1
|
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther 2024; 15:155. [PMID: 38816841 PMCID: PMC11140936 DOI: 10.1186/s13287-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hui Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Shi Y, Li D, Hill C, Yang L, Sheerin ED, Pilliadugula R, Wang JJ, Boland J, Xiao L. Micro and nano plastics release from a single absorbable suture into simulated body fluid. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133559. [PMID: 38301437 DOI: 10.1016/j.jhazmat.2024.133559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Synthetic polymers are widely used in medical devices and implants where biocompatibility and mechanical strength are key enablers of emerging technologies. One concern that has not been widely studied is the potential of their microplastics (MPs) release. Here we studied the levels of MP debris released following 8-week in vitro tests on three typical polyglycolic acid (PGA) based absorbable sutures (PGA 100, PGA 90 and PGA 75) and two nonabsorbable sutures (polypropylene-PP and polyamide-PA) in simulated body fluid. The MP release levels ranked from PGA 100 > > PGA 90 > PGA 75 > > PP ∼ PA. A typical PGA 100 suture released 0.63 ± 0.087 million micro (MPs > 1 µm) and 1.96 ± 0.04 million nano (NPs, 200-1000 nm) plastic particles per centimeter. In contrast, no MPs were released from the nonabsorbable sutures under the same conditions. PGA that was co-blended with 10-25% L-lactide or epsilon-caprolactone resulted in a two orders of magnitude lower level of MP release. These results underscore the need to assess the release of nano- and microplastics from medical polymers while applied in the human body and to evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Dunzhu Li
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China.
| | - Christopher Hill
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Emmet D Sheerin
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Rekha Pilliadugula
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Jing Jing Wang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - John Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| |
Collapse
|
3
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Manescu (Paltanea) V, Paltanea G, Antoniac A, Gruionu LG, Robu A, Vasilescu M, Laptoiu SA, Bita AI, Popa GM, Cocosila AL, Silviu V, Porumb A. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:830. [PMID: 38399081 PMCID: PMC10890492 DOI: 10.3390/ma17040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Today, mechanical properties and fluid flow dynamic analysis are considered to be two of the most important steps in implant design for bone tissue engineering. The mechanical behavior is characterized by Young's modulus, which must have a value close to that of the human bone, while from the fluid dynamics point of view, the implant permeability and wall shear stress are two parameters directly linked to cell growth, adhesion, and proliferation. In this study, we proposed two simple geometries with a three-dimensional pore network dedicated to a manufacturing route based on a titanium wire waving procedure used as an intermediary step for Mg-based implant fabrication. Implant deformation under different static loads, von Mises stresses, and safety factors were investigated using finite element analysis. The implant permeability was computed based on Darcy's law following computational fluid dynamic simulations and, based on the pressure drop, was numerically estimated. It was concluded that both models exhibited a permeability close to the human trabecular bone and reduced wall shear stresses within the biological range. As a general finding, the proposed geometries could be useful in orthopedics for bone defect treatment based on numerical analyses because they mimic the trabecular bone properties.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Alina Robu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Marius Vasilescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Ana Iulia Bita
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Georgiana Maria Popa
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Andreea Liliana Cocosila
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Vlad Silviu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania;
| |
Collapse
|
5
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
6
|
Park JB, Kim I, Lee W, Kim H. Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model. J Periodontal Implant Sci 2023; 53:467-477. [PMID: 37154108 PMCID: PMC10761282 DOI: 10.5051/jpis.2204880244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. METHODS Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. RESULTS Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. CONCLUSIONS This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.
Collapse
Affiliation(s)
- Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul, Korea
| | - InSoo Kim
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea.
| | - Won Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Heesung Kim
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
- The Faculty of Liberal Arts, Eulji University, Seongnam, Korea
| |
Collapse
|
7
|
Endo R, Sugimoto S, Shirosaki K, Kato H, Wada M, Kanai T, Sato T. Clinical challenges of short bowel syndrome and the path forward for organoid-based regenerative medicine. Regen Ther 2023; 24:64-73. [PMID: 37868721 PMCID: PMC10584670 DOI: 10.1016/j.reth.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 10/24/2023] Open
Abstract
Short bowel syndrome (SBS) is a rare condition, the main symptom of which is malabsorption following extensive resection of the small intestine. Treatment for SBS is mainly supportive, consisting of supplementation, prevention and treatment of complications, and promotion of intestinal adaptation. While development of parenteral nutrition and drugs promoting intestinal adaptation has improved clinical outcomes, the prognosis of patients with SBS remains poor. Intestinal transplantation is the only curative therapy but its outcome is unsatisfactory. In the absence of definitive therapy, novel treatment is urgently needed. With the advent of intestinal organoids, research on the intestine has developed remarkably in recent years. Concepts such as the "tissue-engineered small intestine" and "small intestinalized colon," which create a functional small intestine by combining organoids with other technologies, are potentially novel regenerative therapeutic approaches for SBS. Although they are still under development and there are substantial issues to be resolved, the problems that have prevented establishment of the complex function and structure of the small intestine are gradually being overcome. This review discusses the current treatments for SBS, the fundamentals of the intestine and organoids, the current status of these new technologies, and future perspectives.
Collapse
Affiliation(s)
- Ryoma Endo
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Shirosaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirochika Kato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Motoshi Wada
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
9
|
Meijer EM, Koch SE, van Dijk CGM, Maas RGC, Chrifi I, Szymczyk W, Besseling PJ, Pomp L, Koomen VJCH, Buikema JW, Bouten CVC, Verhaar MC, Smits AIPM, Cheng C. 3D Human iPSC Blood Vessel Organoids as a Source of Flow-Adaptive Vascular Cells for Creating a Human-Relevant 3D-Scaffold Based Macrovessel Model. Adv Biol (Weinh) 2023; 7:e2200137. [PMID: 36300913 DOI: 10.1002/adbi.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/02/2022] [Indexed: 11/05/2022]
Abstract
3D-scaffold based in vitro human tissue models accelerate disease studies and screening of pharmaceutics while improving the clinical translation of findings. Here is reported the use of human induced pluripotent stem cell (hiPSC)-derived vascular organoid cells as a new cell source for the creation of an electrospun polycaprolactone-bisurea (PCL-BU) 3D-scaffold-based, perfused human macrovessel model. A separation protocol is developed to obtain monocultures of organoid-derived endothelial cells (ODECs) and mural cells (ODMCs) from hiPSC vascular organoids. Shear stress responses of ODECs versus HUVECs and barrier function (by trans endothelial electrical resistance) are measured. PCL-BU scaffolds are seeded with ODECs and ODMCs, and tissue organization and flow adaptation are evaluated in a perfused bioreactor system. ODECs and ODMCs harvested from vascular organoids can be cryopreserved and expanded without loss of cell purity and proliferative capacity. ODECs are shear stress responsive and establish a functional barrier that self-restores after the thrombin challenge. Static bioreactor culture of ODECs/ODMCs seeded scaffolds results in a biomimetic vascular bi-layer hierarchy, which is preserved under laminar flow similar to scaffolds seeded with primary vascular cells. HiPSC-derived vascular organoids can be used as a source of functional, flow-adaptive vascular cells for the creation of 3D-scaffold based human macrovascular models.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Suzanne E Koch
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Renee G C Maas
- Regenerative Medicine Center Utrecht, Department of Cardiology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Ihsan Chrifi
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Wojciech Szymczyk
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Paul J Besseling
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Lisa Pomp
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Vera J C H Koomen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Jan Willem Buikema
- Regenerative Medicine Center Utrecht, Department of Cardiology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, 3015GD, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
11
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
12
|
Collier CA, Mendiondo C, Raghavan S. Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 2022; 16:9. [PMID: 35379299 PMCID: PMC8981633 DOI: 10.1186/s13036-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
The gastrointestinal (GI) tract is imperative for multiple functions including digestion, nutrient absorption, and timely waste disposal. The central feature of the gut is peristalsis, intestinal motility, which facilitates all of its functions. Disruptions in GI motility lead to sub-optimal GI function, resulting in a lower quality of life in many functional GI disorders. Over the last two decades, tissue engineering research directed towards the intestine has progressed rapidly due to advances in cell and stem-cell biology, integrative physiology, bioengineering and biomaterials. Newer biomedical tools (including optical tools, machine learning, and nuanced regenerative engineering approaches) have expanded our understanding of the complex cellular communication within the GI tract that lead to its orchestrated physiological function. Bioengineering therefore can be utilized towards several translational aspects: (i) regenerative medicine to remedy/restore GI physiological function; (ii) in vitro model building to mimic the complex physiology for drug and pharmacology testing; (iii) tool development to continue to unravel multi-cell communication networks to integrate cell and organ-level physiology. Despite the significant strides made historically in GI tissue engineering, fundamental challenges remain including the quest for identifying autologous human cell sources, enhanced scaffolding biomaterials to increase biocompatibility while matching viscoelastic properties of the underlying tissue, and overall biomanufacturing. This review provides historic perspectives for how bioengineering has advanced over time, highlights newer advances in bioengineering strategies, and provides a realistic perspective on the path to translation.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Christian Mendiondo
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
13
|
Wu H, Guo T, Zhou F, Bu J, Yang S, Dai Z, Teng C, Ouyang H, Wei W. Surface coating prolongs the degradation and maintains the mechanical strength of surgical suture in vivo. Colloids Surf B Biointerfaces 2021; 209:112214. [PMID: 34801978 DOI: 10.1016/j.colsurfb.2021.112214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/09/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022]
Abstract
Biodegradable and absorbable sutures have been widely used in surgical procedures. However, for the repair of ligament and tendon injures, the biodegradable suture cannot provide sufficient mechanical support to close the wound for a long period of time which is important to completely heal the tissue. Herein, we develop a simple method that makes a surface coating to prolong the degradation of the suture in vivo. Polylactic acid (PLLA) and Polycaprolactone (PCL) were successfully coated to a commercial degradable polydioxanone (PDO) suture in this study, which was confirmed by Fourier transform infrared spectra (FTIR). Scanning electron microscopy (SEM) was used to observe the smooth surface of the coated sutures. Moreover, live/dead assay of human fibroblasts after co-culturing with the modified/unmodified sutures showed fairly good cellular activity. In vivo study demonstrates the degradation properties of sutures were significantly changed after the surface coating. The raw suture exhibited the fastest degradation in 12 weeks, showing significantly decline in mechanical strength. Interestingly, the PCL-coated suture was able to maintain more than 20% of its original tensile strength after 12 weeks' implantation. In addition, in vivo results of PCL-coated sutures also showed less inflammatory cell infiltration and less surface inflammation. These findings indicate the one step suture-coating method could be feasibly for the development of clinical equipment.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Tingting Guo
- Health Care Department for Women, The Maternal And Child Health Hospital Of Hunan Province, Changsha 410008, China
| | - Feng Zhou
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jie Bu
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shuo Yang
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zixun Dai
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chong Teng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
14
|
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021; 13:1105. [PMID: 33808492 PMCID: PMC8037451 DOI: 10.3390/polym13071105] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential components. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given application. Depending on this, scaffold materials can be of natural or synthetic origin, degradable or nondegradable. In this review, an overview of various natural and synthetic polymers and their possible composite scaffolds with their physicochemical properties including biocompatibility, biodegradability, morphology, mechanical strength, pore size, and porosity are discussed. The scaffolds fabrication techniques and a few commercially available biopolymers are also tabulated.
Collapse
Affiliation(s)
- M. Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India;
| | | | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
- Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | |
Collapse
|
15
|
Chen Y, Guo C, Manousiouthakis E, Wang X, Cairns DM, Roh TT, Du C, Kaplan DL. Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000543. [PMID: 33692658 PMCID: PMC7938961 DOI: 10.1002/adfm.202000543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 05/09/2023]
Abstract
Designing biomimetic scaffolds with in vivo-like microenvironments using biomaterials is an essential component of successful tissue engineering approaches. The intestinal smooth muscle layers exhibit a complex tubular structure consisting of two concentric muscle layers in which the inner circular layer is orthogonally oriented to the outer longitudinal layer. Here, we present a three-dimensional (3D) bi-layered tubular scaffold based on flexible, mechanically robust and well aligned silk protein microfibers to mimic native human intestinal smooth muscle structure. The scaffolds were seeded with primary human intestinal smooth muscle cells to replicate human intestinal muscle tissues in vitro. Characterization of the tissue constructs revealed good biocompatibility and support for cell alignment and elongation in the different scaffold layers to enhance cell differentiation and functions. Furthermore, the engineered smooth muscle constructs supported oriented neurite outgrowth, a requisite step to achieve functional innervation. These results suggested these microfiber scaffolds as functional templates for in vitro regeneration of human intestinal smooth muscle systems. The scaffolding provides a crucial step toward engineering functional human intestinal tissue in vitro, as well as for the engineering of many other types of smooth muscles in terms of their similar phenotypes. Such utility may lead to a better understanding of smooth muscle associated diseases and treatments.
Collapse
Affiliation(s)
| | | | - Eleana Manousiouthakis
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Xiuli Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Dana M. Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Terrence T. Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| |
Collapse
|
16
|
Zaszczynska A, Sajkiewicz P, Gradys A. Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E161. [PMID: 31936240 PMCID: PMC7022784 DOI: 10.3390/polym12010161] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023] Open
Abstract
Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities, which still lacks an effective treatment. Tissue engineering in the post-injury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. Tissue engineering relies on scaffolds for supporting cell differentiation and growth with recent emphasis on stimuli responsive scaffolds, sometimes called smart scaffolds. One of the representatives of this material group is piezoelectric scaffolds, being able to generate electrical charges under mechanical stimulation, which creates a real prospect for using such scaffolds in non-invasive therapy of neural tissue. This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges, and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and serves as a starting point for novel research pathways in the most relevant and challenging open questions.
Collapse
Affiliation(s)
- Angelika Zaszczynska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Chang C, Ginn B, Livingston NK, Yao Z, Slavin B, King MW, Chung S, Mao HQ. Medical Fibers and Biotextiles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
|