and discussed. Also, the simulation methodology of the studies in the literature is compared. Research opportunities for future are scrutinised through tabulating data and information that have been carefully retrieved form the reported findings.
Collapse
Affiliation(s)
- Mohsen Feyzi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia.
| |
Collapse
|
38
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants. Comput Biol Med 2020; 130:104196. [PMID: 33516962 DOI: 10.1016/j.compbiomed.2020.104196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
Taperosis/trunnionosis is a scientific term for describing tribocorrosion (fretting corrosion) at the head-neck taper junction of hip implants where two contacting surfaces are undergone oscillatory micromotions while being exposed to the body fluid. Detached ions and emitted debris, as a result of taperosis, migrate to the surrounding tissues and can cause inflammation, infection, and aseptic loosening with an ultimate possibility of implant failure. Improving the tribocorrosion performance of the head-neck junction in the light of minimising the surface damage and debris requires a better understanding of taperosis. Given its complexity associated with both the mechanical and electrochemical aspects, computational methods such as the finite element method have been recently employed for analysing fretting wear and corrosion in the taper junction. To date, there have been more efforts on the fretting wear simulation when compared with corrosion. This is because of the mechanical nature of fretting wear which is probably more straightforward for modelling. However, as a recent research advancement, corrosion has been a focus to be implemented in the finite element modelling of taper junctions. This paper aims to review finite element studies related to taperosis in the head-neck junction to provide a detailed understanding of the design parameters and their role in this failure mechanism. It also reviews and discusses the methodologies developed for simulating this complex process in the taper junction along with the simplifications, assumptions and findings reported in these studies. The current needs and future research opportunities and directions in this field are then identified and presented.
Collapse
Affiliation(s)
- Mohsen Feyzi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia.
| |
Collapse
|
39
|
Radice S, Westrick J, Ebinger K, Mathew M, Wimmer MA. In-vitro studies on cells and tissues in tribocorrosion processes: A systematic scoping review. BIOTRIBOLOGY (OXFORD) 2020; 24:100145. [PMID: 33015276 PMCID: PMC7528855 DOI: 10.1016/j.biotri.2020.100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tribocorrosion of implants has been widely addressed in the orthopedic and dental research fields. This study is a systematic scoping review about research methods that combine tribocorrosion tests with cells/tissues cultures, aimed to identify related current problems and future challenges. We used 4 different databases to identify 1022 records responding to an articulated keywords search-strategy. After removing the duplicates and the articles that didn't meet the search-criteria, we assessed 20 full-text articles for eligibility. Of the 20 eligible articles, we charted 8 records on cell cultures combined with tribocorrosion tests on implant materials (titanium, CoCrMo, and/or stainless steel). The year of publication ranged from 1991 to 2019. The cell line used was mostly murine. Two records used fretting tests, while 6 used reciprocating sliding with pin-on-disc tribometers. An electrochemical three-electrode setup was used in 4 records. We identified overall two experimental approaches: cells cultured on the metal (5 records), and cells cultured near the metal (3 records). Research activities on tribocorrosion processes in the presence of cells have been undertaken worldwide by a few groups. After a limited initial interest on this topic in the 1990's, research activities have restarted in the last decade, renewing the topic with technologically more advanced setups and analytical tools. We identified the main problems to be the lack of test reproducibility and wear particle characterization. We believe that the main challenges lay in the interdisciplinary approach, the inter-laboratory validation of experiments, and the interpretation of results, particularly in relation to potential clinical significance.
Collapse
Affiliation(s)
- S. Radice
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison St., Chicago, IL 60612, USA
| | - J. Westrick
- Library of Rush University Medical Center, 600 S. Paulina St., Chicago, IL 60612, USA
| | - K. Ebinger
- Klinikum Garmisch-Partenkirche, Auenstraße 6, 82467 Garmisch-Partenkirchen, Germany
| | - M.T. Mathew
- College of Medicine at Rockford, University of Illinois, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - M. A. Wimmer
- Rush University Medical Center, Department of Orthopedic Surgery, 1611 W. Harrison St., Chicago, IL 60612, USA
| |
Collapse
|
40
|
Corrosion Concerns? Trends in Metal-on-Polyethylene Total Hip Arthroplasty Revision Rates and Comparisons Against Ceramic-on-Polyethylene up to 10 Years of Follow-Up. J Arthroplasty 2020; 35:2919-2925. [PMID: 32475785 DOI: 10.1016/j.arth.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/10/2020] [Accepted: 05/02/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We compared the revision risk between metal-on-polyethylene (MOP) and ceramic-on-polyethylene (COP) total hip arthroplasty patients and evaluated temporal changes in short-term revision risks for MOP patients. METHODS Primary MOP (n = 9480) and COP (n = 3620) total hip arthroplasties were evaluated from the Medicare data set (October 2005 to December 2015) for revision risk, with up to 10 years of follow-up using multivariate analysis. Temporal change in the short-term revision risk for MOP was evaluated (log-rank and Wilcoxon tests). RESULTS Revision incidence was 3.8% for COP and 4.3% for MOP. MOP short-term revision risk did not change over time (P ≥ .844 at 1 year and .627 at 2 years). Dislocation was the most common reason for revision (MOP: 23.5%; COP: 24.8%). Overall adjusted revision risks were not different between MOP and COP up to 10 years of follow-up (P ≥ .181). CONCLUSIONS Concerns with corrosion for metal heads do not appear to result in significantly elevated revision risk for MOP at up to 10 years. Corrosion does not appear as a primary reason for revision compared to other mechanisms.
Collapse
|
41
|
Mehta N, Hall DJ, Pourzal R, Garrigues GE. The Biomaterials of Total Shoulder Arthroplasty: Their Features, Function, and Effect on Outcomes. JBJS Rev 2020; 8:e1900212. [PMID: 32890047 DOI: 10.2106/jbjs.rvw.19.00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The materials that are used in total shoulder arthroplasty (TSA) implants have been carefully chosen in an attempt to minimize hardware-related complications. The 2 main metal alloys used in TSA implants are Ti-6Al-4V (titanium-aluminum-vanadium) and CoCrMo (cobalt-chromium-molybdenum). Ti alloys are softer than CoCr alloys, making them less wear-resistant and more susceptible to damage, but they have improved osseointegration and osteoconduction properties. Although controversial, metal allergy may be a concern in patients undergoing TSA and may lead to local tissue reaction and aseptic loosening. Numerous modifications to polyethylene, including cross-linking, minimizing oxidation, and vitamin E impregnation, have been developed to minimize wear and reduce complications. Alternative bearing surfaces such as ceramic and pyrolytic carbon, which have strong track records in other fields, represent promising possibilities to enhance the strength and the durability of TSA prostheses.
Collapse
Affiliation(s)
- Nabil Mehta
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Grant E Garrigues
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
42
|
Gustafson JA, Pourzal R, Levine BR, Jacobs JJ, Lundberg HJ. Modelling changes in modular taper micromechanics due to surgeon assembly technique in total hip arthroplasty. Bone Joint J 2020; 102-B:33-40. [PMID: 32600210 DOI: 10.1302/0301-620x.102b7.bjj-2019-1678.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. METHODS Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique-one-hit versus three-hits-on the taper interlock mechanical behaviour. RESULTS The model compared well to deformed microgrooves from the retrieved implants, predicting changes in microgroove height (mean 1.1 μm (0.2 to 1.3)) and width (mean 7.5 μm (1.0 to 18.5)) within the range of measured changes in height (mean 1.4 μm (0.4 to 2.3); p = 0.109) and width (mean 12.0 μm (1.5 to 25.4); p = 0.470). Consistent with benchtop studies, our model found that increasing assembly load magnitude led to increased taper engagement, contact pressure, and permanent deformation of the stem taper microgrooves. Interestingly, our model found assemblies using three hits at low loads (4 kN) led to decreased taper engagement, contact pressures and microgroove deformations throughout the stem taper compared with tapers assembled with one hit at the same magnitude. CONCLUSION These findings suggest additional assembly hits at low loads lead to inferior taper interlock strength compared with one firm hit, which may be influenced by loading rate or material strain hardening. These unique models can estimate microgroove deformations representative of real contact mechanics seen on retrievals, which will enable us to better understand how both surgeon assembly techniques and implant design affect taper interlock strength. Cite this article: Bone Joint J 2020;102-B(7 Supple B):33-40.
Collapse
Affiliation(s)
- Jonathan A Gustafson
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brett R Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Hannah J Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
43
|
Khullar P, Zhu D, Gilbert JL. Fretting corrosion of Si 3 N 4 vs CoCrMo femoral heads on Ti-6Al-V trunnions. J Orthop Res 2020; 38:1617-1626. [PMID: 32249959 DOI: 10.1002/jor.24681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Fretting corrosion at the head-neck taper junction was compared between silicon nitride (Si3 N4 ) and commercially available cobalt chrome (CoCrMo) femoral heads on titanium (Ti-6Al-4V) trunnions. An electrochemical setup was used to capture the fretting currents (characterized by oxide abrasion and repassivation) during cyclic loading. Onset load, pull-off force (disassembly load), short term and long term (1 million cycles) fretting currents were used to compare the fretting corrosion performance between the test group (Si3 N4 /Ti-6Al-4V) and the control group (CoCrMo/Ti-6Al-4V). Incremental cyclic fretting corrosion tests showed that the Si3 N4 /Ti-6Al-4V combination had statistically lower (P < .05) average fretting current of 0.189 µA (SD = 0.114 µA) compared to 0.685 µA (SD = 0.630 µA) for CoCrMo/Ti-6Al-4V for cyclic load of 3200 N. Similarly, for the one million cycle fretting corrosion tests, the Si3 N4 /Ti-6Al-4V couples had statistically lower (P < .05) average current (0.048 µA, SD = 0.025 µA) vs CoCrMo/Ti-6Al-4V couples (0.366 µA, SD = 0.143 µA). The Si3 N4 heads also had higher onset loads (P < .05) for fretting (vs CoCrMo, 2200 N vs 1740 N) indicating a difference in surface contact mechanics between the two groups. Scanning electron microscopy with energy dispersive spectroscopy confirmed material transfer from the trunnions to the heads for both groups tested, and from head to trunnion for the CoCrMo heads. Minimal Si3 N4 transfer was noted. The electrochemical, mechanical, and microscopic inspection data supported the hypothesis that Si3 N4 /Ti-6Al-4Vcombination had better fretting corrosion performance compared to CoCrMo/Ti-6Al-4V.
Collapse
Affiliation(s)
- Piyush Khullar
- Clemson-MUSC Bioengineering Program, Charleston, South Carolina.,Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Dongkai Zhu
- Clemson-MUSC Bioengineering Program, Charleston, South Carolina.,Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Jeremy L Gilbert
- Clemson-MUSC Bioengineering Program, Charleston, South Carolina.,Department of Bioengineering, Clemson University, Clemson, South Carolina.,Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
44
|
Haschke H, Falkenberg A, Morlock MM, Huber G. Do SiNx coatings bear the potential to reduce the risk of micromotion in modular taper junctions? Proc Inst Mech Eng H 2020; 234:897-908. [PMID: 32507037 DOI: 10.1177/0954411920930616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fretting corrosion is one contributor to the clinical failure of modular joint arthroplasty. It is initiated by micromotion in metal junctions exposed to fluids. Omitting metal-on-metal contacts could help to reduce the corrosion risk. The coating of one metal taper partner with a ceramic-based silicon nitride (SiNx) coating might provide this separation. The aim of the study was to identify whether a SiNx coating of the male taper component influences the micromotion within a taper junction. Hip prosthesis heads made of CoCr29Mo6 (Aesculap) and Ti6Al4V (Peter Brehm) were assembled (2000 N) to SiNx-coated and uncoated stem tapers made of Ti6Al4V and CoCr29Mo6 (2×2×2 combinations, each n = 4). Consecutive sinusoidal loading representing three daily activities was applied. Contactless relative motion in six degrees of freedom was measured using six eddy-current sensors. Micromotion in the junction was determined by compensating for the elastic deformation derived from additional monoblock measurements. After pull-off, the taper surfaces were microscopically inspected. Micromotion magnitude reached up to 8.4 ± 0.8 µm during loading that represented stumbling. Ti6Al4V stems showed significantly higher micromotion than those made of CoCr29Mo6, while taper coating had no influence. Statistical differences in pull-off forces were found for none of the taper junctions. Microscopy revealed CoCr29Mo6 abrasion from the head taper surface if combined with coated stem tapers. Higher micromotion of Ti6Al4V tapers was probably caused by the lower Young's modulus. Even in the contact areas, the coating was not damaged during loading. The mechanics of coated tapers was similar to uncoated prostheses. Thus, the separation of the two metal surfaces with the objective to reduce in vivo corrosion appears to be achievable if the coating is able to withstand in vivo conditions. However, the hard ceramic-based stem coating lead to undesirable debris from the CoCr29Mo6 heads during loading.
Collapse
Affiliation(s)
- Henning Haschke
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | - Adrian Falkenberg
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | - Michael M Morlock
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | - Gerd Huber
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| |
Collapse
|
45
|
Hall DJ, Pourzal R, Jacobs JJ. What Surgeons Need to Know About Adverse Local Tissue Reaction in Total Hip Arthroplasty. J Arthroplasty 2020; 35:S55-S59. [PMID: 32005621 PMCID: PMC7239747 DOI: 10.1016/j.arth.2020.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
Adverse local tissue reactions (ALTRs) were first associated with patients with failed metal-on-metal surface replacements and total hip arthroplasty (THA). However, an increasing number of cases of ALTR in metal-on-polyethylene (MOP) THA patients is being reported. Clinically, ALTR appears as benign, aseptic masses or bursae in the periprosthetic tissues. Histopathologically, ALTRs are distinguished by an intense lymphocyte infiltrate, destruction of the synovial surfaces, widespread necrosis, and fibrin exudate. Tribocorrosion of modular junctions appears to be the cause of ALTR in MOP patients. The various tribocorrosion damage modes occurring at modular junctions produce metal ions and a diversity of particulates in relation to size, chemical composition, and structure. The mechanisms by which these various products of tribocorrosion lead to ALTR are still a matter of considerable research. This review clarifies what constitutes ALTR, its relationship to implant factors, and highlights current methods for diagnosis and management of patients with ALTR in the setting of MOP THA.
Collapse
Affiliation(s)
- Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
46
|
Rieker CB, Wahl P. What the Surgeon Can Do to Reduce the Risk of Trunnionosis in Hip Arthroplasty: Recommendations from the Literature. MATERIALS 2020; 13:ma13081950. [PMID: 32326259 PMCID: PMC7215371 DOI: 10.3390/ma13081950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/24/2023]
Abstract
Trunnionosis, defined as wear and corrosion at the head–neck taper connection, is a cause of failure in hip arthroplasty. Trunnionosis is linked to a synergistic combination of factors related to the prosthesis, the patient, and the surgeon. This review presents analytical models that allow for the quantification of the impact of these factors, with the aim of providing practical recommendations to help surgeons minimize the occurrence of this failure mode. A tighter fit reduces micromotion and, consequently, fretting of the taper connection. The paramount parameters controlling the fixation force are the coefficient of friction and the impaction force. The influence of the head diameter, as well as of the diameter and angle of the taper, is comparatively small, but varus alignment of the taper and heads with longer necks are unfavourable under physiologic loads. The trunnion should be rinsed, cleaned, and dried carefully, while avoiding any contamination of the bore—the female counterpart within the head—prior to assembly. Biological debris, and even residual water, might critically reduce the fixation of the taper connection between the head and the neck. The impaction force applied to the components should correspond to at least two strong blows with a 500 g hammer, striking the head with an ad hoc impactor aligned with the axis of the taper. These strong blows should correspond to a minimum impaction force of 4000 N.
Collapse
Affiliation(s)
- Claude B. Rieker
- Scientific Affairs, Zimmer Biomet EMEA (Europa, Middle East and Africa), Sulzerallee 8, 8404 Winterthur, Switzerland
- Correspondence:
| | - Peter Wahl
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8400 Winterthur, Switzerland;
| |
Collapse
|
47
|
Bechstedt M, Gustafson JA, Mell SP, Gührs J, Morlock MM, Levine BR, Lundberg HJ. Contact conditions for total hip head-neck modular taper junctions with microgrooved stem tapers. J Biomech 2020; 103:109689. [PMID: 32139099 DOI: 10.1016/j.jbiomech.2020.109689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Implant failure due to fretting-corrosion of head-neck modular junctions is a rising problem in total hip arthroplasty. Fretting-corrosion initiates when micromotion leads to metal release; however, factors leading to micromotion, such as microgrooves on the stem taper, are not fully understood. The purpose of this study is to describe a finite element analysis technique to determine head-neck contact mechanics and investigate the effect of stem taper microgroove height during head-neck assembly. Two-dimensional axisymmetric finite element models were created. Models were created for a ceramic femoral head and a CoCrMo femoral head against Ti6Al4V stem tapers and compared to available data from prior experiments. Stem taper microgroove height was investigated with a generic 12/14 model. Head-neck assembly was performed to four maximum loads (500 N, 2000 N, 4000 N, 8000 N). For the stem taper coupled with the ceramic head, the number of microgrooves in contact and plastically deformed differed by 2.5 microgrooves (4%) and 6.5 microgrooves (11%), respectively, between the finite element models and experiment. For the stem taper coupled with the CoCrMo head, all microgrooves were in contact after all assembly loads in the finite element model due to an almost identical conical angle between the taper surfaces. In the experiments, all grooves were only in contact for the 8000 N assembly load. Contact area, plastic (permanent) deformation, and contact pressure increased with increasing assembly loads and deeper microgrooves. The described modeling technique can be used to investigate the relationship between implant design factors, allowing for optimal microgroove design within material couples.
Collapse
Affiliation(s)
- Maren Bechstedt
- Institute of Biomechanics, TUHH Hamburg University of Technology, 21073 Hamburg, Germany
| | - Jonathan A Gustafson
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St Suite 201, Chicago, IL 60612, United States
| | - Steven P Mell
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St Suite 201, Chicago, IL 60612, United States
| | - Julian Gührs
- Institute of Biomechanics, TUHH Hamburg University of Technology, 21073 Hamburg, Germany
| | - Michael M Morlock
- Institute of Biomechanics, TUHH Hamburg University of Technology, 21073 Hamburg, Germany
| | - Brett R Levine
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St Suite 201, Chicago, IL 60612, United States
| | - Hannah J Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St Suite 201, Chicago, IL 60612, United States.
| |
Collapse
|
48
|
Bijukumar DR, Salunkhe S, Morris D, Segu A, Hall DJ, Pourzal R, Mathew MT. In Vitro Evidence for Cell-Accelerated Corrosion Within Modular Junctions of Total Hip Replacements. J Orthop Res 2020; 38:393-404. [PMID: 31436344 PMCID: PMC7370985 DOI: 10.1002/jor.24447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
Corrosion at modular junctions of total hip replacement (THR) remains a major concern today. Multiple types of damage modes have been identified at modular junctions, correlated with different corrosion characteristics that may eventually lead to implant failure. Recently, within the head-taper region of the CoCrMo retrieval implants, cell-like features and trails of etching patterns were observed that could potentially be linked to the involvement of cells of the periprosthetic region. However, there is no experimental evidence to corroborate this phenomenon. Therefore, we aimed to study the potential role of periprosthetic cell types on corrosion of CoCrMo alloy under different culture conditions, including the presence of CoCrMo wear debris. Cells were incubated with and without CoCrMo wear debris (obtained from a hip simulator) with an average particle size of 119 ± 138 nm. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion tendency, corrosion rate, and corrosion kinetics using the media after 24 h of cell culture as the electrolyte. Results of the study showed that there was lower corrosion resistance (p < 0.02) and higher capacitance (p < 0.05) within cell media from macrophages challenged with particles when compared with the other media conditions studied. The potentiodynamic results were also in agreement with the EIS values, showing significantly higher corrosion tendency (low Ecorr ) (p < 0.0001) and high Icorr (p < 0.05) in media from challenged macrophages compared with media with H2 O2 solution. Overall, the study provides in vitro experimental evidence for the possible role of macrophages in altering the chemical environment within the crevice and thereby accelerating corrosion of CoCrMo alloy. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:393-404, 2020.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Shruti Salunkhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Dalton Morris
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Abhijith Segu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Mathew T. Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
49
|
Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater 2020; 108:2073-2087. [PMID: 31898397 DOI: 10.1002/jbm.b.34546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022]
Abstract
The interplay between implant design, biomaterial characteristics, and the local microenvironment adjacent to the implant is of utmost importance for implant performance and success of the joint replacement surgery. Reactive oxygen and nitrogen species (ROS/RNS) are among the various factors affecting the host as well as the implant components. Excessive formation of ROS and RNS can lead to oxidative stress, a condition that is known to damage cells and tissues and also to affect signaling pathways. It may further compromise implant longevity by accelerating implant degradation, primarily through activation of inflammatory cells. In addition, wear products of metallic, ceramic, polyethylene, or bone cement origin may also generate oxidative stress themselves. This review outlines the generation of free radicals and oxidative stress in arthroplasty and provides a conceptual framework on its implications for soft tissue remodeling and bone resorption (osteolysis) as well as implant longevity. Key findings derived from cell culture studies, animal models, and patients' samples are presented. Strategies to control oxidative stress by implant design and antioxidants are explored and areas of controversy and challenges are highlighted. Finally, directions for future research are identified. A better understanding of the host-implant interplay and the role of free radicals and oxidative stress will help to evaluate therapeutic approaches and will ultimately improve implant performance in arthroplasty.
Collapse
Affiliation(s)
- Rita Hameister
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Gurpal Singh
- Centre for Orthopaedics Pte Ltd, Singapore, Singapore
| |
Collapse
|
50
|
Falkenberg A, Dickinson EC, Morlock MM. Adapter sleeves are essential for ceramic heads in hip revision surgery. Clin Biomech (Bristol, Avon) 2020; 71:1-4. [PMID: 31671337 DOI: 10.1016/j.clinbiomech.2019.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Removing a head during isolated acetabular revision surgery can cause damage to the stem taper surface from extraction tool contact. Implanting a ceramic head on the damaged stem taper might elevate the fracture risk, which can be mitigated with the use of titanium adapter sleeves. The aim of this study was to investigate whether the improved fracture strength of modern generation ceramic heads allows the direct implantation on damaged stem tapers without an adapter sleeve. METHODS Finite element models of taper junctions with and without adapter sleeve were generated. Different stem taper damages were modelled to investigate the influence on the ceramic head fracture load under axial compression. FINDINGS Heads without adapter sleeves exhibited slightly higher or equal fracture strengths compared with sleeved heads for most scenarios. However, a small metal elevation on the stem taper caused a drastic decrease of the fracture strength if no adapter sleeve was used (-96%). The sleeved head was not influenced by the metal elevation damage. INTERPRETATION Adapter sleeves are essential to ensure patient safety and prosthesis longevity whenever implanting ceramic heads on used stem tapers.
Collapse
Affiliation(s)
- Adrian Falkenberg
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany.
| | - Emilie C Dickinson
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Michael M Morlock
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|