1
|
Zieba J, Nevarez L, Wachtell D, Martin JH, Kot A, Wong S, Cohn DH, Krakow D. Altered Sox9 and FGF signaling gene expression in Aga2 OI mice negatively affects linear growth. JCI Insight 2023; 8:e171984. [PMID: 37796615 PMCID: PMC10721276 DOI: 10.1172/jci.insight.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is a disorder characterized by bone fragility and increased fracture incidence. All forms of OI also feature short stature, implying an effect on endochondral ossification. Using the Aga2+/- mouse, which has a mutation in type I collagen, we show an affected growth plate primarily due to a shortened proliferative zone. We used single-cell RNA-Seq analysis of tibial and femoral growth plate tissues to understand transcriptional consequences on growth plate cell types. We show that perichondrial cells, which express abundant type I procollagen, and growth plate chondrocytes, which were found to express low amounts of type I procollagen, had ER stress and dysregulation of the same unfolded protein response pathway as previously demonstrated in osteoblasts. Aga2+/- proliferating chondrocytes showed increased FGF and MAPK signaling, findings consistent with accelerated differentiation. There was also increased Sox9 expression throughout the growth plate, which is expected to accelerate early chondrocyte differentiation but reduce late hypertrophic differentiation. These data reveal that mutant type I collagen expression in OI has an impact on the cartilage growth plate. These effects on endochondral ossification indicate that OI is a biologically complex phenotype going beyond its known impacts on bone to negatively affect linear growth.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Lisette Nevarez
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Davis Wachtell
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander Kot
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Sereen Wong
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Obstetrics and Gynecology and
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Liu H, Liu Y, Jin SG, Johnson J, Xuan H, Lu D, Li J, Zhai L, Li X, Zhao Y, Liu M, Craig SEL, Floramo JS, Molchanov V, Li J, Li JD, Krawczyk C, Shi X, Pfeifer GP, Yang T. TRIM28 secures skeletal stem cell fate during skeletogenesis by silencing neural gene expression and repressing GREM1/AKT/mTOR signaling axis. Cell Rep 2023; 42:112012. [PMID: 36680774 PMCID: PMC11339952 DOI: 10.1016/j.celrep.2023.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Long bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential. Moreover, TRIM28 loss causes hyperexpression of GREM1, which is an extracellular signaling factor promoting SSC self-renewal and SSC neurogenic potential by activating AKT/mTORC1 signaling. Our results suggest that TRIM28-mediated chromatin silencing establishes a barrier for maintaining the SSC lineage trajectory and preventing a transition to ectodermal fate by regulating both intrinsic and microenvironment cues.
Collapse
Affiliation(s)
- Huadie Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ye Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jianshuang Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xianfeng Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yaguang Zhao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Joseph S Floramo
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jie Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jia-Da Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
3
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Pušić M, Brezak M, Vukasović Barišić A, Vučković M, Kostešić P, Šećerović A, Matičić D, Ivković A, Urlić I. Morphological and Molecular Evaluation of the Tissue Repair following Nasal Septum Biopsy in a Sheep Model. Cartilage 2021; 13:521S-529S. [PMID: 34541930 PMCID: PMC8804720 DOI: 10.1177/19476035211046040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Nasal septal pathologies requiring surgical intervention are common in the population. Additionally, nasal chondrocytes are becoming an important cell source in cartilage tissue engineering strategies for the repair of articular cartilage lesions. These procedures damage the nasal septal cartilage whose healing potential is limited due to its avascular, aneural, and alymphatic nature. Despite the high incidence of various surgical interventions that affect septum cartilage, limited nasal cartilage repair characterizations have been performed to date. METHODS To evaluate the healing of the nasal septum cartilage perforation, a septal biopsy was performed in 14 sheep. Two and 6 months later, the tissue formed on the place of perforation was explanted and compared with the native tissue. Tissue morphology, protein and gene expression of explanted tissue was determined using histological, immunohistochemical and real-time quantitative polymerase chain reaction analysis. RESULTS Tissue formed on the defect site, 2 and 6 months after the biopsy was characterized as mostly connective tissue with the presence of fibroblastic cells. This newly formed tissue contained no glycosaminoglycans and collagen type II but was positively stained for collagen type I. Cartilage-specific genes COL2, AGG, and COMP were significantly decreased in 2- and 6-month samples compared with the native nasal cartilage. Levels of COL1, COL4, and CRABP1 genes specific for perichondrium and connective tissue were higher in both test group samples in comparison with native cartilage. CONCLUSIONS Newly formed tissue was not cartilage but rather fibrous tissue suggesting the role of perichondrium and mucosa in tissue repair after nasal septum injury.
Collapse
Affiliation(s)
- Maja Pušić
- Department of Biology, Faculty of
Science, University of Zagreb, Zagreb, Croatia
| | - Matea Brezak
- Department of Biology, Faculty of
Science, University of Zagreb, Zagreb, Croatia
| | | | - Mirta Vučković
- Clinic for Surgery, Ophthalmology and
Orthopaedics, Veterinary Faculty, University of Zagreb, Zagreb, Croatia
| | - Petar Kostešić
- Clinic for Surgery, Ophthalmology and
Orthopaedics, Veterinary Faculty, University of Zagreb, Zagreb, Croatia
| | - Amra Šećerović
- Department of Histology and Embryology,
School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dražen Matičić
- Clinic for Surgery, Ophthalmology and
Orthopaedics, Veterinary Faculty, University of Zagreb, Zagreb, Croatia
| | - Alan Ivković
- Department of Histology and Embryology,
School of Medicine, University of Zagreb, Zagreb, Croatia,Department of Orthopaedic Surgery,
University Hospital Sveti Duh, Zagreb, Croatia,University of Applied Health Sciences,
Zagreb, Croatia
| | - Inga Urlić
- Department of Biology, Faculty of
Science, University of Zagreb, Zagreb, Croatia,Inga Urlić, Faculty of Science, University
of Zagreb, Horvatovac 102a, Zagreb, 10000, Croatia.
| |
Collapse
|
5
|
Dou Z, Muder D, Baroncelli M, Bendre A, Gkourogianni A, Ottosson L, Vedung T, Nilsson O. Rat perichondrium transplanted to articular cartilage defects forms articular-like, hyaline cartilage. Bone 2021; 151:116035. [PMID: 34111644 DOI: 10.1016/j.bone.2021.116035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Perichondrium autotransplants have been used to reconstruct articular surfaces destroyed by infection or trauma. However, the role of the transplanted perichondrium in the healing of resurfaced joints has not been investigated. DESIGN Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. RESULTS Tracing of transplanted cells showed that both perichondrium and periosteum transplant-derived cells made up the large majority of the cells in the regenerated joint surfaces. Perichondrium transplants contained SOX9 positive cells and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive and Col1a1-negative chondrocytes and a matrix rich in proteoglycans. At later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. Periosteum transplants initially lacked SOX9 expression and despite a transient increase in SOX9 expression and chondrogenic differentiation, remained Col1a1 positive, and were continuously thinning as periosteum-derived cells were incorporated into the subchondral compartment. CONCLUSIONS Perichondrium and periosteum transplanted to articular cartilage defects did not just stimulate regeneration but were themselves transformed into cartilaginous articular surfaces. Perichondrium transplants developed into an articular-like, hyaline cartilage, whereas periosteum transplants appeared to produce a less resilient fibro-cartilage.
Collapse
Affiliation(s)
- Zelong Dou
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Daniel Muder
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Orthopedics, Falu Lasarett, Lasarettsvägen 10, 791 82, Falun, Sweden
| | - Marta Baroncelli
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Ameya Bendre
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Alexandra Gkourogianni
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lars Ottosson
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Torbjörn Vedung
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Elisabeth Hospital, Aleris Healthcare, Uppsala, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology and Center for Molecular Medicine, L8:01, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden; School of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden.
| |
Collapse
|
6
|
Ain NU, Baroncelli M, Costantini A, Ishaq T, Taylan F, Nilsson O, Mäkitie O, Naz S. Novel form of rhizomelic skeletal dysplasia associated with a homozygous variant in GNPNAT1. J Med Genet 2021; 58:351-356. [PMID: 32591345 DOI: 10.1136/jmedgenet-2020-106929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Studies exploring molecular mechanisms underlying congenital skeletal disorders have revealed novel regulators of skeletal homeostasis and shown protein glycosylation to play an important role. OBJECTIVE To identify the genetic cause of rhizomelic skeletal dysplasia in a consanguineous Pakistani family. METHODS Clinical investigations were carried out for four affected individuals in the recruited family. Whole genome sequencing (WGS) was completed using DNA from two affected and two unaffected individuals from the family. Sequencing data were processed, filtered and analysed. In silico analyses were performed to predict the effects of the candidate variant on the protein structure and function. Small interfering RNAs (siRNAs) were used to study the effect of Gnpnat1 gene knockdown in primary rat chondrocytes. RESULTS The patients presented with short stature due to extreme shortening of the proximal segments of the limbs. Radiographs of one individual showed hip dysplasia and severe platyspondyly. WGS data analyses identified a homozygous missense variant c.226G>A; p.(Glu76Lys) in GNPNAT1, segregating with the disease. Glucosamine 6-phosphate N-acetyltransferase, encoded by the highly conserved gene GNPNAT1, is one of the enzymes required for synthesis of uridine diphosphate N-acetylglucosamine, which participates in protein glycosylation. Knockdown of Gnpnat1 by siRNAs decreased cellular proliferation and expression of chondrocyte differentiation markers collagen type 2 and alkaline phosphatase, indicating that Gnpnat1 is important for growth plate chondrocyte proliferation and differentiation. CONCLUSIONS This study describes a novel severe skeletal dysplasia associated with a biallelic, variant in GNPNAT1. Our data suggest that GNPNAT1 is important for growth plate chondrogenesis.
Collapse
Affiliation(s)
- Noor Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marta Baroncelli
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tayyaba Ishaq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ola Nilsson
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University and Örebro University Hospital, Örebro, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 2021; 12:362. [PMID: 33441552 PMCID: PMC7806634 DOI: 10.1038/s41467-020-20598-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Chia-Lung Wu
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14627, USA
| | - Amanda Dicks
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Nancy Steward
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Ruhang Tang
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Dakota B Katz
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Yun-Rak Choi
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Orthopaedic Surgery, Yonsei University, Seoul, South Korea
| | - Farshid Guilak
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA.
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Ain NU, Muhammad N, Dianatpour M, Baroncelli M, Iqbal M, Fard MAF, Bukhari I, Ahmed S, Hajipour M, Tabatabaie Z, Foroutan H, Nilsson O, Faghihi MA, Makitie O, Naz S. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum Mutat 2021; 42:89-101. [PMID: 33252156 DOI: 10.1002/humu.24139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 11/07/2022]
Abstract
Skeletal dysplasias are a heterogeneous group of disorders ranging from mild to lethal skeletal defects. We investigated two unrelated families with individuals presenting with a severe skeletal disorder. In family NMD02, affected individuals had a dysostosis multiplex-like skeletal dysplasia and severe short stature (<-8.5 SD). They manifested increasingly coarse facial features, protruding abdomens, and progressive skeletal changes, reminiscent of mucopolysaccharidosis. The patients gradually lost mobility and the two oldest affected individuals died in their twenties. The affected child in family ID01 had coarse facial features and severe skeletal dysplasia with clinical features similar to mucopolysaccharidosis. She had short stature, craniosynostosis, kyphoscoliosis, and hip-joint subluxation. She died at the age of 5 years. Whole-exome sequencing identified two homozygous variants c.133C>T; p.(Arg45Trp) and c.215dupA; p.(Tyr72Ter), respectively, in the two families, affecting an evolutionary conserved gene TMEM251 (NM_001098621.1). Immunofluorescence and confocal studies using human osteosarcoma cells indicated that TMEM251 is localized to the Golgi complex. However, p.Arg45Trp mutant TMEM251 protein was targeted less efficiently and the localization was punctate. Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Our work implicates TMEM251 in the pathogenesis of a novel disorder and suggests its potential function in chondrocyte differentiation.
Collapse
Affiliation(s)
- Noor U Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niaz Muhammad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Baroncelli
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Muddassar Iqbal
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sufian Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | | - Hamidreza Foroutan
- Laparoscopy research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ola Nilsson
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- School of Medical Sciences, Örebro University and Örebro University Hospital, Örebro, Sweden
| | | | - Outi Makitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Asnaghi MA, Power L, Barbero A, Haug M, Köppl R, Wendt D, Martin I. Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Front Bioeng Biotechnol 2020; 8:283. [PMID: 32318561 PMCID: PMC7154140 DOI: 10.3389/fbioe.2020.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
The definition of quality controls for cell therapy and engineered product manufacturing processes is critical for safe, effective, and standardized clinical implementation. Using the example context of cartilage grafts engineered from autologous nasal chondrocytes, currently used for articular cartilage repair in a phase II clinical trial, we outlined how gene expression patterns and generalized linear models can be introduced to define molecular signatures of identity, purity, and potency. We first verified that cells from the biopsied nasal cartilage can be contaminated by cells from a neighboring tissue, namely perichondrial cells, and discovered that they cannot deposit cartilaginous matrix. Differential analysis of gene expression enabled the definition of identity markers for the two cell populations, which were predictive of purity in mixed cultures. Specific patterns of expression of the same genes were significantly correlated with cell potency, defined as the capacity to generate tissues with histological and biochemical features of hyaline cartilage. The outlined approach can now be considered for implementation in a good manufacturing practice setting, and offers a paradigm for other regenerative cellular therapies.
Collapse
Affiliation(s)
- M Adelaide Asnaghi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Power
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Haug
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Ruth Köppl
- Otorhinolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - David Wendt
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|