1
|
Gazzi R, Gelli R, Eugster R, Bühr C, Schürch S, Mezzenga R, Luciani P, Aleandri S. Transitioning the production of lipidic mesophase-based delivery systems from lab-scale to robust industrial manufacturing following a risk-based quality by design approach augmented by artificial intelligence. J Colloid Interface Sci 2025; 678:595-607. [PMID: 39305627 DOI: 10.1016/j.jcis.2024.09.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/27/2024]
Abstract
Lipidic mesophase drug carriers have demonstrated the capacity to host and effectively deliver a wide range of active pharmaceutical ingredients, yet they have not been as extensively commercialized as other lipid-based products, such as liposomal delivery systems. Indeed, scientists are primarily focused on investigating the physics of these systems, especially in biological environments. Meanwhile, the production methods remain less advanced, and researchers are still uncertain about how the manufacturing process might affect the quality of formulations. Bringing these products to the market will require an industrial translation process. In this scenario, we have developed a robust strategy to produce lipidic mesophase-based drug delivery systems using a dual-syringe setup. We identified four critical process parameters in the newly developed method (dual-syringe method), in comparison to eight in the standard production method (gold standard), and we defined their optimal limits following a Quality by Design approach. The robustness and versatility of the proposed method were assessed experimentally by incorporating drugs with diverse physicochemical properties and augmented by machine learning which, by predicting the drug release from lipidic mesophases, reduces the formulation development time and costs.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, Florence, Italy
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Bühr
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Raffaele Mezzenga
- Department for Health Sciences and Technology, D-HEST, ETH Zurich, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Wu W, Gao P, Jiang Q, Yang F, Yu D, Yu P, Xia W, Yu D. Kinetics and mechanisms of thermal deterioration in silver carp (Hypophthalmichtys molitrix) surimi gel quality under high-temperature sterilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9240-9254. [PMID: 39017461 DOI: 10.1002/jsfa.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The gelation properties of surimi gel under various high temperatures (115, 118, and 121 °C) and sterilization intensities (F0 values of 3-7 min) were systematically investigated. A kinetic model detailed quality changes during heat treatment through mathematical analysis, elucidating mechanisms for gel quality degradation. RESULTS Increased sterilization intensity significantly reduced the quality characteristics of surimi gel. Compared to the gel without sterilization treatment, when the sterilization intensity was increased to 7 min, the gel strength of the groups treated at 115 °C, 118 °C, and 121 °C decreased by 68.35%, 51.4%, and 51.71%, respectively, and the water-holding capacity decreased by 24.87%, 16.85%, and 22.5%, respectively. The hardness, chewiness, and whiteness of the gel also significantly decreased, and the changes in these indicators all conformed to a first-order kinetic model. Activation energy of 291.52 kJ mol-1 highlighted gel strength as the least heat-resistant. At equivalent sterilization intensities, 115 °C exhibited the poorest gel quality, followed by 121 °C, with 118 °C showing relatively better gel quality. Increased T22 and decreased PT22 suggested heightened water mobility and transition of immobilized water within the gel into free water. Protein degradation, weakened disulfide bonds and hydrophobic interaction, and protein conformation changes collectively led to a rough and incoherent gel network structure with large fissures, as verified by the results of scanning electron microscopy. Correlation analysis indicated potential for precise control over surimi gel quality by modulating physicochemical attributes. CONCLUSION The outcomes may be beneficial to improve the production and quality control of ready-to-eat surimi-based products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
- SoHao Fd-Tech Co., Ltd., QingDao, China
| | | |
Collapse
|
3
|
Silva DC, Oliveira M, Marto-Costa C, Teixeira J, Oom MS, Pinto CA, Saraiva JA, Marques AC, Fitzhenry L, Serro AP. Low friction hydrogel with diclofenac eluting ability for dry eye therapeutic contact lenses. Methods 2024; 234:67-84. [PMID: 39617282 DOI: 10.1016/j.ymeth.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
When placed in the eye, contact lenses (CLs) disturb the tear fluid and affect the natural tribological behaviour of the eye. The disruption in the contact mechanics between the ocular tissues can increase frictional shear stress and ocular dryness, causing discomfort. Ultimately, continuous CLs wear can trigger inflammation which is particularly critical for people suffering from dry eye. In this work, a double strategy was followed to obtain therapeutic daily disposable CLs for dry eye: a hydroxyethyl methacrylate (HEMA) based hydrogel was coated with two natural polysaccharides, chitosan (CHI) and hyaluronic acid (HA) and posteriorly loaded with an anti-inflammatory drug (diclofenac, DCF). Material sterilisation was carried out by high hydrostatic pressure (HHP) combined with moderate temperature. The friction coefficient (μ) was determined in the presence of different tear biomolecules (cholesterol, lysozyme and albumin) using a nanotribometer. Drug release experiments were performed in static and in hydrodynamic conditions. The material was extensively characterised, regarding surface morphology/topography, optical properties, water content and swelling behaviour, wettability, ionic and oxygen permeability and mechanical properties. It was found that the coating did not impair the physico-chemical properties relevant for the material's application in CLs. Besides, it also ensured a sustained release of DCF for 24 h in tests performed in hydrodynamic conditions that simulate those found in the eye, increasing significantly the amount of drug released. It reduced friction, improving the lubrication ability of the hydrogel, and presented antibacterial properties against S. aureus, P. aeruginosa and B. Cereus. The coated samples did not reveal any signs of cytotoxicity or potential eye irritation. Overall, the coating of the hydrogel may be useful to produce daily CLs able to alleviate dry eye symptoms and the discomfort of CLs wearers.
Collapse
Affiliation(s)
- Diana C Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal.
| | - Margarida Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carolina Marto-Costa
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - João Teixeira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Madalena Salema Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Clara Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), South East Technological University, Waterford City, County Waterford X91 K0EK, Ireland
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal.
| |
Collapse
|
4
|
Schweigerdt A, Stöbener DD, Scholz J, Schäfer A, Weinhart M. Thermoresponsive Brush Coatings for Cell Sheet Engineering with Low Protein Adsorption above the Polymers' Phase Transition Temperature. ACS APPLIED BIO MATERIALS 2024; 7:7544-7555. [PMID: 39499587 DOI: 10.1021/acsabm.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Thermoresponsive polymer coatings on cell culture substrates enable noninvasive cell detachment and cell sheet fabrication for biomedical applications. Optimized coatings should support controlled culture and detachment of various cell types and allow chemical modifications, e.g., to introduce specific growth factors for enhanced gene expression. Furthermore, the sterilization and storage stability of the coatings must be assessed for translational attempts. Poly(glycidyl ether) (PGE) brush coatings with short alkoxy side chains provide a versatile platform for cell culture and detachment, but their polyether backbones are susceptible to oxidation and degradation. Thus, we rationally designed potential alternatives with thermoresponsive glycerol-based block copolymers comprising a stable polyacrylate or polymethacrylate backbone and an oligomeric benzophenone (BP)-based anchor. The resulting poly(ethoxy hydroxypropyl acrylate-b-benzophenone acrylate) (pEHPA-b-BP) and poly(ethoxy hydroxypropyl methacrylate-b-benzophenone methacrylate) (pEHPMA-b-BP) block copolymers preserve the short alkoxy-terminated side chains of the PGE derived structure on a stable, but hydrophobic, aliphatic backbone. The amphiphilicity balance is maintained through incorporated hydroxyl groups, which simultaneously can be used for chemical modification. The polymers were tailored into brush coatings on polystyrene surfaces via directed adsorption using the BP oligomer anchor. The resulting coatings with thickness values up to ∼3 nm supported efficient adhesion and proliferation of human fibroblasts despite minimal protein adsorption. The conditions for cell sheet fabrication on pEHPA-b-BP were gentler and more reliable than on pEHPMA-b-BP, which required additional cooling. Hence, the stability of pEHPA-b-BP and PGE coatings was evaluated post gamma and formaldehyde (FO) gas sterilization. Gamma sterilization partially degraded PGE coatings and hindered cell detachment on pEHPA-b-BP. In contrast, FO sterilization only slowed detachment on PGE coatings and had no adverse effects on pEHPA-b-BP, maintaining their efficient performance in cell sheet fabrication.
Collapse
Affiliation(s)
- Alexander Schweigerdt
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Daniel D Stöbener
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Johanna Scholz
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas Schäfer
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, 30167 Hannover, Germany
| |
Collapse
|
5
|
Elnawam H, Thabet A, Mobarak A, Khalil NM, Abdallah A, Nouh S, Elbackly R. Bovine pulp extracellular matrix hydrogel for regenerative endodontic applications: in vitro characterization and in vivo analysis in a necrotic tooth model. Head Face Med 2024; 20:61. [PMID: 39438876 PMCID: PMC11494807 DOI: 10.1186/s13005-024-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Regenerative endodontic procedures (REPs) offer the promise of restoring vitality and function to a previously necrotic and infected tooth. However, the nature of regenerated tissues following REPs remains unpredictable and uncontrollable. Decellularized extracellular matrix scaffolds have gained recent attention as scaffolds for regenerative endodontics. OBJECTIVES Preparation and characterization of a bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel for regenerative endodontic applications. Biocompatibility and regenerative capacity of the prepared scaffold were evaluated in vivo in a canine animal model. METHODS Fifteen freshly extracted bovine molar teeth were used to prepare P-ECM hydrogels following approval of the institutional review board of the faculty of dentistry, Alexandria University. Decellularization and lyophilization of the extracted pulp tissues, DNA quantification and histological examination of decellularized P-ECM were done. P-ECM hydrogel was prepared by digestion of decellularized pulps. Prepared scaffolds were evaluated for protein content and release as well as release of VEGF, bFGF, TGF-β1 and BMP2 using ELISA. Rabbit dental pulp stem cells' (rDPSCs) viability in response to P-ECM hydrogels was performed. Finally, proof-of-concept of the regenerative capacity of P-ECM scaffolds was assessed in an infected mature canine tooth model following REPs versus blood clot (BC), injectable platelet-rich fibrin (i-PRF) or hyaluronic acid (HA). Statistical analysis was done using independent t test, the Friedman test and chi-square tests (p value ≤ 0.05). RESULTS DNA was found to be below the cut-off point (50 ng/mg tissue). Histological evaluation revealed absence of nuclei, retention of glycosaminoglycans (GAGs) and collagen content, respectively. P-ECM hydrogel had a total protein content of (493.12 µg/µl) and protein release was detected up to 14 days. P-ECM hydrogel also retained VEGF, bFGF, TGF-β1 and BMP2. P-ECM hydrogel maintained the viability of rDPSCs as compared to cells cultured under control conditions. P-ECM hydrogel triggered more organized tissues compared to BC, i-PRF and HA when used in REPs for necrotic mature teeth in dogs. Periapical inflammation was significantly less in HA and P-ECM groups compared to blood-derived scaffolds. CONCLUSION Bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel scaffold retained its bioactive properties and demonstrated a promising potential in regenerative endodontic procedures compared to conventional blood-derived scaffolds.
Collapse
Affiliation(s)
- Hisham Elnawam
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Faculty of Dentistry, Champollion street, Azarita, Alexandria, Egypt.
| | - Abdelrahman Thabet
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amr Abdallah
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Bakhrushina EO, Afonina AM, Mikhel IB, Demina NB, Plakhotnaya ON, Belyatskaya AV, Krasnyuk II, Krasnyuk II. Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers (Basel) 2024; 16:2943. [PMID: 39458771 PMCID: PMC11510731 DOI: 10.3390/polym16202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, stimulus-sensitive drug delivery systems have been developed for parenteral administration as a depot system. In situ systems incorporate smart polymers that undergo a phase transition at the site of administration. All parenteral and ocular dosage forms must meet sterility requirements. Careful selection of the sterilization method is required for any type of stimuli-sensitive system. Current sterilization methods are capable of altering the conformation of polymers or APIs to a certain extent, ultimately causing the loss of pharmacological and technological properties of the drug. Unfortunately, the issues of risk assessment and resolution regarding the sterilization of stimuli-sensitive systems, along with ways to stabilize such compositions, are insufficiently described in the scientific literature to date. This review provides recommendations and approaches, formulated on the basis of published experimental data, that allow the effective management of risks arising during the development of in situ systems requiring sterility.
Collapse
Affiliation(s)
| | | | - Iosif B. Mikhel
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (A.M.A.); (N.B.D.); (O.N.P.); (A.V.B.); (I.I.K.J.); (I.I.K.)
| | | | | | | | | | | |
Collapse
|
7
|
de Ávila Gonçalves S, da Fonsêca JHL, d'Ávila MA, Vieira RP. Synthesis of thermally and pH-responsive poly(2-(dimethylamino)ethyl methacrylate)-based hydrogel reinforced with cellulose nanocrystals for sustained drug release. Int J Biol Macromol 2024; 277:134168. [PMID: 39067729 DOI: 10.1016/j.ijbiomac.2024.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Hydrogels are widely employed in biomedical applications due to their high swelling potential, tailored mechanical properties, biocompatibility, and ability to incorporate drugs to modify their release behavior. This study explored the synthesis of dual stimuli-responsive composite hydrogels by combining poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) with 4, 8, and 12 % (w/w) of cellulose nanocrystals (CNC) through in-situ free-radical polymerization, modifying their properties for topical anti-inflammatory release. Although PDMAEMA-based hydrogels have been known for their responsiveness to pH and temperature stimuli, which are useful for modulating the release profile of drugs, their use as a matrix for anti-inflammatory topical applications remains unexplored. Thus, a comprehensive analysis of CNC concentration's impact on PDMAEMA-based hydrogel structure and physicochemical properties is provided. The incorporation of ibuprofen as an anti-inflammatory model was assessed, providing insights into the potential of these composite hydrogels for sustained drug delivery applications. Overall, the hydrogels exhibited homogenous CNC dispersion, with gel fraction higher than 70 % and ibuprofen load higher than 90 %. The rise in CNC concentration led to an increase hydrogel stiffness. Finally, the CNC incorporation also modified the ibuprofen release to a more sustained profile, following the Peppas-Sahlin model, which may be attractive for developing pharmaceutical devices for different therapeutical scenarios.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Jéssica Heline Lopes da Fonsêca
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Koo TH, Lee JK, Grogan SP, Ra HJ, D’Lima DD. Biocompatibility Study of Purified and Low-Temperature-Sterilized Injectable Collagen for Soft Tissue Repair: Intramuscular Implantation in Rats. Gels 2024; 10:619. [PMID: 39451272 PMCID: PMC11508103 DOI: 10.3390/gels10100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but safety concerns persist due to challenges in sterilization and the risk of biological contamination. Traditional methods of sterilization (heat and irradiation) can denature collagen. This study addresses these issues by introducing a novel technique: the double filtration and low-temperature steam sterilization of a collagen gel. In vitro tests documented the sterility and confirmed that the collagen did not show cytotoxicity, degradation, integrity, and viscosity characteristics changes after the processing and sterilization. The collagen gel induced new collagen expression and the proliferation of human dermal fibroblasts when the cells were cultured with the collagen gel. An in vivo study found no adverse effects in rats or significant lesions at the implantation site over 13 weeks. These results suggest that this novel method to process collagen gels is a safe and effective skin booster. Advanced processing methods are likely to mitigate the safety risks associated with injectable collagen products, though further research is needed to validate their biological effectiveness and clinical benefits.
Collapse
Affiliation(s)
- Tae-Hoon Koo
- D.med LLC, 111, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Gyeonggi-do, Republic of Korea;
| | - Jason K. Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Ho Jong Ra
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| |
Collapse
|
9
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2024:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
10
|
Bento CSA, Leite Lopes D, Flora Villarreal C, Empadinhas N, Alarico S, de Sousa HC, Braga MEM. Integrated processes (HPSE+scCO 2) to prepare sterilized alginate-gelatine-based aerogel. Int J Pharm 2024; 662:124546. [PMID: 39097154 DOI: 10.1016/j.ijpharm.2024.124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Biopolymers application in biomedical areas has been limited due to the physicochemical degradation that occurs using conventional processing/sterilization methods (e.g., steam heat, γ-radiation, ethylene oxide). Aiming to avoid/minimize degradation and preserve their properties, supercritical carbon dioxide (scCO2) has been proposed as an alternative sterilization method for such materials. ScCO2 can simultaneously be used as a drying method to produce aerogels (i) and sterilize them (ii). However, a solvent exchange is required to prepare the alcogel from hydrogel, achievable through high-pressure solvent exchange (HPSE) (iii). This study integrated three processes: HPSE, scCO2 drying, and sterilization to prepare alginate-gelatine sterilized aerogels. Two scCO2 sterilization methods were tested. Results showed that sterilization did not compromise the aerogels' chemical, thermal and swelling properties. Conversely, Young's Modulus increased, and BET surface area decreased, due to the structural changes caused by the fast pressurization/depressurization rates applied during sterilization. Regarding the sterilization efficiency, results showed a reduction in contamination throughout the process, achieving a SAL of 10-4. The sterilized aerogels were non-cytotoxic in vitro and showed improved wound-healing properties. The innovative integrated process produced decontaminated/sterile and ready-to-use aerogels reducing process time by 75 %, from 2 days up to 12 h without compromising the aerogel's properties.
Collapse
Affiliation(s)
- Cristiana S A Bento
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal
| | - Dhara Leite Lopes
- Federal University of Bahia, School of Pharmacy, 40.170-115, Salvador, BA, Brazil
| | | | - Nuno Empadinhas
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Faculty of Medicine, Polo I, 1st Floor 3004-504, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Casa Costa Alemão - Pólo II, 3030-789, Coimbra, Portugal
| | - Susana Alarico
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Faculty of Medicine, Polo I, 1st Floor 3004-504, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Casa Costa Alemão - Pólo II, 3030-789, Coimbra, Portugal.
| | - Hermínio C de Sousa
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal
| | - Mara E M Braga
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal.
| |
Collapse
|
11
|
Romischke J, Eickner T, Grabow N, Kragl U, Oschatz S. 3-Sulfopropyl acrylate potassium-based polyelectrolyte hydrogels: sterilizable synthetic material for biomedical application. RSC Adv 2024; 14:28881-28888. [PMID: 39263439 PMCID: PMC11388722 DOI: 10.1039/d4ra03901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Hydrogels are extensively used in the biomedical field due to their highly valued properties, biocompatibility and antimicrobial activity and resistance to rheological stress. However, determining an efficient sterilization protocol that does not compromise the functional properties of hydrogels is one of the challenges researchers face when developing a material for a medical application. In this work, conventional sterilization methods (steam-, radiation- and gas sterilization) were investigated regarding the influence on the degree of swelling, mechanical performance and chemical effects on the poly 3-sulfopropyl acrylate potassium (pAESO3) hydrogel, which is a promising representative for biomedical engineering applications. In summary, no significant changes in the gel properties were observed after sterilization, showing the potential of the selected hydrogel for biomedical applications.
Collapse
Affiliation(s)
- Johanna Romischke
- University of Rostock, Institute of Chemistry, Department of Industrial and Analytical Chemistry Albert-Einstein-Str. 3A Rostock 18059 Germany
| | - Thomas Eickner
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
| | - Niels Grabow
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
- Department Life, Light & Matter (LLM), University of Rostock Rostock Germany
| | - Udo Kragl
- University of Rostock, Institute of Chemistry, Department of Industrial and Analytical Chemistry Albert-Einstein-Str. 3A Rostock 18059 Germany
- Department Life, Light & Matter (LLM), University of Rostock Rostock Germany
| | - Stefan Oschatz
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
| |
Collapse
|
12
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024:10.1007/s11916-024-01296-6. [PMID: 38985414 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
13
|
Di Muzio L, Zara S, Cataldi A, Sergi C, Carriero VC, Bigi B, Carradori S, Tirillò J, Petralito S, Casadei MA, Paolicelli P. Impact of Composition and Autoclave Sterilization on the Mechanical and Biological Properties of ECM-Mimicking Cryogels. Polymers (Basel) 2024; 16:1939. [PMID: 39000793 PMCID: PMC11244042 DOI: 10.3390/polym16131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Cryogels represent a valid strategy as scaffolds for tissue engineering. In order to adequately support adhesion and proliferation of anchorage-dependent cells, different polymers need to be combined within the same scaffold trying to mimic the complex features of a natural extracellular matrix (ECM). For this reason, in this work, gelatin (Gel) and chondroitin sulfate (CS), both functionalized with methacrylic groups to produce CSMA and GelMA derivatives, were selected to prepare cryogel networks. Both homopolymer and heteropolymer cryogels were produced, via radical crosslinking reactions carried out at -12 °C for 2 h. All the scaffolds were characterized for their mechanical, swelling and morphological properties, before and after autoclave sterilization. Moreover, they were evaluated for their biocompatibility and ability to support the adhesion of human gingival fibroblasts and tenocytes. GelMA-based homopolymer networks better withstood the autoclave sterilization process, compared to CSMA cryogels. Indeed, GelMA cryogels showed a decrease in stiffness of approximately 30%, whereas CSMA cryogels of approximately 80%. When GelMA and CSMA were blended in the same network, an intermediate outcome was observed. However, the hybrid scaffolds showed a general worsening of the biological performance. Indeed, despite their ability to withstand autoclave sterilization with limited modification of the mechanical and morphological properties, the hybrid cryogels exhibited poor cell adhesion and high LDH leakage. Therefore, not only do network components need to be properly selected, but also their combination and ability to withstand effective sterilization process should be carefully evaluated for the development of efficient scaffolds designed for tissue engineering purposes.
Collapse
Affiliation(s)
- Laura Di Muzio
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Sergi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, 00184 Rome, Italy
| | - Vito Cosimo Carriero
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Barbara Bigi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Tirillò
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, 00184 Rome, Italy
| | - Stefania Petralito
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Chimene D, Queener KMK, Ko BS, McShane M, Daniele M. Insertable Biosensors: Combining Implanted Sensing Materials with Wearable Monitors. Annu Rev Biomed Eng 2024; 26:197-221. [PMID: 38346276 DOI: 10.1146/annurev-bioeng-110222-101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Insertable biosensor systems are medical diagnostic devices with two primary components: an implantable biosensor within the body and a wearable monitor that can remotely interrogate the biosensor from outside the body. Because the biosensor does not require a physical connection to the electronic monitor, insertable biosensor systems promise improved patient comfort, reduced inflammation and infection risk, and extended operational lifetimes relative to established percutaneous biosensor systems. However, the lack of physical connection also presents technical challenges that have necessitated new innovations in developing sensing chemistries, transduction methods, and communication modalities. In this review, we discuss the key developments that have made insertables a promising option for longitudinal biometric monitoring and highlight the essential needs and existing development challenges to realizing the next generation of insertables for extended-use diagnostic and prognostic devices.
Collapse
Affiliation(s)
- David Chimene
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Kirstie M K Queener
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Brian S Ko
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Mike McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA;
| |
Collapse
|
15
|
Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv Pharmacol Pharm Sci 2024; 2024:3869387. [PMID: 38831895 PMCID: PMC11147673 DOI: 10.1155/2024/3869387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Batool Al-Ghzawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima BaniAmer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
16
|
Marques AC, Costa PC, Velho S, Amaral MH. Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles. Gels 2024; 10:307. [PMID: 38786224 PMCID: PMC11121564 DOI: 10.3390/gels10050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle-hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol-gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe-needle systems with acceptable force (2.2-13.4 N) and work (49.5-317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1-2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Marto-Costa C, Toffoletto N, Salema-Oom M, Antunes AMM, Pinto CA, Saraiva JA, Silva-Herdade AS, Alvarez-Lorenzo C, Serro AP. Improved triamcinolone acetonide-eluting contact lenses based on cyclodextrins and high hydrostatic pressure assisted complexation. Carbohydr Polym 2024; 331:121880. [PMID: 38388063 DOI: 10.1016/j.carbpol.2024.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Contact lenses (CLs) constitute an advantageous platform for the topical release of corticosteroids due to their prolonged contact with the eye. However, the lipophilic nature of corticosteroids hampers CLs' ability to release therapeutic amounts. Two approaches to improve loading and release of triamcinolone acetonide (TA) from poly(2-hydroxyethyl methacrylate)-based hydrogels were investigated: adding 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to the monomers solution before polymerization (HEMA/i-CD) and an hydrogels' post-treatment with HP-β-CD (HEMA/p-CD). The effect of HP-β-CD and sterilization by high hydrostatic pressure (HHP) on the hydrogel properties (water content, oxygen and ion permeability, roughness, transmittance, and stiffness) was evaluated. The HEMA/i-CD hydrogels had stronger affinity for TA, sustaining its release for one day. HHP sterilization promoted the formation of cyclodextrin-TA complexes within the hydrogels, improving their drug-loading capacity »60 %. Cytotoxicity and irritability tests confirmed the safety of the therapeutic CLs. TA released from the hydrogels permeated through ocular tissues ex vivo and showed anti-inflammatory activity. Finally, a previously validated mathematical model was used to estimate the ability of the TA-loaded CLs to deliver therapeutic drug concentrations to the posterior part of the eye. Overall, HP-β-CD-containing CLs are promising candidates for the topical ocular application of TA as an alternative delivery system to intraocular injections.
Collapse
Affiliation(s)
- Carolina Marto-Costa
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Nadia Toffoletto
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S Silva-Herdade
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina - University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| |
Collapse
|
18
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels 2024; 10:158. [PMID: 38534576 DOI: 10.3390/gels10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Afewerki S, Edlund U. Unlocking the Power of Multicatalytic Synergistic Transformation: toward Environmentally Adaptable Organohydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306657. [PMID: 37824080 DOI: 10.1002/adma.202306657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A sustainable and efficient multicatalytic chemical transformation approach is devised for the development of all-biobased environmentally adaptable polymers and gels with multifunctional properties. The catalytic system, utilizing Lignin aluminum nanoparticles (AlNPs)-aluminum ions (Al3+ ), synergistically combines multiple catalytic cycles to create robust, mechanically stable, and versatile organohydrogels. Single catalytic cycles alone fail to achieve desired results, highlighting the importance of cooperatively combining different cycles for successful outcomes. The transformation involves free radical crosslinking, reversible quinone-catechol reactions, and an autocatalytic mechanism, resulting in a dual crosslinking strategy that incorporates both covalent and ionic crosslinking. This approach creates a dynamic gel system with combined energy dissipation and storage mechanisms. The engineered organohydrogels demonstrate vital multifunctionalities such as good thermal stability, self-healing, and adhesive properties, flame-retardancy, mechanical resilience and durability, conductivity, viscoelastic properties, environmental adaptability, and resistance to extreme conditions such as freezing and drying. The developed catalytic technology and resulting gels hold significant potential for applications in flexible electronics, energy storage, actuators, and sensors.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| |
Collapse
|
21
|
Bento CSA, Carrelo H, Alarico S, Empadinhas N, de Sousa HC, Teresa Cidade M, Braga MEM. Effect of ScCO 2 on the decontamination of PECs-based cryogels: A comparison with H 2O steam and H 2O 2 nebulization methods. Int J Pharm 2023; 646:123451. [PMID: 37774759 DOI: 10.1016/j.ijpharm.2023.123451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Biopolymers present ideal properties to be used in wound dressing solutions. By mixing two oppositely charged macromolecules it is possible to form polyelectrolyte complex (PEC) based cryogels using lyophilization. Their application in the biomedical field is limited due to their sterilization requirements, as conventional methods compromise their physicochemical properties. ScCO2 appears as an alternative method for decontamination. This work assessed several cryogel PEC formulations, chitosan-pectin, gelatine-xanthan gum and alginate-gelatine. PEC formation was confirmed by FTIR and rheological analysis. While steam sterilization compromised cryogels' chemical and morphological properties, decontamination with scCO2 proved to be a promising method for decontamination of PEC-cryogels, because, similarly to what is observed with hydrogen peroxide, it does not compromise their physicochemical properties.
Collapse
Affiliation(s)
- Cristiana S A Bento
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Henrique Carrelo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Hermínio C de Sousa
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cidade
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Mara E M Braga
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| |
Collapse
|
22
|
Yakout BK, Kamel FR, Khadr MAEAA, Heikal LAH, El-Kimary GI. Efficacy of hyaluronic acid gel and photobiomodulation therapy on wound healing after surgical gingivectomy: a randomized controlled clinical trial. BMC Oral Health 2023; 23:805. [PMID: 37891549 PMCID: PMC10612174 DOI: 10.1186/s12903-023-03519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Surgical gingivectomy can be considered the gold standard treatment for gingival enlargement. The healing of wound site after gingivectomy occurs slowly by secondary intention. To accelerate the wound healing process, several studies have been conducted evaluating the effect of various treatment modalities. Photobiomodulation therapy (PBMT) was proposed to provide minimally invasive and painless treatment as well as to decrease discomfort of the patient following the surgical process. Another factor that is expected to improve the healing after surgery is topical application of chemotherapeutic agents such as Hyaluronic acid (HA). This study aims to assess the effect of topically applied HA gel after PBMT on the healing of wound site after surgical gingivectomy. METHODS This randomized controlled clinical trial included twenty-six surgical gingivectomy wound sites, equally divided into two groups, Group-I (test group): the surgical sites after gingivectomy were irradiated with a diode laser (980 nm, 0.2 W) then covered by 2% HA gel loaded in a special custom-made soft transparent tissue guard appliance for each patient. Group II (control group): the surgical sites were irradiated with a diode laser (980 nm, 0.2 W) only. Wound healing was assessed subjectively by Landry healing index on the 3rd, 7th, 14th and 21st days after surgery, and pain perception was assessed by the patients using visual analog scale (VAS) throughout the 21 days of the follow up period. Comparisons between the two study groups were performed using Mann-Whitney U test, while comparisons between different time points were performed using Friedman test. Significance was inferred at p value < 0.05. RESULTS By the end of the follow-up period, surgical sites of the test group showed excellent healing compared to the control group. There were no significant differences in VAS scores between both groups (p > 0.05). CONCLUSIONS Application of 2% HA gel as an adjunctive to PBMT was found to have significant clinical effects and higher power of repair among test group when compared to that achieved by PBMT alone in control group. TRIAL REGISTRATION This study was retrospectively registered on ClinicalTrials.gov and first posted on 28th of March 2023 with an identifier number: NCT05787912.
Collapse
Affiliation(s)
- Basma Khalil Yakout
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt.
| | - Fatma Ramzy Kamel
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt
| | - Maha Abd El-Aziz Abou Khadr
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt
| | | | - Gillan Ibrahim El-Kimary
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt
| |
Collapse
|
23
|
Duan K, Mehwish N, Xu M, Zhu H, Hu J, Lin M, Yu L, Lee BH. Autoclavable Albumin-Based Cryogels with Uncompromising Properties. Gels 2023; 9:712. [PMID: 37754393 PMCID: PMC10530076 DOI: 10.3390/gels9090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The development of autoclavable hydrogels has been driven by the need for materials that can withstand the rigors of sterilization without compromising their properties or functionality. Many conventional hydrogels cannot withstand autoclave treatment owing to the breakdown of their composition or structure under the high-temperature and high-pressure environment of autoclaving. Here, the effect of autoclaving on the physical, mechanical, and biological properties of bovine serum albumin methacryloyl (BSAMA) cryogels at three protein concentrations (3, 5, and 10%) was extensively studied. We found that BSAMA cryogels at three concentrations remained little changed after autoclaving in terms of gross shape, pore structure, and protein secondary structure. Young's modulus of autoclaved BSAMA cryogels (BSAMAA) at low concentrations (3 and 5%) was similar to that of BSAMA cryogels, whereas 10% BSAMAA exhibited a higher Young's modulus value, compared with 10% BSAMA. Interestingly, BSAMAA cryogels prolonged degradation. Importantly, cell viability, drug release, and hemolytic behaviors were found to be similar among the pre- and post-autoclaved cryogels. Above all, autoclaving proved to be more effective in sterilizing BSAMA cryogels from bacteria contamination than UV and ethanol treatments. Thus, autoclavable BSAMA cryogels with uncompromising properties would be useful for biomedical applications.
Collapse
Affiliation(s)
- Kairui Duan
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Nabila Mehwish
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Hu Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Lu Yu
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| | - Bae Hoon Lee
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| |
Collapse
|
24
|
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng 2023; 7:031506. [PMID: 37781727 PMCID: PMC10539032 DOI: 10.1063/5.0152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Implantable sensors have revolutionized the way we monitor biophysical and biochemical parameters by enabling real-time closed-loop intervention or therapy. These technologies align with the new era of healthcare known as healthcare 5.0, which encompasses smart disease control and detection, virtual care, intelligent health management, smart monitoring, and decision-making. This review explores the diverse biomedical applications of implantable temperature, mechanical, electrophysiological, optical, and electrochemical sensors. We delve into the engineering principles that serve as the foundation for their development. We also address the challenges faced by researchers and designers in bridging the gap between implantable sensor research and their clinical adoption by emphasizing the importance of careful consideration of clinical requirements and engineering challenges. We highlight the need for future research to explore issues such as long-term performance, biocompatibility, and power sources, as well as the potential for implantable sensors to transform healthcare across multiple disciplines. It is evident that implantable sensors have immense potential in the field of medical technology. However, the gap between research and clinical adoption remains wide, and there are still major obstacles to overcome before they can become a widely adopted part of medical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben M. Maoz
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
25
|
Marques AC, Costa PC, Velho S, Amaral MH. Injectable Poloxamer Hydrogels for Local Cancer Therapy. Gels 2023; 9:593. [PMID: 37504472 PMCID: PMC10379388 DOI: 10.3390/gels9070593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
27
|
Heinemann C, Buchner F, Lee PS, Bernhardt A, Kruppke B, Wiesmann HP, Hintze V. Effects of Gamma Irradiation and Supercritical Carbon Dioxide Sterilization on Methacrylated Gelatin/Hyaluronan Hydrogels. J Funct Biomater 2023; 14:317. [PMID: 37367281 DOI: 10.3390/jfb14060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biopolymer hydrogels have become an important group of biomaterials in experimental and clinical use. However, unlike metallic or mineral materials, they are quite sensitive to sterilization. The aim of this study was to compare the effects of gamma irradiation and supercritical carbon dioxide (scCO2) treatment on the physicochemical properties of different hyaluronan (HA)- and/or gelatin (GEL)-based hydrogels and the cellular response of human bone marrow-derived mesenchymal stem cells (hBMSC). Hydrogels were photo-polymerized from methacrylated HA, methacrylated GEL, or a mixture of GEL/HA. The composition and sterilization methods altered the dissolution behavior of the biopolymeric hydrogels. There were no significant differences in methacrylated GEL release but increased methacrylated HA degradation of gamma-irradiated samples. Pore size/form remained unchanged, while gamma irradiation decreased the elastic modulus from about 29 kPa to 19 kPa compared to aseptic samples. HBMSC proliferated and increased alkaline phosphatase activity (ALP) particularly in aseptic and gamma-irradiated methacrylated GEL/HA hydrogels alike, while scCO2 treatment had a negative effect on both proliferation and osteogenic differentiation. Thus, gamma-irradiated methacrylated GEL/HA hydrogels are a promising base for multi-component bone substitute materials.
Collapse
Affiliation(s)
- Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Frauke Buchner
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Poh Soo Lee
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| |
Collapse
|
28
|
Ferreira I, Marques AC, Costa PC, Amaral MH. Effects of Steam Sterilization on the Properties of Stimuli-Responsive Polymer-Based Hydrogels. Gels 2023; 9:385. [PMID: 37232977 PMCID: PMC10217074 DOI: 10.3390/gels9050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels based on stimuli-responsive polymers can change their characteristics in response to small variations in environmental conditions, such as temperature, pH, and ionic strength, among others. In the case of some routes of administration, such as ophthalmic and parenteral, the formulations must meet specific requirements, namely sterility. Therefore, it is essential to study the effect of the sterilization method on the integrity of smart gel systems. Thus, this work aimed to study the effect of steam sterilization (121 °C, 15 min) on the properties of hydrogels based on the following stimuli-responsive polymers: Carbopol® 940, Pluronic® F-127, and sodium alginate. The properties of the prepared hydrogels-pH, texture, rheological behavior, and sol-gel phase transition-were evaluated to compare and identify the differences between sterilized and non-sterilized hydrogels. The influence of steam sterilization on physicochemical stability was also investigated by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The results of this study showed that the Carbopol® 940 hydrogel was the one that suffered fewer changes in the studied properties after sterilization. By contrast, sterilization was found to cause slight changes in the Pluronic® F-127 hydrogel regarding gelation temperature/time, as well as a considerable decrease in the viscosity of the sodium alginate hydrogel. There were no considerable differences in the chemical and physical characteristics of the hydrogels after steam sterilization. It is possible to conclude that steam sterilization is suitable for Carbopol® 940 hydrogels. Contrarily, this technique does not seem adequate for the sterilization of alginate or Pluronic® F-127 hydrogels, as it could considerably alter their properties.
Collapse
Affiliation(s)
- Inês Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Camila Marques
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso Costa
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Ramaraju H, McAtee AM, Akman RE, Verga AS, Bocks ML, Hollister SJ. Sterilization effects on poly(glycerol dodecanedioate): A biodegradable shape memory elastomer for biomedical applications. J Biomed Mater Res B Appl Biomater 2023; 111:958-970. [PMID: 36479954 PMCID: PMC11548394 DOI: 10.1002/jbm.b.35205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Biodegradable shape memory polymers provide unique regenerative medicine approaches in minimally invasive surgeries. Once heated, thermally responsive shape memory polymer devices can be compressed, programmed to fit within a small profile, delivered in the cold programmed state, and expanded when heated to body temperature. We have previously developed a biodegradable shape memory elastomer (SME), poly(glycerol dodecanedioate) (PGD), with transition temperatures near 37°C exhibiting nonlinear elastic properties like numerous soft tissues. Using SMEs in the clinic requires disinfection and sterilization methods that conserve physiochemical, thermomechanical, and shape recovery properties. We evaluated disinfection protocols using 70% ethanol and UV254 nm for research applications and ethylene oxide (EtO) gas sterilization for clinical applications. Samples disinfected with ethanol for 0.5 and 1 min showed no changes in physiochemical material properties, but after 15 min showed slower recovery rates than controls (p < .05). EtO sterilization at 54.4°C decreased transition temperatures and shape recovery rate compared to EtO sterilization at 37.8°C (p < .01) and controls (p < .05). Aging samples for 9 months in a vacuum desiccator significantly reduced shape recovery, and the recovery rate in EtO sterilized samples compared to controls (p < .001). Cytotoxicity testing (ISO-10993.5C:2012) revealed media extractions from EtO sterilized samples, sterilized at 37.8°C, and high-density polyethylene negative control samples exhibit lower cytotoxicity (IC50) than Ethanol 1 min, UV 2 h, and EtO 54.4°C. Cell viability of NIH3T3 fibroblasts on sterilized surfaces was equivalent on EtO 37.7°C, EtO 54.4°C and Ethanol sterilized substrates. Finally, chromogenic bacterial endotoxin testing showed endotoxin levels were below the FDA prescribed levels for devices contacting blood and lymphatic tissues for ethanol 1 min, UV 120 min, EtO 37.7°C, EtO 54.4°C. These findings outline various disinfection and sterilization processes for research and pre-clinical application and provide a pathway for developing custom sterilization cycles for the translation of biomedical devices utilizing PGD shape memory polymers.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta GA
| | - Annabel M. McAtee
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta GA
| | - Ryan E. Akman
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta GA
| | - Adam S. Verga
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta GA
| | - Martin L. Bocks
- UH Rainbow Babies & Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland OH
| | - Scott J. Hollister
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta GA
| |
Collapse
|
30
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
31
|
S A Bento C, Gaspar MC, Coimbra P, de Sousa HC, E M Braga M. A review of conventional and emerging technologies for hydrogels sterilization. Int J Pharm 2023; 634:122671. [PMID: 36736965 DOI: 10.1016/j.ijpharm.2023.122671] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels' polymeric materials, types of networks, and main biomedical applications are summarily described.
Collapse
Affiliation(s)
- Cristiana S A Bento
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marisa C Gaspar
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal; Center for Innovative Care and Health Technology (ciTechCare), Polytechnic of Leiria, 2410-541 Leiria, Portugal
| | - Patrícia Coimbra
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Hermínio C de Sousa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Mara E M Braga
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
32
|
Karami P, Stampoultzis T, Guo Y, Pioletti DP. A guide to preclinical evaluation of hydrogel-based devices for treatment of cartilage lesions. Acta Biomater 2023; 158:12-31. [PMID: 36638938 DOI: 10.1016/j.actbio.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal system has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of articular cartilage are considered as significant risk materials by regulatory bodies and therefore proof of efficacy and safety prior to clinical testing represents a critical phase of the multidisciplinary effort to bridge the gap between bench and bedside. To date, review articles have thoroughly covered different scientific facets of cartilage engineering paradigm, but surprisingly, little attention has been given to the preclinical considerations revolving around the validation of a biomaterial implant. Considering hydrogel-based cartilage products as an example, the present review endeavors to provide a summary of the critical prerequisites that such devices should meet for cartilage repair, for successful implantation and subsequent preclinical validation prior to clinical trials. Considerations pertaining to the choice of appropriate animal model, characterization techniques for the quantitative and qualitative outcome measures, as well as concerns with respect to GLP practices are also extensively discussed. This article is not meant to provide a systematic review, but rather to introduce a device validation-based roadmap to the academic investigator, in anticipation of future healthcare commercialization. STATEMENT OF SIGNIFICANCE: There are significant challenges around translation of in vitro cartilage repair strategies to approved therapies. New biomaterial-based devices must undergo exhaustive investigations to ensure their safety and efficacy prior to clinical trials. These considerations are required to be applied from early developmental stages. Although there are numerous research works on cartilage devices and their in vivo evaluations, little attention has been given into the preclinical pathway and the corresponding approval processes. With a focus on hydrogel devices to concretely illustrate the preclinical path, this review paper intends to highlight the various considerations regarding the preclinical validation of hydrogel devices for cartilage repair, from regulatory considerations, to implantation strategies, device performance aspects and characterizations.
Collapse
Affiliation(s)
- Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Theofanis Stampoultzis
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
33
|
Li R, Zhao Y, Zheng Z, Liu Y, Song S, Song L, Ren J, Dong J, Wang P. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv 2023; 13:7153-7167. [PMID: 36875875 PMCID: PMC9982714 DOI: 10.1039/d2ra07037e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
In situ bioprinting provides a reliable solution to the problem of in vitro tissue culture and vascularization by printing tissue directly at the site of injury or defect and maturing the printed tissue using the natural cell microenvironment in vivo. As an emerging field, in situ bioprinting is based on computer-assisted scanning results of the defect site and is able to print cells directly at this site with biomaterials, bioactive factors, and other materials without the need to transfer prefabricated grafts as with traditional in vitro 3D bioprinting methods, and the resulting grafts can accurately adapt to the target defect site. However, one of the important reasons hindering the development of in situ bioprinting is the absence of suitable bioinks. In this review, we will summarize bioinks developed in recent years that can adapt to in situ printing scenarios at the defect site, considering three aspects: the in situ design strategy of bioink, the selection of commonly used biomaterials, and the application of bioprinting to different treatment scenarios.
Collapse
Affiliation(s)
- Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yeying Zhao
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yangyang Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Lei Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Jianan Ren
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Department of General Surgery, The Affiliated General Hospital of Nanjing Military Region 305 Zhongshan East Road Nanjing 210016 China
| | - Jing Dong
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Special Medicine Department, Medical College, Qingdao University Qingdao 266071 China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| |
Collapse
|
34
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
35
|
Wang Z, Yuan R, Li P, Huang Y, Zhao W, Zhao C. Cell-inspired selective potassium removal towards hyperkalemia therapy by microphase-isolated core-shell microspheres. Acta Biomater 2023; 157:511-523. [PMID: 36481502 DOI: 10.1016/j.actbio.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hyperkalemia is a common metabolic problem in patients with chronic kidney disease. Although oral medications and hemodialysis are clinically applied for lowering serum potassium, the intrinsic limitations encourage alternative therapy in the trend of adsorbent-based miniaturized blood purification devices. Cells serve as the biological K+ storage units that accumulate K+ through multiple mechanisms. Inspired by cells, our strategy aims at favorable permeation and enrichment of K+ in the microsphere. We incorporate cation-affinitive groups into core-shell structures with submicron-sized phase separation. These nano-spaced side-groups cooperate to form interlinked clusters, where crown ethers with Angstrom-scale ring for size-matched complexation, while ionic sulfonic acid groups for hydrophilicity and charge-buffering. The unique structure with such non-covalent interactions facilitates K+ for permeation across the shell and binding to the core while also ensuring mechanical strength and anti-swelling durability in biofluids. The microspheres exhibit high selectivity ratios of K+ (SK/Na, SK/Ca, SK/Mg up to 9.8, 21.6, and 17.7). As column adsorbents for hemoperfusion simulation, they effectively lower elevated K+ levels to the normal range (clearance rates up to 44.4%/45.3% for hyperkalemic human serum/blood). Blood compatibility tests show low protein adsorption, preferable hemocyte compatibility, and anticoagulation property in vitro. This promising strategy has clinical potential for hyperkalemia in high-risk patients. STATEMENT OF SIGNIFICANCE: Hyperkalemia (serum potassium >5 mmol/L) is a common complication in chronic renal failure patients. The limitations of existing treatments prompt a shift to wearable artificial kidney technology for clinical convenience and efficacy. Existing treatments have limitations, and we turn to adsorbent-based miniaturized blood purification devices in the prospect of wearable artificial kidney technology. There exists a lack of ion-specific adsorbents applied in extracorporeal circuits to redress electrolyte imbalances like hyperkalemia. Inspired by cells, we aim at the favorable permeation and enrichment of K+ by microspheres. The microspheres have a microphase-isolated core-shell structure, whose nano-spaced groups form cation-affinitive clusters. Selective K+ removal and blood compatibility are achieved. We expect this strategy to enlighten alternative hyperkalemia therapy for these high-risk patients.
Collapse
Affiliation(s)
- Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peiyang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Med-X Center for Materials, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
36
|
Garcia LV, Silva D, Costa MM, Armés H, Salema-Oom M, Saramago B, Serro AP. Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics 2023; 15:pharmaceutics15020334. [PMID: 36839656 PMCID: PMC9967843 DOI: 10.3390/pharmaceutics15020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Chronic wound treatment accounts for a substantial percentage of the medical expenses worldwide. Improving and developing novel wound care systems can potentially help to handle this problem. Wound dressings loaded with antiseptics may be an important tool for wound care, as they inhibit bacterial growth at the wound site. The goal of the present work was to investigate the potential of using casein hydrogel dressings loaded with two antiseptic drugs, Octiset® or polyhexanide, to treat chronic wounds. Casein-based hydrogels are inexpensive and have several properties that make them suitable for biomedical applications. Two types of casein were used: casein sodium salt and acid casein, with the formulations being labelled CS and C, respectively. The hydrogels were characterised with respect to their physical properties (swelling capacity, water content, morphology, mechanical resistance, and stability), before and after sterilisation, and they showed adequate values for the intended application. The hydrogels of both formulations were able to sustain controlled drug-release for, at least, 48 h. They were demonstrated to be non-irritant, highly haemocompatible, and non-cytotoxic, and revealed good antimicrobial properties against Staphylococcus aureus and Pseudomonas aeruginosa. Steam-heat sterilisation did not compromise the material's properties. The in vivo performance of C hydrogel loaded with Octiset® was evaluated in a case study with a dog. The efficient recovery of the wounds confirms its potential as an alternative for wound treatment. To our knowledge, this is the first time that wound dressings loaded with Octiset®, one of the most efficient drugs for wound treatment, were prepared and tested.
Collapse
Affiliation(s)
- Leonor Vasconcelos Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diana Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (D.S.); (B.S.)
| | - Maria Madalena Costa
- Hospital Veterinário de S. Bento, Rua de S. Bento, 358-A, 1200-822 Lisboa, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona, Campo Grande, 376, 1749-024 Lisboa, Portugal
| | - Henrique Armés
- Hospital Veterinário de S. Bento, Rua de S. Bento, 358-A, 1200-822 Lisboa, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona, Campo Grande, 376, 1749-024 Lisboa, Portugal
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Benilde Saramago
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (D.S.); (B.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| |
Collapse
|
37
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
38
|
Şener Raman T, Kuehnert M, Daikos O, Scherzer T, Krömmelbein C, Mayr SG, Abel B, Schulze A. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation. Front Chem 2023; 10:1094981. [PMID: 36700077 PMCID: PMC9868307 DOI: 10.3389/fchem.2022.1094981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
Collapse
Affiliation(s)
| | | | - Olesya Daikos
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Tom Scherzer
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | | | - Stefan G. Mayr
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Institute of Chemical Technology of the University Leipzig, Leipzig, Germany
| | - Agnes Schulze
- Institute of Surface Engineering (IOM), Leipzig, Germany,*Correspondence: Agnes Schulze,
| |
Collapse
|
39
|
Kim HS, Kumbar SG, Nukavarapu SP. Amorphous silica fiber matrix biomaterials: An analysis of material synthesis and characterization for tissue engineering. Bioact Mater 2023; 19:155-166. [PMID: 35441118 PMCID: PMC9006749 DOI: 10.1016/j.bioactmat.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Silica biomaterials including Bioglass offer great biocompatibility and bioactivity but fail to provide pore and degradation features needed for tissue engineering. Herein we report on the synthesis and characterization of novel amorphous silica fiber matrices to overcome these limitations. Amorphous silica fibers were fused by sintering to produce porous matrices. The effects of sacrificial polymer additives such as polyvinyl alcohol (PVA) and cellulose fibers (CF) on the sintering process were also studied. The resulting matrices formed between sintering temperatures of 1,350–1,550 °C retained their fiber structures. The matrices presented pores in the range of 50–200 μm while higher sintering temperatures resulted in increased pore diameter. PVA addition to silica significantly reduced the pore diameter and porosity compared with silica matrices with or without the addition of CF. The PVA additive morphologically appeared to fuse the silica fibers to a greater extent and resulted in significantly higher compressive modulus and strength than the rest of the matrices synthesized. These matrices lost roughly 30% of their original mass in an in vitro degradation study over 40 weeks. All matrices absorbed 500 wt% of water and did not change in their overall morphology, size, or shape with hydration. These fiber matrices supported human mesenchymal stem cell adhesion, proliferation, and mineralized matrix production. Amorphous silica fiber biomaterials/matrices reported here are biodegradable and porous and closely resemble the native extracellular matrix structure and water absorption capacity. Extending the methodology reported here to alter matrix properties may lead to a variety of tissue engineering, implant, and drug delivery applications.
Collapse
Affiliation(s)
- Hyun S. Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Corresponding author. Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
40
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
Affiliation(s)
- Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy.
| | - Giulio Saroglia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133, Milan, Italy
| | - Elena Rosini
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | | | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
41
|
Schulz A, Germann A, Heinz WR, Engelhard M, Menz H, Rickmann A, Meiser I, Wien S, Wagner S, Januschowski K, Szurman P. Translation of hyaluronic acid–based vitreous substitutes towards current regulations for medical devices. Acta Ophthalmol 2022; 101:422-432. [PMID: 36457299 DOI: 10.1111/aos.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Hydrogel-based vitreous substitutes have the potential to overcome the limitations of current clinically used endotamponades. With the goal of entering clinical trials, the present study aimed to (I) transfer the material synthesis of hyaluronic acid-based hydrogels into a routine, pharmaceutical-appropriate production and (II) evaluate the properties of the vitreous substitutes in terms of the current regulations for medical devices (MDR/ISO standards). METHODS The multistep manufacturing process of the vitreous substitutes, including the modification of hyaluronic acid with glycidyl methacrylate, photocopolymerization with N-vinylpyrrolidone, and successive hydrogel purification, was developed under laboratory conditions, characterized using 1 H-NMR, FT-IR and UV/Vis spectroscopies and HPLC, and transferred towards a pharmaceutical production environment considering GMP standards. The optical and viscoelastic characteristics of the hyaluronic acid-based hydrogels were compared with those of extracted human vitreous and silicone oil. The effect of the hydrogels on the metabolic activity, proliferation and apoptosis of fibroblast (MRC-5, BJ, L929), retinal pigment epithelial (ARPE-19, hiPSC-derived RPE) and photoreceptor cells (661W) was studied as well as their mucosal tolerance via a HET-CAM assay. RESULTS Hyaluronic acid-based hydrogels having a suitable purity, sterility, high transparency (>90%), appropriate refractive index (1.3365) and viscoelasticity (G' > G″) were prepared in a standardized manner under controlled process conditions. The metabolic activity, proliferation and apoptosis of various cell types as well as egg choroid were unaffected by the hyaluronic acid-based vitreous substitutes, demonstrating their biocompatibility. CONCLUSIONS The present study demonstrates the successful transferability of the crucial synthesis steps of hyaluronic acid-based hydrogels into a routine, GMP-compliant production process while achieving the optical and viscoelastic properties, biocompatibility and purity required for their clinical use as vitreous substitutes.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Anja Germann
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | | | | | | | - Annekatrin Rickmann
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sascha Wien
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Kai Januschowski
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| |
Collapse
|
42
|
Acciaretti F, Vesentini S, Cipolla L. Fabrication Strategies Towards Hydrogels for Biomedical Application: Chemical and Mechanical Insights. Chem Asian J 2022; 17:e202200797. [PMID: 36112345 PMCID: PMC9828515 DOI: 10.1002/asia.202200797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Indexed: 01/12/2023]
Abstract
This review aims at giving selected chemical and mechanical insights on design criteria that should be taken into account in hydrogel production for biomedical applications. Particular emphasis will be given to the chemical aspects involved in hydrogel design: macromer chemical composition, cross-linking strategies and chemistry towards "conventional" and smart/stimuli responsive hydrogels. Mechanical properties of hydrogels in view of regenerative medicine applications will also be considered.
Collapse
Affiliation(s)
- Federico Acciaretti
- Department of Biotechnology and BiosciencesUniversity of Milano – BicoccaPiazza della Scienza 220126MilanoItaly
| | - Simone Vesentini
- Department of ElectronicsInformation and BioengineeringPolitecnico di Milano (Italy)Piazza Leonardo da Vinci 3220133MilanoItaly
| | - Laura Cipolla
- Department of Biotechnology and BiosciencesUniversity of Milano – BicoccaPiazza della Scienza 220126MilanoItaly
| |
Collapse
|
43
|
Sekitmen GB, Su E, Gür SD, İde S, Okay O. Sterilization studies of hydrogel nanocomposites designed for possible biomedical applications before in vivo research. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Chu T, Li Q, Dai C, Li X, Kong X, Fan Y, Yin H, Ge J. A novel Nanocellulose-Gelatin-AS-IV external stent resists EndMT by activating autophagy to prevent restenosis of grafts. Bioact Mater 2022; 22:466-481. [PMID: 36330163 PMCID: PMC9615139 DOI: 10.1016/j.bioactmat.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Vein grafts are widely used for coronary artery bypass grafting and hemodialysis access, but restenosis remains the "Achilles' heel" of these treatments. An extravascular stent is one wrapped around the vein graft and provides mechanical strength; it can buffer high arterial pressure and secondary vascular dilation of the vein to prevent restenosis. In this study, we developed a novel Nanocellulose-gelatin hydrogel, loaded with the drug Astragaloside IV (AS-IV) as an extravascular scaffold to investigate its ability to reduce restenosis. We found that the excellent physical and chemical properties of the drug AS-IV loaded Nanocellulose-gelatin hydrogel external stent limit graft vein expansion and make the stent biocompatible. We also found it can prevent restenosis by resisting endothelial-to-mesenchymal transition (EndMT) in vitro. It does so by activating autophagy, and AS-IV can enhance this effect both in vivo and in vitro. This study has added to existing research on the mechanism of extravascular stents in preventing restenosis of grafted veins. Furthermore, we have developed a novel extravascular stent for the prevention and treatment of restenosis. This will help optimize the clinical treatment plan of external stents and improve the prognosis in patients with vein grafts. The NC-Gelatin extravascular stent has suitable physicochemical properties to prevent restenosis of the grafted veins. The NC-Gelatin extravascular stent has excellent biocompatibility, which is critical for grafting veins. The NC-Gelatin extravascular stent prevents restenosis by activating autophagy against EndMT. AS-IV can enhance the effect of the stent to activate autophagy against EndMT.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Qingye Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Yaan, Sichuan Province, 625014, PR China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Kong
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Yangming Fan
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Hongyan Yin
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China,Corresponding author. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
45
|
Pires T, Oliveira AS, Marques AC, Salema-Oom M, Figueiredo-Pina CG, Silva D, Serro AP. Effects of Non-Conventional Sterilisation Methods on PBO-Reinforced PVA Hydrogels for Cartilage Replacement. Gels 2022; 8:640. [PMID: 36286141 PMCID: PMC9601823 DOI: 10.3390/gels8100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
Articular cartilage (AC) degradation is a recurrent pathology that affects millions of people worldwide. Polyvinyl alcohol (PVA) hydrogels have been widely explored for AC replacement. However, their mechanical performance is generally inadequate, and these materials need to be reinforced. Moreover, to be used in a clinical setting, such materials must undergo effective sterilisation. In this work, a PVA hydrogel reinforced with poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibres was submitted to three non-conventional sterilisation methods: microwave (MW), high hydrostatic pressure (HHP), and plasma (PM), in order to evaluate their impact on the properties of the material. Sterilisation was achieved in all cases. Properties such as water content and hydrophilicity were not affected. FTIR analysis indicated some changes in crystallinity and/or crosslinking in all cases. MW was revealed to be the most suitable method, since, unlike to PM and HHP, it led to a general improvement of the materials' properties: increasing the hardness, stiffness (both in tensile and compression), and shear modulus, and also leading to a decrease in the coefficient of friction against porcine cartilage. Furthermore, the samples remained non-irritant and non-cytotoxic. Moreover, this method allows terminal sterilisation in a short time (3 min) and using accessible equipment.
Collapse
Affiliation(s)
- Tomás Pires
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Ana Clara Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Célio G. Figueiredo-Pina
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- CDP2T, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Diana Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
46
|
Peng W, Lu X, Wu J, Wang Y, Zhu X, Ouyang H, Li L, Wu J, Liu Y, Bao J. Autoclaving pHEMA-Based Hydrogels Immersed in Deionized Water has No Effect on Physicochemical Properties and Cell Behaviors. ACS OMEGA 2022; 7:32038-32045. [PMID: 36120001 PMCID: PMC9475621 DOI: 10.1021/acsomega.2c03096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 05/16/2023]
Abstract
Hydrogels based on poly-(2-hydroxyethyl methacrylate) (pHEMA) have been widely used as biomaterials in tissue engineering due to their biocompatibility, hydrophilicity, and low friction coefficient. The terminal sterilization of hydrogels is a critical step in clinical applications. However, regulations and standardization for the sterilization of hydrogels based on pHEMA are still lacking. In this study, we explored six sterilization methods on pHEMA-based materials (A1: pHEMA, A2: pHEMA copolymerizes with acrylic acid, and A3: pHEMA copolymerizes with acrylic acid and further coordinated with iron ions), such as gamma irradiation, 75% ethanol, ultraviolet (UV), ethylene oxide (EtO), and autoclaving with or without deionized water (autoclaving-H2O or autoclaving-dry). Combining results from the multifaceted approaches with assessment, pHEMA-based hydrogels can be completely sterilized via the autoclaving-H2O method analyzed by sterilized testing. The physicochemical properties and cell behavior of sterilized hydrogels were not influenced by this sterilization approach, validated by Fourier transform infrared (FT-IR) spectroscopy and tensile tests. The pHEMA-based hydrogel sterilized by the autoclaving-H2O method also had no effect on the cell behavior evaluated by in vitro cytotoxicity experiments and caused no evident inflammatory reaction in tissue in vivo implantation experiments. However, it was also found that there were still some defects in the A2 and A3 groups as biomaterials possibly because of an inappropriate proportion of formulations or raw material used in exploring sterilization methods. These findings have implications for the improvement and clinical application of pHEMA-based hydrogels.
Collapse
Affiliation(s)
- Wanliu Peng
- Institute
of Clinical Pathology, Key Laboratory of Transplant Engineering and
Immunology, NHC, West China Hospital, Sichuan
University, Chengdu 610041, Sichuan Province, China
| | - Xingbing Lu
- Department
of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Junliang Wu
- Department
of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wang
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610068, Sichuan Province, China
| | - Xinglong Zhu
- Institute
of Clinical Pathology, Key Laboratory of Transplant Engineering and
Immunology, NHC, West China Hospital, Sichuan
University, Chengdu 610041, Sichuan Province, China
| | - Hongyan Ouyang
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610068, Sichuan Province, China
| | - Li Li
- Institute
of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jinrong Wu
- College of
Polymer Science & Materials, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
| | - Yong Liu
- Department
of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Institute
of Clinical Pathology, Key Laboratory of Transplant Engineering and
Immunology, NHC, West China Hospital, Sichuan
University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
47
|
Balsam Poplar Buds: Extraction of Potential Phenolic Compounds with Polyethylene Glycol Aqueous Solution, Thermal Sterilization of Extracts and Challenges to Their Application in Topical Ocular Formulations. Antioxidants (Basel) 2022; 11:antiox11091771. [PMID: 36139845 PMCID: PMC9495353 DOI: 10.3390/antiox11091771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds of natural origin have been valued for their beneficial effects on health since ancient times. During our study, we performed the extraction of phenolic compounds from balsam poplar buds using different concentrations of aqueous polyethylene glycol 400 solvents (10-30% PEG400). The aqueous 30% PEG400 extract showed the best phenolic yield. The stability of the extract during autoclave sterilization was evaluated. The extract remained stable under heat sterilization. Ophthalmic formulations are formed using different concentrations (8-15%) of poloxamer 407 (P407) together with hydroxypropyl methylcellulose (0.3%), sodium carboxymethyl cellulose (0.3%) or hyaluronic acid (0.1%). Physicochemical parameters of the formulations remained significantly unchanged after sterilization. Formulations based on 12% P407 exhibited properties characteristic of in situ gels, the gelation point of the formulations was close to the temperature of the cornea. After evaluating the amount of released compounds, it was found that, as the concentration of polymers increases, the amount of released compounds decreases. Formulations based on 15% P407 released the least biologically active compounds. Sterilized formulations remained stable for 30 days.
Collapse
|
48
|
Dravid A, Chapman A, Raos B, O'Carroll S, Connor B, Svirskis D. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater 2022; 17. [PMID: 35654031 DOI: 10.1088/1748-605x/ac759f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin hydrogel blends as a bioink for extrusion-based bioprinting. Four different agarose-gelatin hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the agarose-gelatin bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the agarose-gelatin. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the agarose-gelatin bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed agarose-gelatin bioinks demonstrated high viability (>90%) after 23 days in culture. This study demonstrates the properties of agarose-gelatin as a printable and biocompatible material applicable for use as a bioink.
Collapse
Affiliation(s)
- Anusha Dravid
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Amy Chapman
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Brad Raos
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Simon O'Carroll
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Bronwen Connor
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Darren Svirskis
- The University of Auckland, Grafton Campus, Auckland, 1142, NEW ZEALAND
| |
Collapse
|
49
|
Brunel LG, Hull SM, Heilshorn SC. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication 2022; 14:032001. [PMID: 35487196 PMCID: PMC10788121 DOI: 10.1088/1758-5090/ac6bbe] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
50
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|