1
|
Aydın M, Köse E, Taşlıdere Karaca E, Tanbek K, Sandal S. Investigation of the protective effect of Lavandula stoechas against the damage caused by Bisphenol A in the liver tissue of rats. Heliyon 2024; 10:e39386. [PMID: 39492916 PMCID: PMC11530894 DOI: 10.1016/j.heliyon.2024.e39386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The present study aims to explore the hepatoprotective potential of Lavandula stoechas (LS) against Bisphenol A (BPA)-induced liver toxicity. In this experiment, 32 male rats were utilized and categorized into control, LS, BPA, and BPA + LS groups for the study. Each group received 50 mg/kg of the respective substance. Throughout the 28-day experiment, the control group did not receive any applications. The LS oil was administered intraperitoneally, while BPA was given through oral gavage. At the end of the experiment, rats were anesthetized, and blood was taken from the heart. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TB) values were measured from serum samples. Malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) measurements were performed in liver tissue. The histological structure was observed using hematoxylin and eosin staining methods. The BPA group showed higher AST levels compared to the control group, but the BPA + LS group exhibited a significant decrease in AST levels compared to the BPA group. Additionally, TB levels were lower in the BPA + LS group compared to the BPA group. MDA levels increased in BPA-treated groups compared to others. The LS-treated groups showed higher SOD levels compared to the control group. Furthermore, an evident increase was noted in the BPA + LS group in comparison to the BPA group. The BPA group exhibited a significant rise in OSI value compared to the control. It was concluded that LS has a protective impact against BPA-induced liver toxicity. The LS-treated groups showed higher SOD levels compared to the control group. Furthermore, a significant increase was noted in the BPA + LS group in comparison to the BPA group. The BPA group exhibited a significant rise in OSI value compared to the control. It was concluded that LS has a protective impact against BPA-induced liver toxicity.
Collapse
Affiliation(s)
- Merve Aydın
- Department of Anatomy, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
- Department of Anatomy, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Evren Köse
- Department of Anatomy, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Elif Taşlıdere Karaca
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
2
|
Santos M, Fidalgo-Pereira R, Torres O, Carvalho O, Henriques B, Özcan M, Souza JCM. The impact of inorganic fillers, organic content, and polymerization mode on the degree of conversion of monomers in resin-matrix cements for restorative dentistry: a scoping review. Clin Oral Investig 2024; 28:454. [PMID: 39066793 PMCID: PMC11283416 DOI: 10.1007/s00784-024-05829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The main aim of the present study was to carry out a scoping review on the differences in degree of conversion of monomers regarding several types resin cements, indirect restorative materials, and light-curing procedures used in dentistry. METHOD A bibliographic review was performed on PubMed using the following search items: "degree of conversion" OR "filler" AND "resin cement" OR "inorganic cement" AND "organic" OR "radiopacity" OR "refractive" OR "transmittance" OR "type" AND "resin composite." The search involved articles published in English language within the last thirteen years. A research question has been formulated following the PICO approach as follow: "How different is the degree of conversion of monomers comparing several types of resin-matrix cements?". RESULTS Within the 15 selected studies, 8 studies reported a high degree of conversion (DC) of the organic matrix ranging from 70 up to 90% while 7 studies showed lower DC values. Dual-cured resin-matrix cements revealed the highest mean values of DC, flexural strength, and hardness when compared with light- and self-polymerized ones. DC mean values of resin-matrix cements light-cured through a ceramic veneer with 0.4 mm thickness were higher (~ 83%) than those recorded for resin-matrix cements light-cured through a thicker ceramic layer of 1.5 mm (~ 77%). CONCLUSIONS The highest percentage of degree of conversion of monomers was reported for dual-cured resin-matrix cements and therefore both chemical and light-induced pathways promoted an enhanced polymerization of the material. Similar degree of conversion of the same resin-matrix cement were recorded when the prosthetic structure showed a low thickness. On thick prosthetic structures, translucent materials are required to allow the light transmission achieving the resin-matrix cement. CLINICAL RELEVANCE The chemical composition of resin-matrix cements and the light-curing mode can affect the polymerization of the organic matrix. Thus, physical properties of the materials can vary leading to early clinical failures at restorative interfaces. Thus, the analysis of the polymerization pathways of resin-matrix cements is significantly beneficial for the clinical performance of the restorative interfaces.
Collapse
Affiliation(s)
- Marcionilia Santos
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Rita Fidalgo-Pereira
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal
| | - Orlanda Torres
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Oscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mutlu Özcan
- Clinic for Masticatory Disorders and Dental Biomaterials, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Júlio C M Souza
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal.
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal.
| |
Collapse
|
3
|
Rady D, Albar N, Khayat W, Khalil M, Raafat S, Ramadan M, Saber S, Shamel M. Evaluation of dental pulp stem cells response to flowable nano-hybrid dental composites: A comparative analysis. PLoS One 2024; 19:e0303154. [PMID: 38739591 PMCID: PMC11090312 DOI: 10.1371/journal.pone.0303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.
Collapse
Affiliation(s)
- Dina Rady
- Faculty of Dentistry, Oral Biology Department, Cairo University, Cairo, Egypt
- Faculty of Dentistry, Stem Cells and Tissue Engineering Research Group, Cairo University, Cairo, Egypt
| | - Nassreen Albar
- Restorative Department/ Operative, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Waad Khayat
- Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mennatullah Khalil
- Hamdan Bin Mohamed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
- Faculty of Dentistry, Dental Biomaterials Department, Fayoum University, Fayoum, Egypt
| | - Shereen Raafat
- Faculty of Dentistry, Pharmacology Department, The British University in Egypt (BUE), El Sherouk City, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Mohamed Ramadan
- Specialized Dental Hospital, Armed Forces Medical Complex, Cairo, Egypt
| | - Shehabeldin Saber
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt
- Faculty of Dentistry, Department of Endodontics, The British University in Egypt (BUE), El Sherouk City, Egypt
- Faculty of Dentistry, Department of Endodontics, Ain Shams University, Cairo, Egypt
| | - Mohamed Shamel
- Faculty of Dentistry, Oral Biology Department, The British University in Egypt, El Sherouk City, Egypt
| |
Collapse
|
4
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2024. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
5
|
Dantagnan CA, Babajko S, Nassif A, Houari S, Jedeon K, François P, Dursun E, Attal JP, Bosco J. Analysis of Resin-Based Dental Materials' Composition Depending on Their Clinical Applications. Polymers (Basel) 2024; 16:1022. [PMID: 38674942 PMCID: PMC11053636 DOI: 10.3390/polym16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of this study was to detail the monomer composition of resin-based dental materials sold in the market in 2023 and to evaluate the proportion of bisphenol A (BPA)-derivatives in relation to their applications. A search on manufacturers' websites was performed to reference resin-based dental materials currently on the European market (including the European Union (EU) and United Kingdom (UK). Their monomer composition was determined using material-safety data sheets and was completed by a search on the PubMed database. Among the 543 material compositions exploitable, 382 (70.3%) contained BPA derivatives. Among them, 56.2% contained BisGMA and 28% BisEMA, the most frequently reported. A total of 59 monomers, of which six were BPA derivatives, were found. In total, 309 materials (56.9%) contained UDMA and 292 (53.8%) TEGDMA. Less than one third of materials identified contained no BPA derivatives. These proportions vary a lot depending on their applications, with materials dedicated to the dental care of young populations containing the highest proportions of BPA-derivative monomers. The long-term effects on human health of the different monomers identified including BPA-derivative monomers is a source of concern. For children and pregnant or lactating women arises the question of whether to take a precautionary principle and avoid the use of resin-based dental materials likely to release BPA by opting for alternative materials.
Collapse
Affiliation(s)
- Claire-Adeline Dantagnan
- Innovative Dental Materials and Interfaces Research Unit, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (C.-A.D.); philo.franç (P.F.); (E.D.); (J.B.)
- Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (A.N.); (S.H.)
| | - Sylvie Babajko
- Biomedical Research in Odontology, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (S.B.); (K.J.)
| | - Ali Nassif
- Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (A.N.); (S.H.)
- Biomedical Research in Odontology, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (S.B.); (K.J.)
| | - Sophia Houari
- Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (A.N.); (S.H.)
- Biomedical Research in Odontology, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (S.B.); (K.J.)
| | - Katia Jedeon
- Biomedical Research in Odontology, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (S.B.); (K.J.)
- Rothschild Hospital, 5 rue Santerre, 75012 Paris, France
| | - Philippe François
- Innovative Dental Materials and Interfaces Research Unit, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (C.-A.D.); philo.franç (P.F.); (E.D.); (J.B.)
- Bretonneau Hospital, 23 rue Joseph de Maistre, 75018 Paris, France
| | - Elisabeth Dursun
- Innovative Dental Materials and Interfaces Research Unit, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (C.-A.D.); philo.franç (P.F.); (E.D.); (J.B.)
- Henri Mondor Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Jean-Pierre Attal
- Innovative Dental Materials and Interfaces Research Unit, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (C.-A.D.); philo.franç (P.F.); (E.D.); (J.B.)
- Charles Foix Hospital, 7 Avenue de la République, 94200 Ivry sur Seine, France
| | - Julia Bosco
- Innovative Dental Materials and Interfaces Research Unit, Faculty of Dentistry, Université Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France; (C.-A.D.); philo.franç (P.F.); (E.D.); (J.B.)
- Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (A.N.); (S.H.)
| |
Collapse
|
6
|
Ibrahim N, Tariq M, Anjum A, Varshney H, Gaur K, Subhan I, Jyoti S, Siddique YH. Evaluation of the toxic potential of Bisphenol-A glycidylmethacrylate (BisGMA) on the third instar larvae of transgenic Drosophila. Toxicol Res (Camb) 2024; 13:tfae026. [PMID: 38450176 PMCID: PMC10913391 DOI: 10.1093/toxres/tfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction In the present study the cytotoxic and genotoxic effects of Bisphenol-A glycidyl methacrylate (BisGMA) was studied on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Materials and methods The concentration of BisGMA i.e. 0.005, 0.010, 0.015 and 0.020 M were established in diet and the larvae were allowed to feed on it for 24 h. Results A dose dependent significant increase in the activity of β-galactosidase was observed compared to control. A significant dose dependent tissue damage was observed in the larvae exposed to 0.010, 0.015 and 0.020 M of BisGMA compared to control. A dose dependent significant increase in the Oxidative stress markers was observed compared to control. BisGMA also exhibit significant DNA damaged in the third instar larvae of transgenic D. melanogaster (hsp70-lacZ)Bg9 at the doses of 0.010, 0.015 and 0.020 M compared to control. Conclusion BisGMA at 0.010, 0.015 and 0.020 M was found to be cytotoxic for the third instar larvae of transgenic D. melanogaster (hsp70-lacZ) Bg9.
Collapse
Affiliation(s)
- Nabeela Ibrahim
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohammad Tariq
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Arbab Anjum
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Himanshi Varshney
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Kajal Gaur
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Smita Jyoti
- Department of Zoology, School of Sciences, IFTM University, Moradabad, UP, 244102, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
7
|
Pan Y, Wu M, Shi M, Shi P, Zhao N, Zhu Y, Karimi-Maleh H, Ye C, Lin CT, Fu L. An Overview to Molecularly Imprinted Electrochemical Sensors for the Detection of Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2023; 23:8656. [PMID: 37896749 PMCID: PMC10611091 DOI: 10.3390/s23208656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation. Molecularly imprinted electrochemical sensors (MIES) have emerged as a promising tool for BPA detection due to their high selectivity, sensitivity, affordability, and portability. This review provides a comprehensive overview of recent advances in MIES for BPA detection. We discuss the operating principles, fabrication strategies, materials, and methods used in MIES. Key findings show that MIES demonstrate detection limits comparable or superior to conventional methods like HPLC and GC-MS. Selectivity studies reveal excellent discrimination between BPA and structural analogs. Recent innovations in nanomaterials, novel monomers, and fabrication techniques have enhanced sensitivity, selectivity, and stability. However, limitations exist in reproducibility, selectivity, and stability. While challenges remain, MIES provide a low-cost portable detection method suitable for on-site BPA monitoring in diverse sectors. Further optimization of sensor fabrication and characterization will enable the immense potential of MIES for field-based BPA detection.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
8
|
Fidalgo-Pereira R, Carvalho Ó, Catarino SO, Henriques B, Torres O, Braem A, Souza JCM. Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry. Clin Oral Investig 2023; 27:5679-5693. [PMID: 37592003 PMCID: PMC10492747 DOI: 10.1007/s00784-023-05189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVES The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. METHODS Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation's tests, while Vicker's hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey's test (p < 0.05). RESULTS After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78-80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. CONCLUSIONS A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. CLINICAL SIGNIFICANCE The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation.
Collapse
Affiliation(s)
- Rita Fidalgo-Pereira
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Susana O Catarino
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), SC, 88040-900, Florianopolis, Brazil
| | - Orlanda Torres
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
| | - Annabel Braem
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, KU Leuven, 3000, Leuven, Belgium
| | - Júlio C M Souza
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal.
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal.
| |
Collapse
|
9
|
Tapety CM, Carneiro YK, Chagas YM, Souza LC, Souza NDO, Valadas LA. Degree of Conversion and Mechanical Properties of a Commercial Composite with an Advanced Polymerization System. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2023; 36:112-119. [PMID: 37776508 PMCID: PMC10557085 DOI: 10.54589/aol.36/2/112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/01/2023] [Indexed: 10/02/2023]
Abstract
Advanced Polymerization System (APS) technology in a commercial composite resin enables reduction of the concentration of camphorquinone without altering composite physicochemical properties. AIM The aim of this study was to evaluate the degree of conversion and mechanical properties of a commercial composite with an advanced polymerization system (APS) and compare it to other composites that do not use this system. MATERIALS AND METHOD Five groups were analyzed. Group 1 (VT: Vittra APS - FGM); G2 (AU: Aura - SDI); G3 (ES: Quick Sigma Stelite - TOKOYAMA); G4 (FZ: Filtek Z350 XT - 3M ESPE); G5 (OP: Opallis -FGM). Degree of conversion (DC, n=3) was analyzed immediately and after 24h by analysis with FTIR spectroscopy. For Knoop hardness (KHN, n=3), 5 indentations were made at the top and bottom of specimens 2 mm thick. Flexural strength (FS, n=10) was determined by the three-point method in a universal testing machine. Polymerization stress (PS) was determined by light-curing the material (1.0 mm high) between polymethylmethacrylate rods in a universal testing machine. Light curing was performed with a Valo Cordless LED (1,000 mW/cm2 x 20 s: 20J). The results were analyzed using ANOVA and complemented by Tukey's test (α=0.05). RESULTS The highest DC values (immediate and 24h after) were observed for VT and OP resins, followed by FZ, AU and ES. FZ (top and bottom) had the highest KHN values, similar to VT top. AU, ES, OP and VT had statistically different KHN between their top and bottom surfaces. The highest RF values were observed for FZ, followed by OP/VT, ES and AU. The highest TP values were observed for FZ, OP and VT. CONCLUSION The Vittra APS resin with a new polymerization system presents satisfactory performance for the parameters evaluated.
Collapse
Affiliation(s)
- Celiane Mc Tapety
- Universidade Federal do Ceará, Faculdade de Odontologia, Sobral, Brasil
| | - Yvina Kp Carneiro
- Universidade Federal do Ceará, Faculdade de Odontologia, Sobral, Brasil
| | - Yarina M Chagas
- Universidade Federal do Ceará, Faculdade de Odontologia, Sobral, Brasil
| | - Lidiane C Souza
- Universidade Federal do Ceará, Faculdade de Odontologia, Sobral, Brasil
| | - Nayara de O Souza
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Programa de Pós-Graduação em Odontologia, Fortaleza, Brasil
- Faculdade Paulo Picanço, Curso de Odontologia, Fortaleza, Brasil
| | - Lidia Ar Valadas
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Souza JCM, Raffaele-Esposito A, Carvalho O, Silva F, Özcan M, Henriques B. Surface modification of zirconia or lithium disilicate-reinforced glass ceramic by laser texturing to increase the adhesion of prosthetic surfaces to resin cements: an integrative review. Clin Oral Investig 2023:10.1007/s00784-023-05016-z. [PMID: 37069409 DOI: 10.1007/s00784-023-05016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE The purpose of this study was to perform an integrative review on laser texturing the inner surface of lithium disilicate-reinforced glass ceramic or zirconia to increase their bond strength to resin-matrix cements. MATERIALS AND METHOD A bibliographic review was performed on PubMed using the following search terms: "zirconia" OR "lithium disilicate" AND "laser" AND "surface" OR "roughness" AND "bond strength" AND "luting agent" OR "resin cement." Studies published in English language until March 15, 2023, were selected regarding the purpose of this study. RESULTS A total of fifty-six studies were identified althoug thirteen studies were selected. The findings revealed that zirconia surfaces were significantly modified after laser irradiation resulting in macro-scale aligned retentive regions with depth values ranging from 50 to 120 µm. Average roughness values of laser-textured zirconia by Er,Cr:YSGG laser (~ 0.83 µm) were quite similar when compared to grit-blasted zirconia surfaces (~ 0.9 µm) although roughness increased up to 2.4 µm depending on the laser type and parameters. Lithium disilicate-reinforced glass ceramics textured with Er:YAG revealed an average roughness of around 3.5 µm while surfaces textured using Nd:YAG laser revealed an average roughness of 2.69 µm; that was quite similar to the roughness values recorded for etched surfaces (2.64 µm). The shear bond strength (SBS) values of zirconia surfaces textured on Nd:YVO4 laser irradiation were slightly higher (~ 33.5 MPa) than those recorded for grit-blasted zirconia surfaces (28 MPa). Laser-textured zirconia surfaces on CO2 laser revealed higher SBS values (18.1 ±0.8 MPa) than those (9.1 ± 0.56 MPa) recorded for untreated zirconia surfaces. On lithium disilicate-reinforced glass ceramics, higher SBS values to resin-matrix cements were recorded for specimens textured with a combination of fractional CO2 laser irradiation and HF acid etching (~ 22-24 MPa) when compared with grit-blasted specimens (12.2 MPa). Another study revealed SBS values at around 27.5 MPa for Er:YAG-textured lithium disilicate-reinforced glass ceramics to resin-matrix cements. CONCLUSIONS The laser irradiation at high power increases the roughness of the inner surface of lithium disilicate-reinforced glass ceramic or zirconia leading to an enhanced bond strength to resin-matrix cements. Thus, the laser type and irradiation parameters can be adjusted to enhance the macro- and micro-scale retention of zirconia and glass ceramic surfaces to resin-matrix cements. CLINICAL RELEVANCE Alternative methods for surface modification of lithium disilicate-reinforced glass ceramic and zirconia surfaces have been assessed to provide proper morphological aspects for enhanced adhesion to resin-matrix cements. An increase in the bond strength of glass ceramics or zirconia to resin-matrix cements can improve the long-term performance of cemented prosthetic structures in the oral cavity.
Collapse
Affiliation(s)
- Júlio C M Souza
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
- LABBELS Associate Laboratory, University of Minho, 4710-057, Guimarães, Portugal.
- University Institute of Health Sciences (IUCS), CESPU, Gandra, PRD, 4585-116, Portugal.
| | | | - Oscar Carvalho
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057, Guimarães, Portugal
| | - Filipe Silva
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057, Guimarães, Portugal
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, 8032, Zurich, Switzerland.
| | - Bruno Henriques
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
11
|
Martinez-Gonzalez M, Fidalgo-Pereira RC, Torres O, Silva F, Henriques B, Özcan M, Souza JCM. Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells. Odontology 2023; 111:310-327. [PMID: 36370322 DOI: 10.1007/s10266-022-00758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The main aim of this study was to perform an integrative review on the toxic effects of resin-matrix cements and their products in contact with fibroblasts or mesenchymal cells. A bibliographic search was performed on PubMed using the following search terms: "cytotoxicity" AND "fibroblast" OR "epithelial" OR "mesenchymal" AND "polymerization" OR "degree of conversion" OR "methacrylate" OR "monomer" AND "resin cement" OR "resin-based cement". The initial search in the available database yielded a total of 277 articles of which 21 articles were included in this review. A decrease in the viability of mouse fibroblasts ranged between 13 and 15% that was recorded for different resin-matrix cements after light curing exposure for 20 s. The viability of human fibroblasts was recorded at 83.11% after light curing for 20 s that increased up to 90.9% after light curing exposure for 40 s. Most of the studies linked the highest toxicity levels when the cells were in contact with Bis-GMA followed by UDMA, TEGDMA and HEMA. Resin-matrix cements cause a cytotoxic reaction when in contact with fibroblasts or mesenchymal cells due to the release of monomers from the polymeric matrix. The amount of monomers released from the resin matrix and their cytotoxicity depends on the polymerization parameters.
Collapse
Affiliation(s)
| | - Rita C Fidalgo-Pereira
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
- Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Orlanda Torres
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Filipe Silva
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Júlio C M Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal.
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal.
| |
Collapse
|
12
|
Della Rocca Y, Traini EM, Diomede F, Fonticoli L, Trubiani O, Paganelli A, Pizzicannella J, Marconi GD. Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics 2023; 15:pharmaceutics15030908. [PMID: 36986769 PMCID: PMC10053246 DOI: 10.3390/pharmaceutics15030908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. The purpose of this review is to analyze the mechanism of action of bisphenol A, with a special focus on mesenchymal stromal/stem cells (MSCs) and adipogenesis. Its uses will be assessed in various fields: dental, orthopedic, and industrial. The different pathological or physiological conditions altered by BPA and the related molecular pathways will be taken into consideration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (O.T.); (A.P.)
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
- Correspondence: (O.T.); (A.P.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
13
|
Magalhães T, Fidalgo-Pereira R, Torres O, Carvalho Ó, Silva FS, Henriques B, Özcan M, Souza JCM. Microscopic Inspection of the Adhesive Interface of Composite Onlays after Cementation on Low Loading: An In Vitro Study. J Funct Biomater 2023; 14:jfb14030148. [PMID: 36976072 PMCID: PMC10058625 DOI: 10.3390/jfb14030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Purpose: This study aimed to assess the layer thickness and microstructure of traditional resin-matrix cements and flowable resin-matrix composites at dentin and enamel to composite onlay interfaces after cementation on low loading magnitude. Materials and Methods: Twenty teeth were prepared and conditioned with an adhesive system for restoration with resin-matrix composite onlays manufactured by CAD-CAM. On cementation, tooth-to-onlay assemblies were distributed into four groups, including two traditional resin-matrix cements (groups M and B), one flowable resin-matrix composite (group G), and one thermally induced flowable composite (group V). After the cementation procedure, assemblies were cross-sectioned for inspection by optical microscopy at different magnification up to ×1000. Results: The layer thickness of resin-matrix cementation showed the highest mean values at around 405 µm for a traditional resin-matrix cement (group B). The thermally induced flowable resin-matrix composites showed the lowest layer thickness values. The resin-matrix layer thickness revealed statistical differences between traditional resin cement (groups M and B) and flowable resin-matrix composites (groups V and G) (p < 0.05). However, the groups of flowable resin-matrix composites did not reveal statistical differences (p < 0.05). The thickness of the adhesive system layer at around 7 µm and 12 µm was lower at the interfaces with flowable resin-matrix composites when compared to the adhesive layer at resin-matrix cements, which ranged from 12 µm up to 40 µm. Conclusions: The flowable resin-matrix composites showed adequate flowing even though the loading on cementation was performed at low magnitude. Nevertheless, significant variation in thickness of the cementation layer was noticed for flowable resin-matrix composites and traditional resin-matrix cements that can occur in chair-side procedures due to the clinical sensitivity and differences in rheological properties of the materials.
Collapse
Affiliation(s)
- Tiago Magalhães
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
| | - Rita Fidalgo-Pereira
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| | - Orlanda Torres
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
| | - Óscar Carvalho
- Centre for MicroElectromechanical Systems (CMEMS-UMINHO), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Filipe S. Silva
- Centre for MicroElectromechanical Systems (CMEMS-UMINHO), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Henriques
- Centre for MicroElectromechanical Systems (CMEMS-UMINHO), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianopolis 88040-900, Brazil
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Júlio C. M. Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
- Centre for MicroElectromechanical Systems (CMEMS-UMINHO), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
14
|
Fidalgo-Pereira R, Torres O, Carvalho Ó, Silva FS, Catarino SO, Özcan M, Souza JCM. A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1560. [PMID: 36837188 PMCID: PMC9961405 DOI: 10.3390/ma16041560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In dentistry, clinicians mainly use dual-cured or light-cured resin-matrix cements to achieve a proper polymerization of the organic matrix leading to enhanced physical properties of the cement. However, several parameters can affect the polymerization of resin-matrix cements. The main aim of the present study was to perform a scoping review on the degree of conversion (DC) of the organic matrix, the polymerization, and the light transmittance of different resin-matrix cements used in dentistry. A search was performed on PubMed using a combination of the following key terms: degree of conversion, resin cements, light transmittance, polymerization, light curing, and thickness. Articles in the English language published up to November 2022 were selected. The selected studies' results demonstrated that restorative structures with a thickness higher than 1.5 mm decrease the light irradiance towards the resin-matrix cement. A decrease in light transmission provides a low energy absorption through the resin cement leading to a low DC percentage. On the other hand, the highest DC percentages, ranging between 55 and 75%, have been reported for dual-cured resin-matrix cements, although the polymerization mode and exposure time also influence the DC of monomers. Thus, the polymerization of resin-matrix cements can be optimized taking into account different parameters of light-curing, such as adequate light distance, irradiance, exposure time, equipment, and wavelength. Then, optimum physical properties are achieved that provide a long-term clinical performance of the cemented restorative materials.
Collapse
Affiliation(s)
- Rita Fidalgo-Pereira
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| | - Orlanda Torres
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Susana O. Catarino
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Júlio C. M. Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| |
Collapse
|
15
|
Ozkan A, Çakır DA, Tezel H, Sanajou S, Yirun A, Baydar T, Erkekoglu P. Dental Implants and Implant Coatings: A Focus on Their Toxicity and Safety. J Environ Pathol Toxicol Oncol 2023; 42:31-48. [PMID: 36749088 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dental implants are medical devices that are surgically inserted into the patient's jawbone by an orthodontist to act as roots of missing teeth. After the implantation, the maxilla or mandible integrates with the surface of the dental implant. This process, called "osseointegration," is an important period to ensure the long-term use of dental implants and prevent implant failures. Metal implants are the most used implant materials. However, they have disadvantages such as corrosion, metal ion release from metal implant surfaces and associated toxicity. To avoid these adverse effects and improve osseointegration, alternative dental implant materials such as ceramics, polymers, composites, and novel surface modification technologies have been developed. The safety of these materials are also of concern for toxicologists. This review will give general information about dental implant materials, osseointegration and successful implantation process. Moreover, we will focus on the new surface coatings materials for of dental implants and their toxicity and safety concerns will be discussed.
Collapse
Affiliation(s)
- Atakan Ozkan
- TOBB University of Economics and Technology, Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| | - Deniz Arca Çakır
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey; Hacettepe University Vaccine Institute, Department of Vaccinology, Ankara, Turkey
| | - Hülya Tezel
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Sonia Sanajou
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Anil Yirun
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey; Çukurova University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Adana, Turkey
| | - Terken Baydar
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey; Hacettepe University Vaccine Institute, Department of Vaccinology, Ankara, Turkey
| |
Collapse
|
16
|
TOU GADA, GOMES JM, RINCO LSDO, YAMAUTI M, DINIZ IMA, PIRES F, SCHMIDT MEP, MENEZES HC, CARDEAL ZDL, BOTTOLI CBG, MACARI S. Release of leachable products from resinous compounds in the saliva of children with anterior open bite treated with spur. J Appl Oral Sci 2023; 30:e20220227. [PMID: 36753069 PMCID: PMC9936797 DOI: 10.1590/1678-7757-2022-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. METHODOLOGY Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. RESULTS The levels of BisGMA (1.74±0.27 μg/mL), TEGDMA (2.29±0.36 μg/mL), and BPA (3.264±0.88 μg/L) in the saliva after 30 min, in comparison to baseline (0±0 μg/mL, 0±0 μg/mL, and 1.15±0.21 μg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. CONCLUSION Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.
Collapse
Affiliation(s)
- Gabriel Antônio dos Anjos TOU
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - José Messias GOMES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Luiza Santana de Oliveira RINCO
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Mônica YAMAUTI
- Hokkaido UniversitySchool of DentistryDepartment of Restorative DentistrySapporoJapanHokkaido University, School of Dentistry, Department of Restorative Dentistry, Sapporo, Japan.
| | - Ivana Márcia Alves DINIZ
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Fabiane PIRES
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Marcella Emilia Petra SCHMIDT
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Helvécio Costa MENEZES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Zenilda de Lourdes CARDEAL
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Carla Beatriz Grespan BOTTOLI
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Soraia MACARI
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| |
Collapse
|
17
|
Matsuura T, Komatsu K, Ogawa T. N-Acetyl Cysteine-Mediated Improvements in Dental Restorative Material Biocompatibility. Int J Mol Sci 2022; 23:ijms232415869. [PMID: 36555541 PMCID: PMC9781091 DOI: 10.3390/ijms232415869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Correspondence: ; Tel.: +1-310-794-7653; Fax: +1-310-825-6345
| |
Collapse
|
18
|
Root canal disinfection and maintenance of the remnant tooth tissues by using grape seed and cranberry extracts. Odontology 2022:10.1007/s10266-022-00766-w. [DOI: 10.1007/s10266-022-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
|
19
|
Biodegradation of Dental Resin-Based Composite—A Potential Factor Affecting the Bonding Effect: A Narrative Review. Biomedicines 2022; 10:biomedicines10092313. [PMID: 36140414 PMCID: PMC9496159 DOI: 10.3390/biomedicines10092313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, although resin composite has played an important role in the restoration of tooth defects, it still has several disadvantages, including being biodegraded by saliva, bacteria and other enzymes in the oral cavity, which may result in repair failure. This factor is not conducive to the long-term survival of the prosthesis in the mouth. In this article, we review the causes, influencing factors and prevention methods of resin biodegradation. Biodegradation is mainly caused by esterase in saliva and bacteria, which breaks the ester bond in resin and causes the release of monomers. The mechanical properties of the prosthesis can then be affected. Meanwhile, cathepsin and MMPs are activated on the bonding surface, which may decompose the dentin collagen. In addition, neutrophils and residual water on the bonding surface can also aggravate biodegradation. Currently, the primary methods to prevent biodegradation involve adding antibacterial agents to resin, inhibiting the activity of MMPs and enhancing the crosslinking of collagen fibers. All of the above indicates that in the preparation and adhesion of resin materials, attention should be paid to the influence of biodegradation to improve the prosthesis’s service life in the complex environment of the oral cavity.
Collapse
|
20
|
Li YZ, Wu ZY, Zhu BQ, Wang YX, Kan YQ, Zeng HC. The BDNF-TrkB-CREB Signalling Pathway Is Involved in Bisphenol S-Induced Neurotoxicity in Male Mice by Regulating Methylation. TOXICS 2022; 10:toxics10080413. [PMID: 35893846 PMCID: PMC9331819 DOI: 10.3390/toxics10080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted. We recorded the body weight, organ index, and hippocampal pathology and ultrastructure of the mice. The BDNF, TrkB, CREB, phosphorylated (p)-CREB, DNMTs (DNA methyltransferases) levels were determined by qRT-PCR and/or Western blotting. BDNF promoter IV methylation level was detected by bisulfite sequencing PCR. BPS damaged the mouse hippocampus ultrastructure and reduced the number of synapses. Further, it increased the methylation rate of BDNF promoter IV; downregulated BDNF, CREB, p-CREB/CREB and DNMT1 expression; and upregulated DNMT3a and DNMT3b expression. Therefore, we speculate that the BDNF-TrkB-CREB pathway may be involved in BPS-induced neurotoxicity in male mice by regulating methylation.
Collapse
Affiliation(s)
- Yi-Zhou Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Bi-Qi Zhu
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China;
| | - Yu-Xiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Correspondence:
| |
Collapse
|
21
|
Lopes-Rocha L, Hernandez C, Gonçalves V, Pinho T, Tiritan ME. Analytical Methods for Determination of BPA Released from Dental Resin Composites and Related Materials: A Systematic Review. Crit Rev Anal Chem 2022; 54:653-668. [PMID: 35776702 DOI: 10.1080/10408347.2022.2093097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Knowing the impacts of bisphenol A (BPA) on human health, this systematic review aimed to gather the analytical methods for the quantification of BPA release of BPA in dental materials in in vitro and in vivo (biological fluids) studies. A brief critical discussion of the impacts of BPA on human health and the possible association with BPA in dental materials was also presented. The research was carried out by three independent researchers, (according to PRISMA guidelines) in PUBMED and SCOPUS databases, by searching for specific keywords and articles published between January 2011 and February 2022. Seventeen articles met the eligibility criteria and were included in this systematic review: 10 in vitro and 7 in vivo. In in vitro studies, the highest amounts of BPA released were from flowable to conventional resins, followed by resin-modified glass ionomer. In contrast, the smallest amount was released from "BPA-free" composites and CAD-CAM blocks. Regarding in vivo studies, a higher concentration of BPA were found in saliva than urine or blood. The best analytical method for trace quantifying BPA is LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) due to its selectivity, low quantification limits, and the unequivocal identification. However, further studies are required to develop faster and more sensitive methods, in order to obtain more reliable results.
Collapse
Affiliation(s)
- Lígia Lopes-Rocha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Clara Hernandez
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Virgínia Gonçalves
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Teresa Pinho
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- IBMC-Institute of Molecular and Cellular Biology, i3S-Institute of Innovation and Research in Health, Oporto University, Porto, Portugal
| | - Maria Elizabeth Tiritan
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- Faculty of Pharmacy, University of Porto (FFUP), Portugal. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Fidalgo-Pereira R, Carpio D, Torres O, Carvalho O, Silva F, Henriques B, Özcan M, Souza JCM. The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: an integrative review. Clin Oral Investig 2022; 26:5575-5594. [PMID: 35767045 DOI: 10.1007/s00784-022-04589-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The objective of this study was to perform an integrative review on the effect the inorganic fillers on the light transmission through the resin-matrix composites during the light-curing procedure. METHOD A bibliographic review was performed on PubMed using the following search terms: "fillers" OR "particle" AND "light curing" OR "polymerization" AND "light transmission" OR "light absorption" OR "light irradiance" OR "light attenuation" OR "light diffusion" AND "resin composite." The search involved articles published in English language in the last 10 years. RESULTS Selected studies reported a decrease in biaxial strength and hardness in traditional resin-matrix composites in function of the depth of polymerization. However, there were no significant differences in biaxial strength and hardness recorded along the polymerization depth of Bulk-Fill™ composites. Strength and hardness were enhanced by increasing the size and content of inorganic fillers although some studies revealed a progressive decrease in the degree of conversion on increasing silica particle size. The translucency of glass-ceramic spherical fillers promoted light diffusion mainly in critical situations such as in the case of deep proximal regions of resin-matrix composites. CONCLUSIONS The amount of light transmitted through the resin-matrix composites is influenced by the size, content, microstructure, and shape of the inorganic filler particles. The decrease of the degree of conversion affects negatively the physical and mechanical properties of the resin-matrix composites. CLINICAL RELEVANCE The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization. As a consequence, the clinical performance of resin-matrix composites can be compromised leading to variable physical properties and degradation. The polymerization mode of resin-matrix composites can be improved according to the type of inorganic fillers in their chemical composition.
Collapse
Affiliation(s)
- Rita Fidalgo-Pereira
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, PRD, Portugal
| | - Daniela Carpio
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, PRD, Portugal
| | - Orlanda Torres
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, PRD, Portugal
| | - Oscar Carvalho
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Filipe Silva
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mutlu Özcan
- Dental Materials Unit, Center of Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, 8032, Zurich, Switzerland
| | - Júlio C M Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, PRD, Portugal.
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal.
| |
Collapse
|
23
|
Cunha W, Carvalho O, Henriques B, Silva FS, Özcan M, Souza JCM. Surface modification of zirconia dental implants by laser texturing. Lasers Med Sci 2022; 37:77-93. [PMID: 35022871 DOI: 10.1007/s10103-021-03475-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
The aim of this work was to perform an integrative literature review on the influence of laser irradiation on zirconia implants to enhance surface topographic aspects and the biological response for osseointegration. An electronic search was carried out on the PubMed database using the following search terms: "zirconia" AND "laser" AND "surface modification" OR "surface treatment" AND "dental implants" OR "bone" OR "osteoblast" OR "osseointegration." Of the identified articles, 12 studies were selected in this review. Results reported that the laser irradiation was capable of promoting changes on the zirconia surfaces regarding topographic aspects, roughness, and wettability. An increase in roughness was recorded at micro- and nano-scale and it resulted in an enhanced wettability and biological response. Also, adhesion, spreading, proliferation, and differentiation of osteogenic cells were also enhanced after laser irradiation mainly by using a femtosecond laser at 10nJ and 80 MHz. After 3 months of osseointegration, in vivo studies in dogs revealed a similar average percentage of bone-to-implant contact (BIC) on zirconia surfaces (around 47.9 ± 16%) when compared to standard titanium surfaces (61.73 ±16.27%), denoting that there is no significant difference between such different materials. The laser approach revealed several parameters that can be used for zirconia surface modification such as irradiation intensity, time, and frequency. Laser irradiation parameters can be optimized and well-controlled to reach desirable surface morphologic aspects and biological response concerning the osseointegration process.
Collapse
Affiliation(s)
- Welson Cunha
- School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Oscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.,Ceramic and Composite Materials Research Group (CERMAT), Dept. of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, 88040-900, Brazil
| | - Filipe S Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, Center of Dental Medicine, University of Zürich, Zürich, 8032, Switzerland
| | - Júlio C M Souza
- School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal. .,Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
| |
Collapse
|
24
|
Attik N, Colon P, Gauthier R, Chevalier C, Grosgogeat B, Abouelleil H. Comparison of physical and biological properties of a flowable fiber reinforced and bulk filling composites. Dent Mater 2021; 38:e19-e30. [PMID: 34961643 DOI: 10.1016/j.dental.2021.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate in vitro the mechanical, biological, and polymerization behavior of a flowable bulk-fill composite with fibers as a dispersed phase. METHODS EverX Flow™ (GC Corporation) (EXF), one conventional bulk-fill composite (Filtek™ Bulk Fill Posterior Restorative, 3 M (FBF)), and one flowable bulk composite without fibers (SDR® flow+, Dentsply (SDR)) were tested. Samples were characterized in terms of flexural strength (ISO 4049), fracture toughness (ISO 20795-1), and Vickers hardness. Polymerization stress and volumetric shrinkage were evaluated. The in vitro biological assessment was achieved on cultured primary Human Gingival Fibroblast cells (HGF). The cell metabolic activity was evaluated using Alamar Blue assay at 1, 3, and 5 days of contact to the 3 tested composite extracts (ISO 10993) and cell morphology was evaluated by confocal microscopy. Data were submitted to One-Way analysis of variance (ANOVA) and independent t-test (α = 0.05). RESULTS FBF showed statistically higher Vickers hardness and flexural modulus than EXF and SDR. However, EXF showed statistically higher KIC than FBF and SDR. EXF had the statistically highest shrinkage stress values and FBF the lowest. Archimedes volumetric shrinkage showed significantly lower values for FBF as compared to the other two composites. Slight cytotoxic effect was observed for the three composites at day one. An enhancement of metabolic activity at day 5 was observed in cells treated with EXF extracts. SIGNIFICANCE EXF had a significantly higher fracture toughness validating its potential use as a restorative material in stress bearing areas. EXF showed higher shrinkage stress values, and less cytotoxic effect. Fiber reinforced flowable composite is mainly indicated for deep and large cavities, signifying the importance for assessing its shrinkage stress and biological behavior.
Collapse
Affiliation(s)
- Nina Attik
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Cedex 08, Lyon, 69372 France.
| | - Pierre Colon
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France; Assistance Publique-Hôpitaux de Paris, Hôpital Rothschild, Service d'Odontologie, Université de Paris, Faculté dentaire, Paris, France
| | - Rémy Gauthier
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France
| | - Charlène Chevalier
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France
| | - Brigitte Grosgogeat
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Cedex 08, Lyon, 69372 France; Hospices Civils de Lyon, Service d'Odontologie, 69007 Lyon, France
| | - Hazem Abouelleil
- Université de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Cedex 08, Lyon, 69372 France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Cedex 08, Lyon, 69372 France
| |
Collapse
|
25
|
Release of Bisphenol A from Pit and Fissure Sealants According to Different pH Conditions. Polymers (Basel) 2021; 14:polym14010037. [PMID: 35012059 PMCID: PMC8747188 DOI: 10.3390/polym14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in intraoral pH can cause changes in the chemical decomposition and surface properties of treated resin-based pits and fissure sealants (sealant). The purpose of this study is to evaluate the release of bisphenol A (BPA) from sealants under three different pH conditions over time. The test specimen was applied with 6 sealants 5 mg each on a glass plate (10 × 10 mm) and photopolymerized. The samples were immersed for 10 min, 1 h, and 24 h in solutions of pH 3.0, 6.5, and 10.0 at 37 °C. BPA release was measured using a gas chromatography-mass spectrometer. A statistical analysis was performed by two-way ANOVA and one-way ANOVA to verify the effect of pH conditions and time on BPA release. The BPA concentration in the pH 3.0 group was higher at all points than with pH 6.5 and pH 10.0 (p < 0.05), and gradually increased over time (p < 0.05). As a result, it was confirmed that low pH negatively influences BPA release. Therefore, frequent exposure to low pH due to the consumption of various beverages after sealant treatment can negatively affect the sealant’s chemical stability in the oral cavity.
Collapse
|
26
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. A comparative in vitro study on monomer release from bisphenol A-free and conventional temporary crown and bridge materials. Eur J Oral Sci 2021; 129:e12826. [PMID: 34879174 DOI: 10.1111/eos.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the release of common monomers from two conventional and two bisphenol A (BPA)-free temporary crown and bridge materials. Cylindrical samples of all materials were prepared (N = 90; five samples for each material and cycle of analysis). All samples were immersed in high-performance liquid chromatography (HPLC)-grade water and incubated for 1 h, 12 h, 24 h, and 7 days in an incubation shaker at 37°C and 112 rpm. Extraction was performed in accordance with ISO 10993-12. Eluted monomers were detected and quantified by HPLC coupled with ultraviolet-visible spectroscopy and mass spectrometry (HPLC-UV/Vis-MS). Analysis of BPA was performed by HPLC coupled with ultraviolet-visible spectroscopy (HPLC-UV/Vis) and positive results were verified by HPLC-tandem mass spectrometry (HPLC-MS/MS). Neither bisphenol A-glycidyl methacrylate (Bis-GMA) nor BPA was quantifiable in any of the crown and bridge samples investigated in the present study. However, all samples contained triethylene glycol dimethacrylate (TEGDMA) and/or urethane dimethacrylate (UDMA) after 24 h of incubation. Statistical analysis showed that significantly more UDMA was released from the BPA-free materials than from the conventional materials. All concentrations of UDMA measured were below the effective cytotoxic concentrations previously reported. However, for a few materials, especially BPA-free temporary crown and bridge materials, the levels of UDMA were above previously reported potentially harmful concentrations for local cells. As BPA-free materials were introduced as being more biocompatible than materials containing BPA, substitution of Bis-GMA with UDMA should be further investigated.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Surface modification of glass fiber-reinforced composite posts to enhance their bond strength to resin-matrix cements: an integrative review. Clin Oral Investig 2021; 26:95-107. [PMID: 34713360 DOI: 10.1007/s00784-021-04221-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endodontically treated teeth usually can reveal an extensive loss of dental structure and require the use of intraradicular posts to provide adequate support and retention. Retention of the post depends on the surface treatment of the endodontic post itself and on the root canal dentin as well as on the type of resin-matrix cement. PURPOSE The main aim of this study was to conduct an integrative review on the influence of different surface treatment methods of glass fiber-reinfored resin composite (GFRC) posts on their push-out bond strength to resin-matrix cements in endodontically treated teeth rehabiliation. METHOD A literature search was performed on PubMed (via National Library of Medicine) regarding articles published within the last 10 years, using the following combination of search terms: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" OR "glass fiber" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "push out". RESULTS Results from the selected studies recorded the highest push-out bond strength around 22.5 MPa) on GFRC posts to resin-matrix cements when the surfaces were pre-treated by grit-blasting with silicate followed by silane conditioning. However, high values of push-out bond strength (21.5 MPa) were also noticed for GFRC posts after etching with hydrogen peroxide followed by silance conditioning. Thus, the highest values of bond strength of endodontic posts to the resin-matrix cements were recorded when a combined physico-chemical approach was assessed. Non-treated surfaces showed the lowest bond strength values between 5 to and 9 MPa. Surface analyses of GFRC posts showed an increased roughness after grit-blasting or etching that promoted a mechanical interlocking of the adhesive and resin-matrix cements. CONCLUSION The combined treatment of glass fiber-reinforced resin composite post surfaces by physical and chemical methods can promote the increase in roughness and chemical functionalization of the surfaces prior to cementation., That results in a high mechanical interlocking of the resin-matrix cements and a stable retention of the teeth root intracanal posts. CLINICAL RELEVANCE Combining chemical and physical modification methods of surfaces can provide the most promising adhesion-enhancing pathways of GFRC posts to resin-matrix cements, that can decrease the risk of clinical failures by fracture and detachment of endodontic posts.
Collapse
|
28
|
The resin-matrix cement layer thickness resultant from the intracanal fitting of teeth root canal posts: an integrative review. Clin Oral Investig 2021; 25:5595-5612. [PMID: 34432138 DOI: 10.1007/s00784-021-04070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study was to perform an integrative review on the layer thickness and microstructure of resin-matrix cements around custom-made or standard teeth root intracanal posts. MATERIALS AND METHODS An electronic search was conducted on the PubMed using a combination of the following scientific terms: intraradicular post, root intracanal post, resin cement, thickness, adaptation, endodontic post, layer thickness, fit, shape, and endodontic core. The literature selection criteria accepted articles published in the English language, up to May 2021, involving in vitro analyses, meta-analyses, randomized controlled trials, and prospective cohort studies. RESULTS The search identified 154 studies, of which 24 were considered relevant to this study. The selected studies provided important data considering cement layer thickness, tooth preparation, endodontic post, and type of resin-matrix cement. The anatomical variability of root canal systems, such as the oval- or C-shaped, represents a challenge in dental restoration with tooth root intracanal posts. The fitting of intracanal posts to different root regions is variable resulting in thick and irregular layers of resin-matrix cement. Defects like pores, micro-cracks, and micro-gaps were detected in the resin-matrix cement microstructure and represent spots of stress concentration and fracture. Custom-made tooth root intracanal posts provide a proper fitting and decrease the layer thickness of resin-matrix cement. CONCLUSIONS In fact, the layer thickness of resin-matrix cements depends on the fitting of endodontic posts to tooth root canals. An increase of resin cement thickness causes the appearance of defects like pores, micro-cracks, and micro-gaps that can induce stress concentration and fractures at interfaces. CLINICAL RELEVANCE The fitting of the endodontic post into the teeth root canal determine the layer thickness of the resin-matrix cement to establish an adequate retention. However, the increase in the thickness of the resin-matrix cement layer can lead to a high number of defects like pores or cracks and therefore decrease the strength of the interface.
Collapse
|