1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Li B, Shu Y, Ma H, Cao K, Cheng YY, Jia Z, Ma X, Wang H, Song K. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review. Tissue Cell 2024; 87:102304. [PMID: 38219450 DOI: 10.1016/j.tice.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Blood vessels are the tubes through which blood flows and are divided into three types: millimeter-scale arteries, veins, and capillaries as well as micrometer-scale capillaries. Arteries and veins are the conduits that carry blood, while capillaries are where blood exchanges substances with tissues. Blood vessels are mainly composed of collagen fibers, elastic fibers, glycosaminoglycans and other macromolecular substances. There are about 19 feet of blood vessels per square inch of skin in the human body, which shows how important blood vessels are to the human body. Because cardiovascular disease and vascular trauma are common in the population, a great number of researches have been carried out in recent years by simulating the structures and functions of the person's own blood vessels to create different levels of tissue-engineered blood vessels that can replace damaged blood vessels in the human body. However, due to the lack of effective oxygen and nutrient delivery mechanisms, these tissue-engineered vessels have not been used clinically. Therefore, in order to achieve better vascularization of engineered vascular tissue, researchers have widely explored the design methods of vascular systems of various sizes. In the near future, these carefully designed and constructed tissue engineered blood vessels are expected to have practical clinical applications. Exploring how to form multi-scale vascular networks and improve their compatibility with the host vascular system will be very beneficial in achieving this goal. Among them, 3D printing has the advantages of high precision and design flexibility, and the decellularized matrix retains active ingredients such as collagen, elastin, and glycosaminoglycan, while removing the immunogenic substance DNA. In this review, technologies and advances in 3D printing and decellularization-based artificial blood vessel manufacturing methods are systematically discussed. Recent examples of vascular systems designed are introduced in details, the main problems and challenges in the clinical application of vascular tissue restriction are discussed and pointed out, and the future development trends in the field of tissue engineered blood vessels are also prospected.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Zhilin Jia
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China.
| | - Xiao Ma
- Department of Anesthesia, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Fernández-Pérez J, van Kampen KA, Mota C, Baker M, Moroni L. Flexible, Suturable, and Leak-free Scaffolds for Vascular Tissue Engineering Using Melt Spinning. ACS Biomater Sci Eng 2023; 9:5006-5014. [PMID: 37490420 PMCID: PMC10428091 DOI: 10.1021/acsbiomaterials.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Coronary artery disease affects millions worldwide. Bypass surgery remains the gold standard; however, autologous tissue is not always available. Hence, the need for an off-the-shelf graft to treat these patients remains extremely high. Using melt spinning, we describe here the fabrication of tubular scaffolds composed of microfibers aligned in the circumferential orientation mimicking the organized extracellular matrix in the tunica media of arteries. By variation of the translational extruder speed, the angle between fibers ranged from 0 to ∼30°. Scaffolds with the highest angle showed the best performance in a three-point bending test. These constructs could be bent up to 160% strain without kinking or breakage. Furthermore, when liquid was passed through the scaffolds, no leakage was observed. Suturing of native arteries was successful. Mesenchymal stromal cells were seeded on the scaffolds and differentiated into vascular smooth muscle-like cells (vSMCs) by reduction of serum and addition of transforming growth factor beta 1 and ascorbic acid. The scaffolds with a higher angle between fibers showed increased expression of vSMC markers alpha smooth muscle actin, calponin, and smooth muscle protein 22-alpha, whereas a decrease in collagen 1 expression was observed, indicating a positive contractile phenotype. Endothelial cells were seeded on the repopulated scaffolds and formed a tightly packed monolayer on the luminal side. Our study shows a one-step fabrication for ECM-mimicking scaffolds with good handleability, leak-free property, and suturability; the excellent biocompatibility allowed the growth of a bilayered construct. Future work will explore the possibility of using these scaffolds as vascular conduits in in vivo settings.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Kenny A. van Kampen
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Carlos Mota
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Matthew Baker
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| |
Collapse
|
5
|
An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model. J Funct Biomater 2023; 14:jfb14020088. [PMID: 36826887 PMCID: PMC9965469 DOI: 10.3390/jfb14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture.
Collapse
|
6
|
Li G, Yang T, Liu Y, Su H, Liu W, Fang D, Jin L, Jin F, Xu T, Duan C. The proteins derived from platelet-rich plasma improve the endothelialization and vascularization of small diameter vascular grafts. Int J Biol Macromol 2023; 225:574-587. [PMID: 36395946 DOI: 10.1016/j.ijbiomac.2022.11.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Vascular transplantation has become an ideal substitute for heart and peripheral vascular bypass therapy and tissue-engineered vascular grafts (TEVGs) present an attractive potential solution for vascular surgery. However, small diameter (Ф < 6 mm) vascular do not have ideal TEVGs for clinical use. Platelet-rich plasma (PRP), a key source of bioactive molecules, has been confirmed to promote tissue repair and regeneration. In this study, we prepared PRP-loaded TEVGs (PRP-TEVGs) by electrospinning, investigated the characterization of TEVGs, and verified the effect of PRP-TEVGs in vivo and in vitro experiments. The results suggested that PRP-TEVGs had good biocompatibility, released growth factors stably, promoted cell proliferation and migration significantly, up-regulated the expression of endothelial NO synthase (eNOS) in functional vascular endothelial cells (VECs), and maintained the stability of the endothelial structure. In vivo experiments suggest that PRP can promote rapid endothelialization and reconstruction of TEVGs. Overall, this finding indicated that PRP could promote the rapid vascular endothelialization of small-diameter TEVGs by improving contractile vascular smooth muscle cells (VSMCs) regeneration, and maintaining the integrity and functionality of VECs.
Collapse
Affiliation(s)
- Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dazhao Fang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China; East China Institute of Digital Medical Engineering, Shangrao 334000, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Ding X, Zhang W, Xu P, Feng W, Tang X, Yang X, Wang L, Li L, Huang Y, Ji J, Chen D, Liu H, Fan Y. The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9825237. [PMID: 36474603 PMCID: PMC9703915 DOI: 10.34133/2022/9825237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/21/2024]
Abstract
The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field. Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts, the effects of braided silk fiber skeletons on the porosity, remodeling, and patency in vivo have not been thoroughly investigated. Here, we used finite element analysis of simulated deformation and compliance to design vascular grafts comprised of braided silk fiber skeletons with three different degrees of porosity. Following the synthesis of low-, medium-, and high-porosity silk fiber skeletons, we coated them with hemocompatible sulfated silk fibroin sponges and then evaluated the mechanical and biological functions of the resultant silk tubes with different porosities. Our data showed that high-porosity grafts exhibited higher elastic moduli and compliance but lower suture retention strength, which contrasted with low-porosity grafts. Medium-porosity grafts offered a favorable balance of mechanical properties. Short-term in vivo implantation in rats indicated that porosity served as an effective means to regulate blood leakage, cell infiltration, and neointima formation. High-porosity grafts were susceptible to blood leakage, while low-porosity grafts hindered graft cellularization and tended to induce intimal hyperplasia. Medium-porosity grafts closely mimicked the biomechanical behaviors of native blood vessels and facilitated vascular smooth muscle layer regeneration and polarization of infiltrated macrophages to the M2 phenotype. Due to their superior performance and lack of occlusion, the medium-porosity vascular grafts were evaluated in long-term (24-months) in vivo implantation. The medium-porosity grafts regenerated the vascular smooth muscle cell layers and collagen extracellular matrix, which were circumferentially aligned and resembled the native artery. Furthermore, the formed neoarteries pulsed synchronously with the adjacent native artery and demonstrated contractile function. Overall, our study underscores the importance of braided silk fiber skeleton porosity on long-term vascular graft performance and will help to guide the design of next-generation vascular grafts.
Collapse
Affiliation(s)
- Xili Ding
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weirong Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Peng Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wentao Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaokai Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xianda Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Diansheng Chen
- eRobot Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Zhi D, Cheng Q, Midgley AC, Zhang Q, Wei T, Li Y, Wang T, Ma T, Rafique M, Xia S, Cao Y, Li Y, Li J, Che Y, Zhu M, Wang K, Kong D. Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. SCIENCE ADVANCES 2022; 8:eabl3888. [PMID: 35294246 PMCID: PMC8926343 DOI: 10.1126/sciadv.abl3888] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.
Collapse
Affiliation(s)
- Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiuying Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yi Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Urban Transport Emission Control Research Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tengzhi Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shuang Xia
- Department of Radiology, Tianjin Key Disciplines of Radiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yuejuan Cao
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yangchun Li
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Jing Li
- Department of Ultrasound, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongzhe Che
- Department of Pathology and Anatomy, School of Medicine, Nankai University, Tianjin 300071, China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| |
Collapse
|
9
|
Moore MJ, Tan RP, Yang N, Rnjak-Kovacina J, Wise SG. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol 2021; 40:693-707. [PMID: 34887104 DOI: 10.1016/j.tibtech.2021.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
Bioengineering an effective, small diameter (<6 mm) artificial vascular graft for use in bypass surgery when autologous grafts are unavailable remains a persistent challenge. Commercially available grafts are typically made from plastics, which have high strength but lack elasticity and present a foreign surface that triggers undesirable biological responses. Tissue engineered grafts, leveraging decellularized animal vessels or derived de novo from long-term cell culture, have dominated recent research, but failed to meet clinical expectations. More effective constructs that are readily translatable are urgently needed. Recent advances in natural materials have made the production of robust acellular conduits feasible and their use increasingly attractive. Here, we identify a subset of natural materials with potential to generate durable, small diameter vascular grafts.
Collapse
Affiliation(s)
- Matthew J Moore
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Nianji Yang
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
11
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
12
|
Yin L, Zhang K, Sun Y, Liu Z. Nanoparticle-Assisted Diagnosis and Treatment for Abdominal Aortic Aneurysm. Front Med (Lausanne) 2021; 8:665846. [PMID: 34307401 PMCID: PMC8292633 DOI: 10.3389/fmed.2021.665846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta related to the regional weakening of the wall structure, resulting in substantial morbidity and mortality with the aortic ruptures as complications. Ruptured AAA is a dramatic catastrophe, and aortic emergencies constitute one of the leading causes of acute death in older adults. AAA management has been centered on surgical repair of larger aneurysms to mitigate the risks of rupture, and curative early diagnosis and effective pharmacological treatments for this condition are still lacking. Nanoscience provided a possibility of more targeted imaging and drug delivery system. Multifunctional nanoparticles (NPs) may be modified with ligands or biomembranes to target agents' delivery to the lesion site, thus reducing systemic toxicity. Furthermore, NPs can improve drug solubility, circulation time, bioavailability, and efficacy after systemic administration. The varied judiciously engineered nano-biomaterials can exist stably in the blood vessels for a long time without being taken up by cells. Here, in this review, we focused on the NP application in the imaging and treatment of AAA. We hope to make an overview of NP-assisted diagnoses and therapy in AAA and discussed the potential of NP-assisted treatment.
Collapse
Affiliation(s)
- Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijie Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
14
|
Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery. Biomaterials 2021; 274:120874. [PMID: 34051629 DOI: 10.1016/j.biomaterials.2021.120874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/22/2023]
Abstract
To address the clinical need for readily available small diameter vascular grafts, biomimetic tubular scaffolds were developed for rapid in situ blood vessel regeneration. The tubular scaffolds were designed to have an inner layer that is porous, interconnected, and with a nanofibrous architecture, which provided an excellent microenvironment for host cell invasion and proliferation. Through the synthesis of poly(spirolactic-co-lactic acid) (PSLA), a highly functional polymer with a norbornene substituting a methyl group in poly(l-lactic acid) (PLLA), we were able to covalently attach biomolecules onto the polymer backbone via thiol-ene click chemistry to impart desirable functionalities to the tubular scaffolds. Specifically, heparin was conjugated on the scaffolds in order to prevent thrombosis when implanted in situ. By controlling the amount of covalently attached heparin we were able to modulate the physical properties of the tubular scaffold, resulting in tunable wettability and degradation rate while retaining the porous and nanofibrous morphology. The scaffolds were successfully tested as rat abdominal aortic replacements. Patency and viability were confirmed through dynamic ultrasound and histological analysis of the regenerated tissue. The harvested tissue showed excellent vascular cellular infiltration, proliferation, and migration with laminar cellular arrangement. Furthermore, we achieved both complete reendothelialization of the vessel lumen and native-like media extracellular matrix. No signs of aneurysm or hyperplasia were observed after 3 months of vessel replacement. Taken together, we have developed an effective vascular graft able to generate small diameter blood vessels that can function in a rat model.
Collapse
|
15
|
Rafique M, Wei T, Sun Q, Midgley AC, Huang Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, Kong D, Wang K. The effect of hypoxia-mimicking responses on improving the regeneration of artificial vascular grafts. Biomaterials 2021; 271:120746. [PMID: 33725586 DOI: 10.1016/j.biomaterials.2021.120746] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Cellular transition to hypoxia following tissue injury, has been shown to improve angiogenesis and regeneration in multiple tissues. To take advantage of this, many hypoxia-mimicking scaffolds have been prepared, yet the oxygen access state of implanted artificial small-diameter vascular grafts (SDVGs) has not been investigated. Therefore, the oxygen access state of electrospun PCL grafts implanted into rat abdominal arteries was assessed. The regions proximal to the lumen and abluminal surfaces of the graft walls were normoxic and only the interior of the graft walls was hypoxic. In light of this differential oxygen access state of the implanted grafts and the critical role of vascular regeneration on SDVG implantation success, we investigated whether modification of SDVGs with HIF-1α stabilizer dimethyloxalylglycine (DMOG) could achieve hypoxia-mimicking responses resulting in improving vascular regeneration throughout the entirety of the graft wall. Therefore, DMOG-loaded PCL grafts were fabricated by electrospinning, to support the sustained release of DMOG over two weeks. In vitro experiments indicated that DMOG-loaded PCL mats had significant biological advantages, including: promotion of human umbilical vein endothelial cells (HUVECs) proliferation, migration and production of pro-angiogenic factors; and the stimulation of M2 macrophage polarization, which in-turn promoted macrophage regulation of HUVECs migration and smooth muscle cells (SMCs) contractile phenotype. These beneficial effects were downstream of HIF-1α stabilization in HUVECs and macrophages in normoxic conditions. Our results indicated that DMOG-loaded PCL grafts improved endothelialization, contractile SMCs regeneration, vascularization and modulated the inflammatory reaction of grafts in abdominal artery replacement models, thus promoting vascular regeneration.
Collapse
Affiliation(s)
- Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Fukunishi T, Ong CS, He YJ, Inoue T, Zhang H, Steppan J, Matsushita H, Johnson J, Santhanam L, Hibino N. Fast-degrading TEVGs Lead to Increased ECM Cross-linking Enzymes Expression. Tissue Eng Part A 2021; 27:1368-1375. [PMID: 33599167 DOI: 10.1089/ten.tea.2020.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) require adequate extracellular matrix (ECM) to withstand arterial pressure. Tissue transglutaminase (TG2) and lysyl oxidase (LOX) are enzymes that cross-link ECM proteins and play a pivotal role in the development of vascular stiffness associated with aging. The purpose of this study is to investigate the expression of ECM cross-linking enzymes and mechanisms of scaffold degeneration leading to vascular stiffness in TEVG remodeling. Fast- and slow-degrading electrospun TEVGs were fabricated using polydioxanone (PDO) and poly(L-lactide-co-caprolactone) (PLCL) copolymer, with a PDO/PLCL ratio of 9:1 for fast-degrading and 1:1 for slow-degrading graft. These grafts were implanted in rats (n=5/group) as abdominal aortic interposition conduits. The grafts were harvested at one month to evaluate patency, mechanical properties, vascular neotissue formation and the expression of ECM cross-linking enzymes. All TEVGs were patent without any aneurysmal formation at one month. ECM area, TG2 positive area and LOX positive area were significantly greater in fast-degrading TEVGs compared to slow-degrading TEVGs, with significantly less remaining scaffold. The mechanical properties of fast-degrading TEVGs were similar to that of native aorta, as demonstrated by strain-stress curve. In conclusion, at one month, fast-degrading TEVGs had rapid and well-organized ECM with greater TG2 and LOX expression and native-like mechanical properties, compared to slow-degrading TEVGs.
Collapse
Affiliation(s)
- Takuma Fukunishi
- Johns Hopkins University, 1466, Cardiac surgery, 1800 orleans street, Baltimore, Baltimore, Maryland, United States, 21287;
| | - Chin Siang Ong
- Johns Hopkins Hospital and Health System, 23236, Division of Cardiac Surgery, 1800 Orleans St, Zayed 7107, Baltimore, Maryland, United States, 21287;
| | - Yusheng Jason He
- University of Chicago, 2462, Surgery, 5841 S Maryland Ave, Chicago, Chicago, Illinois, United States, 60637-5418;
| | - Takahiro Inoue
- Johns Hopkins University, 1466, Cardiac surgery, Baltimore, Maryland, United States;
| | - Huaitao Zhang
- Johns Hopkins University, 1466, Division of Cardiac surgery, Baltimore, Maryland, United States;
| | | | | | - Jed Johnson
- Nanofiber Solutions LLC, 4389 Weaver Court N, Hilliard, Ohio, United States, 43026;
| | - Lakshmi Santhanam
- Department of Anesthesiology, Johns Hopkins Hospital, Baltimore, Maryland, United States;
| | - Narutoshi Hibino
- University of Chicago, 2462, Surgery, Chicago, Illinois, United States;
| |
Collapse
|
17
|
Yang L, Li X, Wu Y, Du P, Sun L, Yu Z, Song S, Yin J, Ma X, Jing C, Zhao J, Chen H, Dong Y, Zhang Q, Zhao L. Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo. Int J Nanomedicine 2020; 15:8697-8715. [PMID: 33192062 PMCID: PMC7656973 DOI: 10.2147/ijn.s274459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The development of tissue-engineered blood vessels provides a new source of donors for coronary artery bypass grafting and peripheral blood vessel transplantation. Fibrin fiber has good biocompatibility and is an ideal tissue engineering vascular scaffold, but its mechanical property needs improvement. METHODS We mixed polyurethane (PU) and fibrin to prepare the PU/fibrin vascular scaffolds by using electrospinning technology in order to enhance the mechanical properties of fibrin scaffold. We investigated the morphological, mechanical strength, hydrophilicity, degradation, blood and cell compatibility of PU/fibrin (0:100), PU/fibrin (5:95), PU/fibrin (15:85) and PU/fibrin (25:75) vascular scaffolds. Based on the results in vitro, PU/fibrin (15:85) was selected for transplantation in vivo to repair vascular defects, and the extracellular matrix formation, vascular remodeling, and immune response were evaluated. RESULTS The results indicated that the fiber diameter of the PU/fibrin (15:85) scaffold was about 712nm. With the increase of PU content, the mechanical strength of the composite scaffolds increased, however, the degradation rate decreased gradually. The PU/fibrin scaffold showed good hydrophilicity and hemocompatibility. PU/fibrin (15:85) vascular scaffold could promote the adhesion and proliferation of mesenchymal stromal cells (MSCs). Quantitative RT-PCR experimental results showed that the expression of collagen, survivin and vimentin genes in PU/fibrin (15:85) was higher than that in PU/fibrin (25:75). The results in vivo indicated the mechanical properties and compliance of PU/fibrin grafts could meet clinical requirements and the proportion of thrombosis or occlusion was significantly lower. The graft showed strong vasomotor response, and the smooth muscle cells, endothelial cells, and ECM deposition of the neoartery were comparable to that of native artery after 3 months. At 3 months, the amount of macrophages in PU/fibrin grafts was significantly lower, and the secretion of pro-inflammatory and anti-inflammatory cytokines decreased. CONCLUSION PU/fibrin (15:85) vascular scaffolds had great potential to be used as small-diameter tissue engineering blood vessels.
Collapse
Affiliation(s)
- Lei Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yiting Wu
- Xiacun Community Health Service Center, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Pengchong Du
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Department of Cardio-Thoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Lulu Sun
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhenyang Yu
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shuang Song
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Jianshen Yin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Xianfen Ma
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Changqin Jing
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Junqiang Zhao
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuzhen Dong
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Qiqing Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People’s Hospital, Zhengzhou, People’s Republic of China
- The Central Lab, The Third People’s Hospital of Datong, Datong, People’s Republic of China
| |
Collapse
|
18
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
19
|
Zhang X, Shi J, Chen S, Dong Y, Zhang L, Midgley AC, Kong D, Wang S. Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Regen Med 2019; 14:1089-1105. [PMID: 31829097 DOI: 10.2217/rme-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Host remolding with scaffolds degradation and rapid formation of a complete endothelium, are prospective solutions for improving performance of small diameter vascular grafts. Materials & methods: For this purpose, microfibrous polycaprolactone (PCL)/gelatin scaffolds were prepared by electrospinning and subsequently functionalized with heparin and organoselenium-immobilized polyethyleneimine for nitric oxide generation through layer-by-layer self-assembly. Results: Our results showed that modified PCL/gelatin grafts had strong catalytic nitric oxide generation capacity and facilitated the enhanced attachment of endothelial cells, compared with control scaffold groups. Meanwhile, the modified grafts exhibited good hemocombatility, rapid endothelialization and smooth muscle cell regeneration. Conclusion: Modification of biodegradable scaffolds, proposed in this work, could enhance biological functions of vascular grafts and provides new strategies for the construction of small diameter vascular grafts.
Collapse
Affiliation(s)
- XiangYun Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Jie Shi
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - SiYuan Chen
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - YunSheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - DeLing Kong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - ShuFang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| |
Collapse
|
20
|
Li W, Wu P, Zhang Y, Midgley AC, Yuan X, Wu Y, Wang L, Wang Z, Zhu M, Kong D. Bilayered Polymeric Micro- and Nanofiber Vascular Grafts as Abdominal Aorta Replacements: Long-Term in Vivo Studies in a Rat Model. ACS APPLIED BIO MATERIALS 2019; 2:4493-4502. [DOI: 10.1021/acsabm.9b00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wen Li
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Pingli Wu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Yu Zhang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Xingyu Yuan
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Yifan Wu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Lina Wang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meifeng Zhu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Deling Kong
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Gupta P, Moses JC, Mandal BB. Surface Patterning and Innate Physicochemical Attributes of Silk Films Concomitantly Govern Vascular Cell Dynamics. ACS Biomater Sci Eng 2018; 5:933-949. [PMID: 33405850 DOI: 10.1021/acsbiomaterials.8b01194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional impairment of vascular cells is associated with cardiovascular pathologies. Recent literature clearly presents evidence relating cell microenvironment and their function. It is crucial to understand the cell-material interaction while designing a functional tissue engineered vascular graft. Natural silk biopolymer has shown potential for various tissue-engineering applications. In the present work, we aimed to explore the combinatorial effect of variable innate physicochemical properties and topographies of silk films on functional behavior of vascular cells. Silk proteins from different varieties (mulberry Bombyx mori, BM; and non-mulberry Antheraea assama, AA) possess unique inherent amino acid composition that leads to variable surface properties (roughness, wettability, chemistry, and mechanical stiffness). In addition, we engineered the silk film surfaces and printed a microgrooved pattern to induce unidirectional cell orientation mimicking their native form. Patterned silk films induced unidirectional alignment of porcine vascular cells. Regardless of alignment, endothelial cells (ECs) proliferated favorably on AA films; however, it suppressed production of nitric oxide (NO), an endogenous vasodilator. Unidirectional alignment of smooth muscle cells (SMCs) encouraged contractile phenotype as indicated by minimal cell proliferation, increment of quiescent (G0) phase cells, and upregulation of contractile genes. Moderately hydrophilic flat BM films induced cell aggregation and augmented the expression of contractile genes (for SMCs) and endothelial nitric oxide synthase, eNOS (for ECs). Functional studies further confirmed SMCs' alignment improving collagen production, remodeling ability (matrix metalloproteinase, MMP-2 and MMP-9 production) and physical contraction. Altogether, this study confirms vascular cells' functional behavior is crucially regulated by synergistic effect of their alignment and cell-substrate interfacial properties.
Collapse
Affiliation(s)
- Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Joseph Christakiran Moses
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
22
|
Horakova J, Mikes P, Lukas D, Saman A, Jencova V, Klapstova A, Svarcova T, Ackermann M, Novotny V, Kalab M, Lonsky V, Bartos M, Rampichova M, Litvinec A, Kubikova T, Tomasek P, Tonar Z. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery. ACTA ACUST UNITED AC 2018; 13:065009. [PMID: 30177582 DOI: 10.1088/1748-605x/aade9d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.19 μm and fiber diameters of 5.58 ± 0.10 μm. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czechia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Atlan M, Simon-Yarza T, Ino JM, Hunsinger V, Corté L, Ou P, Aid-Launais R, Chaouat M, Letourneur D. Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of PVA-gelatin blends. Sci Rep 2018; 8:7417. [PMID: 29743525 PMCID: PMC5943294 DOI: 10.1038/s41598-018-25703-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 01/06/2023] Open
Abstract
Since the development of the first vascular grafts, fabrication of vessel replacements with diameters smaller than 6 mm remains a challenge. The present work aimed to develop PVA (poly (vinyl alcohol))-gelatin hybrids as tubes suitable for replacement of very small vessels and to evaluate their performance using a rat abdominal aorta interposition model. PVA-gelatin hybrid tubes with internal and external diameters of 1.4 mm and 1.8 mm, respectively, composed of 4 different gelatin ratios were prepared using a one-step strategy with both chemical and physical crosslinking. By 3D Time of Flight MRI, Doppler-Ultrasound, Computed Tomography angiography and histology, we demonstrated good patency rates with the 1% gelatin composition until the end of the study at 3 months (50% compared to 0% of PVA control grafts). A reduction of the patency rate during the time of implantation suggested some loss of properties of the hybrid material in vivo, further confirmed by mechanical evaluation until one year. In particular, stiffening and reduction of compliance of the PVA-gelatin grafts was demonstrated, which might explain the observed long-term changes in patency rate. These encouraging results confirm the potential of PVA-gelatin hybrids as ready-to-use vascular grafts for very small vessel replacement.
Collapse
Affiliation(s)
- M Atlan
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France. .,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France.
| | - T Simon-Yarza
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.
| | - J M Ino
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - V Hunsinger
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France
| | - L Corté
- MINES ParisTech, PSL Research University, MAT - Centre des Matériaux, CNRS UMR 7633, BP 87 91003, Evry, France.,ESPCI-Paris, PSL Research University, Matière Molle et Chimie, CNRS UMR 7167, Paris, 75005, France
| | - P Ou
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - R Aid-Launais
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,FRIM, INSERM UMS 034 Paris Diderot University, X. Bichat Hospital, 75018, Paris, France
| | - M Chaouat
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Plastic Surgery Department, Burn Unit, Paris Diderot University, Hôpital Saint Louis, Paris, France
| | - D Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| |
Collapse
|