1
|
Sethi V, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations. ACS APPLIED BIO MATERIALS 2025; 8:1797-1819. [PMID: 39943674 DOI: 10.1021/acsabm.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The surgical repair of hernias, a prevalent condition affecting millions worldwide, has traditionally relied on polypropylene (PP) mesh due to its favorable mechanical properties and biocompatibility. However, postoperative infections remain a significant complication, underscoring the need for the development of infection-resistant hernia meshes. This study provides a comprehensive analysis of current advancements and innovative strategies aimed at enhancing the infection resistance of PP mesh. It presents an overview of various research efforts focused on the integration of antimicrobial agents, surface modifications, and the development of bioactive coatings to prevent bacterial colonization and biofilm formation. Additionally, the synergistic effects of novel material designs and the role of nanotechnology in optimizing the anti-infective properties of PP mesh are explored. Recent clinical outcomes and in vitro studies are critically examined, highlighting challenges and potential future directions in the development of next-generation hernia meshes. Emphasis is placed on the importance of interdisciplinary approaches in advancing surgical materials with the ultimate goal of improving patient outcomes in hernia repair.
Collapse
Affiliation(s)
- Vipula Sethi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Histopathology and Transfusion Medicine, Jay Prabha Medanta Hospital, Patna 800020, Bihar, India
| | - Samrat Mukhopadhyay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Manikion K, Chrysanthou C, Voniatis C. The Unfulfilled Potential of Synthetic and Biological Hydrogel Membranes in the Treatment of Abdominal Hernias. Gels 2024; 10:754. [PMID: 39727512 DOI: 10.3390/gels10120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair. Overall, this review highlights the current issues and prospects of hydrogel membranes as viable alternatives to the conventional hernia meshes. The emphasis is placed on the applicability of these hydrogels as components of bilayer systems and standalone materials. According to our research, hydrogel membranes exhibit several advantageous features relevant to hernia repair, such as a controlled inflammatory reaction, tissue integration, anti-adhesive-, and even thermoresponsive properties. Nevertheless, despite significant advancements in material science, the potential of hydrogel membranes seems neglected. Bilayer constructs have not transitioned to clinical trials, whereas standalone membranes seem unreliable due to the lack of comprehensive mechanical characterization and long-term in vivo experiments.
Collapse
Affiliation(s)
- Kenigen Manikion
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
| | - Christodoulos Chrysanthou
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői Street 78, H-1082 Budapest, Hungary
| |
Collapse
|
3
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
4
|
Harman M, Champaigne K, Cobb W, Lu X, Chawla V, Wei L, Luzinov I, Mefford OT, Nagatomi J. A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model. Gels 2023; 9:372. [PMID: 37232966 PMCID: PMC10217475 DOI: 10.3390/gels9050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Injectable surgical sealants and adhesives, such as biologically derived fibrin gels and synthetic hydrogels, are widely used in medical products. While such products adequately adhere to blood proteins and tissue amines, they have poor adhesion with polymer biomaterials used in medical implants. To address these shortcomings, we developed a novel bio-adhesive mesh system utilizing the combined application of two patented technologies: a bifunctional poloxamine hydrogel adhesive and a surface modification technique that provides a poly-glycidyl methacrylate (PGMA) layer grafted with human serum albumin (HSA) to form a highly adhesive protein surface on polymer biomaterials. Our initial in vitro tests confirmed significantly improved adhesive strength for PGMA/HSA grafted polypropylene mesh fixed with the hydrogel adhesive compared to unmodified mesh. Toward the development of our bio-adhesive mesh system for abdominal hernia repair, we evaluated its surgical utility and in vivo performance in a rabbit model with retromuscular repair mimicking the totally extra-peritoneal surgical technique used in humans. We assessed mesh slippage/contraction using gross assessment and imaging, mesh fixation using tensile mechanical testing, and biocompatibility using histology. Compared to polypropylene mesh fixed with fibrin sealant, our bio-adhesive mesh system exhibited superior fixation without the gross bunching or distortion that was observed in the majority (80%) of the fibrin-fixed polypropylene mesh. This was evidenced by tissue integration within the bio-adhesive mesh pores after 42 days of implantation and adhesive strength sufficient to withstand the physiological forces expected in hernia repair applications. These results support the combined use of PGMA/HSA grafted polypropylene and bifunctional poloxamine hydrogel adhesive for medical implant applications.
Collapse
Affiliation(s)
- Melinda Harman
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- School of Medicine Greenville, Prisma Health Upstate, University of South Carolina, Greenville, SC 29605, USA
| | - Kevin Champaigne
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Circa Bioscience, Charleston, SC 29412, USA
| | - William Cobb
- School of Medicine Greenville, Prisma Health Upstate, University of South Carolina, Greenville, SC 29605, USA
| | - Xinyue Lu
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | | | - Liying Wei
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - Igor Luzinov
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - O. Thompson Mefford
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - Jiro Nagatomi
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Effects of Polypropylene Mesh vs Polycaprolactone/Polyvinyl Alcohol Mesh Coated with Nanofiber Containing VEGF165 and FGF-21 on Abdominal Wall Reconstruction in Rat. Indian J Surg 2023. [DOI: 10.1007/s12262-023-03664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
6
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
7
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|
8
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Learn GD, Lai EJ, Wilson EJ, von Recum HA. Nonthermal plasma treatment of polymers modulates biological fouling but can cause material embrittlement. J Mech Behav Biomed Mater 2020; 113:104126. [PMID: 33045518 DOI: 10.1016/j.jmbbm.2020.104126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022]
Abstract
Plasma-based treatment is a prevalent strategy to alter biological response and enhance biomaterial coating quality at the surfaces of biomedical devices and implants, especially polymeric materials. Plasma, an ionized gas, is often thought to have negligible effects on the bulk properties of prosthetic substrates given that it alters the surface chemistry on only the outermost few nanometers of material. However, no studies to date have systematically explored the effects of plasma exposure on both the surface and bulk properties of a biomaterial. This work examines the time-dependent effects of a nonthermal plasma on the surface and bulk (i.e. mechanical) properties of polymeric implants, specifically polypropylene surgical meshes and sutures. Findings suggest that plasma exposure improved resistance to fibrinogen adsorption and Escherichia coli attachment, and promoted mammalian fibroblast attachment, although increased duration of exposure resulted in a state of diminishing returns. At the same time, it was observed that plasma exposure can be detrimental to the material properties of individual filaments (i.e. sutures), as well as the structural characteristics of knitted meshes, with longer exposures resulting in further embrittlement and larger changes in anisotropic behavior. Though there are few guidelines regarding appropriate mechanical properties of surgical textiles, the results from this investigation imply that there are ultimate exposure limits for plasma-based treatments of polymeric implant materials when structural properties must be preserved, and that the effects of a plasma on a given biomaterial should be examined carefully before translation to a clinical scenario.
Collapse
Affiliation(s)
- Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Emerson J Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|