1
|
Dimori M, Toulany M, Sultana LS, Onal M, Thostenson JD, Carroll JL, O'Brien CA, Morello R. A new Col1a1 conditional knock-in mouse model to study osteogenesis imperfecta. J Bone Miner Res 2024; 40:114-124. [PMID: 39566076 DOI: 10.1093/jbmr/zjae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Osteogenesis imperfecta (OI) constitutes a family of bone fragility disorders characterized by both genetic and clinical heterogeneity. Several different mouse models reproduce the classic features of OI, and the most commonly studied carry either a spontaneous or genetically induced pathogenic variant in the Col1a1 or Col1a2 gene. When OI is caused by primary alterations of type I collagen, it represents a systemic connective tissue disease that, in addition to the skeleton, also affects several extra-skeletal tissues and organs, such as skin, teeth, lung, heart, and others, where the altered type I collagen is also expressed. Currently, existing mouse models harbor a disease-causing genetic variant in all tissues and do not allow assessing the primary vs secondary consequences of the mutation on a specific organ/system. Here, we describe the generation of the first conditional knock-in allele for Col1a1 that can express a severe OI-causing glycine substitution (p.Gly1146Arg) in the triple helical region of α1(I) but only after Cre-driven recombination in the tissue of choice. We called this new dominant allele Col1a1G1146R-Floxed/+ and introduced it into the murine model. We describe its validation by crossing mice carrying this allele with EIIA-Cre expressing mice and showing that offspring with the recombined allele reproduce the classic features of a severe form of OI. The new mouse model will be useful to study the tissue-specific impact of this severe mutation on organs, such as the lung, the heart, and others.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Mahtab Toulany
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Lira Samia Sultana
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Melda Onal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jeff D Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - John L Carroll
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Roy Morello
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
2
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
3
|
Kaspiris A, Vasiliadis ES, Tsalimas G, Melissaridou D, Lianou I, Panagopoulos F, Katzouraki G, Vavourakis M, Kolovos I, Savvidou OD, Papadimitriou E, Pneumaticos SG. Unraveling the Link of Altered TGFβ Signaling with Scoliotic Vertebral Malformations in Osteogenesis Imperfecta: A Comprehensive Review. J Clin Med 2024; 13:3484. [PMID: 38930011 PMCID: PMC11204596 DOI: 10.3390/jcm13123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Osteogenesis Imperfecta (OI) is a genetic disorder caused by mutations in genes responsible for collagen synthesis or polypeptides involved in the formation of collagen fibers. Its predominant skeletal complication is scoliosis, impacting 25 to 80% of OI patients. Vertebral deformities of the scoliotic curves in OI include a variety of malformations such as codfish, wedged-shaped vertebrae or platyspondyly, craniocervical junction abnormalities, and lumbosacral spondylolysis and spondylolisthesis. Although the precise pathophysiology of these spinal deformities remains unclear, anomalies in bone metabolism have been implicated in the progression of scoliotic curves. Bone Mineral Density (BMD) measurements have demonstrated a significant reduction in the Z-score, indicating osteoporosis and a correlation with the advancement of scoliosis. Factors such as increased mechanical strains, joint hypermobility, lower leg length discrepancy, pelvic obliquity, spinal ligament hypermobility, or vertebrae microfractures may also contribute to the severity of scoliosis. Histological vertebral analysis has confirmed that changes in trabecular microarchitecture, associated with inadequate bone turnover, indicate generalized bone metabolic defects in OI. At the molecular level, the upregulation of Transforming Growth factor-β (TGFβ) signaling in OI can lead to disturbed bone turnover and changes in muscle mass and strength. Understanding the relationship between spinal clinical features and molecular pathways could unveil TGFβ -related molecular targets, paving the way for novel therapeutic approaches in OI.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
- Laboratory of Molecular Pharmacology, Group for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Elias S. Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Ioanna Lianou
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Fotios Panagopoulos
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Galateia Katzouraki
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Group for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
4
|
Fujii Y, Okabe I, Hatori A, Sah SK, Kanaujiya J, Fisher M, Norris R, Terasaki M, Reichenberger EJ, Chen IP. Skeletal abnormalities caused by a Connexin43 R239Q mutation in a mouse model for autosomal recessive craniometaphyseal dysplasia. RESEARCH SQUARE 2024:rs.3.rs-3906170. [PMID: 38405920 PMCID: PMC10889043 DOI: 10.21203/rs.3.rs-3906170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and flaring metaphyses of long bones. Many patients with CMD suffer from neurological symptoms. To date, the pathogenesis of CMD is not fully understood. Treatment is limited to decompression surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a R239Q mutation in CX43. Cx43KI/KI mice replicate many features of AR CMD in craniofacial and long bones. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones, leading to an expanded bone marrow cavity and increased cortical bone thickness. Although formation of Cx43+/+ and Cx43KI/KI resting OCs are comparable, on bone chips the actively resorbing Cx43KI/KI OCs resorb less bone. Cortical bones of Cx43KI/KI mice have an increase in degenerating osteocytes and empty lacunae. Osteocyte dendrite formation is decreased with reduced expression levels of Fgf23, Sost, Tnf-α, IL-1β, Esr1, Esr2, and a lower Rankl/Opg ratio. Female Cx43KI/KI mice display a more severe phenotype. Sexual dimorphism in bone becomes more evident as mice age. Our data show that the CX43R239Q mutation results in mislocalization of CX43 protein and impairment of gap junction and hemichannel activity. Different from CX43 ablation mouse models, the CX43R239Q mutation leads to the AR CMD-like phenotype in Cx43KI/KI mice not only by loss-of-function but also via a not yet revealed dominant function.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Iichiro Okabe
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Ayano Hatori
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Shyam Kishor Sah
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Jitendra Kanaujiya
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Melanie Fisher
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Ernst J. Reichenberger
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - I-Ping Chen
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
5
|
Alshamsi MAH, Mosa KA, Khan AA, Mousa M, Ali MA, Soliman SSM, Semreen MH. Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells. Curr Pharm Biotechnol 2024; 25:1333-1347. [PMID: 37612859 DOI: 10.2174/1389201024666230823094412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. OBJECTIVES The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. METHODS AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GCMS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription- quantitative polymerase chain reaction (RT-qPCR). RESULTS The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. CONCLUSION C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.
Collapse
Affiliation(s)
- Mohamed A H Alshamsi
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates
| | - Muna A Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Kaya S, Alliston T, Evans DS. Genetic and Gene Expression Resources for Osteoporosis and Bone Biology Research. Curr Osteoporos Rep 2023; 21:637-649. [PMID: 37831357 PMCID: PMC11098148 DOI: 10.1007/s11914-023-00821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| |
Collapse
|
7
|
Fratzl-Zelman N, Linglart A, Bin K, Rauch F, Blouin S, Coutant R, Donzeau A. Combination of osteogenesis imperfecta and hypophosphatasia in three children with multiple fractures, low bone mass and severe osteomalacia, a challenge for therapeutic management. Eur J Med Genet 2023; 66:104856. [PMID: 37758163 DOI: 10.1016/j.ejmg.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria.
| | - Agnès Linglart
- AP-HP, Paris Saclay University, INSERM, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, Platform of Expertise for Rare Diseases, OSCAR Filière, EndoERN and BOND ERN Center, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, France
| | - Kim Bin
- Pediatric Orthopedic Surgery Angers University Hospital, Angers, France
| | - Frank Rauch
- Shriners Hospital for Children, Canada, Montreal, QC, Canada
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Régis Coutant
- AP-HP, Paris Saclay University, INSERM, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, Platform of Expertise for Rare Diseases, OSCAR Filière, EndoERN and BOND ERN Center, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, France; Department of Pediatric Endocrinology and Diabetology, Competence Center for Rare Diseases of the Calcium and Phosphate Metabolism, Angers University Hospital, Angers, France
| | - Aurélie Donzeau
- Department of Pediatric Endocrinology and Diabetology, Competence Center for Rare Diseases of the Calcium and Phosphate Metabolism, Angers University Hospital, Angers, France
| |
Collapse
|
8
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
9
|
Ali M, Lee Y, Ha B, Jung J, Lee BY, Kim DS, Lee MY, Kim YS. The bone-protective benefits of amino-conjugated calcium in an ovariectomized (OVX) rat model. Life Sci 2023; 328:121927. [PMID: 37437650 DOI: 10.1016/j.lfs.2023.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Low bone density, fragility, and microarchitectural disintegration are the symptoms of osteoporosis. An imbalance between bone growth and resorption can lead to osteoporosis. This study evaluated the effects of amino-calcium (AC) on bone protection in ovariectomized control group (NC) rats. Amino-calcium (AC) was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), and nuclear magnetic resonance spectroscopy analyses (NMR). After determining the biocompatibility of amino-calcium (AC) with MC3T3-E1 cells, alkaline phosphatase staining revealed significant changes on day 7. Three of the four groups underwent ovariectomy, whereas one group received a placebo. On micro-computed tomography, in vivo, data showed increased bone volume fraction in the femoral head and shaft areas in the amino-calcium (AC) group. Hematoxylin and eosin staining showed a bone mass and architectural protection in the amino-calcium (AC) group compared with the calcium carbonate and OVX control group. RNA sequencing analysis revealed high expression of osteogenesis-related genes in MC3T3-E1 cells. RNA sequencing revealed a significant fold change in the expression of integrin-binding sialoprotein (IBSP), bone gamma-carboxyglutamate proteins 1 and 2(BGLAP1 and BGLAP2), and periostin (POSTN). The study concluded that supplementing the OVX rats with calcium enhanced bone protection.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Youri Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Bin Ha
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Yeol Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; BTN Co., Ltd., 407ho, Entrepreneurship Hall, 22 Soonchunhyang-ro, Asan, Chungnam 31538, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
10
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
12
|
Misof BM, Roschger P, Mähr M, Fratzl-Zelman N, Glorieux FH, Hartmann MA, Rauch F, Blouin S. Accelerated mineralization kinetics in children with osteogenesis imperfecta type 1. Bone 2023; 166:116580. [PMID: 36210024 DOI: 10.1016/j.bone.2022.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria.
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Matthias Mähr
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, QC H4A 0A9, Canada
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, QC H4A 0A9, Canada
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
13
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
14
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
15
|
Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, Hartmann MA, Zwerina J, Fratzl-Zelman N, Marini JC. Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone 2022; 162:116451. [PMID: 35654352 PMCID: PMC11162744 DOI: 10.1016/j.bone.2022.116451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8 weeks of age. METHODS We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4 weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8 weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4 weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.
Collapse
Affiliation(s)
- Ghazal Hedjazi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA.
| |
Collapse
|
16
|
Zhou J, He Z, Cui J, Liao X, Cao H, Shibata Y, Miyazaki T, Zhang J. Identification of mechanics-responsive osteocyte signature in osteoarthritis subchondral bone. Bone Joint Res 2022; 11:362-370. [PMID: 35678241 PMCID: PMC9233409 DOI: 10.1302/2046-3758.116.bjr-2021-0436.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative joint disease. The osteocyte transcriptome is highly relevant to osteocyte biology. This study aimed to explore the osteocyte transcriptome in subchondral bone affected by OA. Methods Gene expression profiles of OA subchondral bone were used to identify disease-relevant genes and signalling pathways. RNA-sequencing data of a bone loading model were used to identify the loading-responsive gene set. Weighted gene co-expression network analysis (WGCNA) was employed to develop the osteocyte mechanics-responsive gene signature. Results A group of 77 persistent genes that are highly relevant to extracellular matrix (ECM) biology and bone remodelling signalling were identified in OA subchondral lesions. A loading responsive gene set, including 446 principal genes, was highly enriched in OA medial tibial plateaus compared to lateral tibial plateaus. Of this gene set, a total of 223 genes were identified as the main contributors that were strongly associated with osteocyte functions and signalling pathways, such as ECM modelling, axon guidance, Hippo, Wnt, and transforming growth factor beta (TGF-β) signalling pathways. We limited the loading-responsive genes obtained via the osteocyte transcriptome signature to identify a subgroup of genes that are highly relevant to osteocytes, as the mechanics-responsive osteocyte signature in OA. Based on WGCNA, we found that this signature was highly co-expressed and identified three clusters, including early, late, and persistently responsive genes. Conclusion In this study, we identified the mechanics-responsive osteocyte signature in OA-lesioned subchondral bone. Cite this article: Bone Joint Res 2022;11(6):362–370.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan.,Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Cui
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoling Liao
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Duran I, Zieba J, Csukasi F, Martin JH, Wachtell D, Barad M, Dawson B, Fafilek B, Jacobsen CM, Ambrose CG, Cohn DH, Krejci P, Lee BH, Krakow D. 4-PBA Treatment Improves Bone Phenotypes in the Aga2 Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:675-686. [PMID: 34997935 PMCID: PMC9018561 DOI: 10.1002/jbmr.4501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogenous disorder most often due to heterozygosity for mutations in the type I procollagen genes, COL1A1 or COL1A2. The disorder is characterized by bone fragility leading to increased fracture incidence and long-bone deformities. Although multiple mechanisms underlie OI, endoplasmic reticulum (ER) stress as a cellular response to defective collagen trafficking is emerging as a contributor to OI pathogenesis. Herein, we used 4-phenylbutiric acid (4-PBA), an established chemical chaperone, to determine if treatment of Aga2+/- mice, a model for moderately severe OI due to a Col1a1 structural mutation, could attenuate the phenotype. In vitro, Aga2+/- osteoblasts show increased protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation protein levels, which improved upon treatment with 4-PBA. The in vivo data demonstrate that a postweaning 5-week 4-PBA treatment increased total body length and weight, decreased fracture incidence, increased femoral bone volume fraction (BV/TV), and increased cortical thickness. These findings were associated with in vivo evidence of decreased bone-derived protein levels of the ER stress markers binding immunoglobulin protein (BiP), CCAAT/-enhancer-binding protein homologous protein (CHOP), and activating transcription factor 4 (ATF4) as well as increased levels of the autophagosome marker light chain 3A/B (LC3A/B). Genetic ablation of CHOP in Aga2+/- mice resulted in increased severity of the Aga2+/- phenotype, suggesting that the reduction in CHOP observed in vitro after treatment is a consequence rather than a cause of reduced ER stress. These findings suggest the potential use of chemical chaperones as an adjunct treatment for forms of OI associated with ER stress. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Jorge H Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Davis Wachtell
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christina M Jacobsen
- Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
20
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
Moffatt P, Boraschi-Diaz I, Bardai G, Rauch F. Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 2021; 148:115940. [PMID: 33812081 DOI: 10.1016/j.bone.2021.115940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that is most often caused by mutations in collagen type I encoding genes. Even though bone fragility is the most conspicuous finding in OI, the muscle system is also affected. In the present study we explored the muscle phenotype related to collagen type I mutations on the transcriptome level. RNA sequencing was performed in gastrocnemius muscles of homozygous oim mice and of heterozygous Jrt mice, two models of severe OI. We found that oim and Jrt mice shared 27 differentially expressed genes, of which 11 were concordantly upregulated and 15 concordantly downregulated. Gene Set Enrichment Analysis revealed that in both oim and Jrt mice, genes involved in 'metabolism of lipids' were significantly enriched among upregulated genes. In addition, several genes coding for extracellular matrix components were upregulated in both oim and Jrt mice. Among downregulated genes, genes involved in 'muscle contraction' were enriched in both OI mouse models. These 'muscle contraction' genes coded for slow-twitch type I muscle fiber components. Another shared downregulated gene was Mss51, a metabolic stress-inducible factor that is found in mitochondria. These data show that two mouse models of severe OI share abnormalities in the expression of genes that code for extracellular matrix proteins, lipid and energy metabolism and structural proteins of type I muscle fibers. The muscle disturbances resulting from the collagen type I mutations in these mouse models could be viewed as a mild form of muscle dystrophy.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Moffatt P, Boraschi-Diaz I, Marulanda J, Bardai G, Rauch F. Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta. Int J Mol Sci 2021; 22:ijms22105290. [PMID: 34069814 PMCID: PMC8157281 DOI: 10.3390/ijms22105290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a bone fragility disorder that is usually caused by mutations affecting collagen type I. We compared the calvaria bone tissue transcriptome of male 10-week-old heterozygous Jrt (Col1a1 mutation) and homozygous oim mice (Col1a2 mutation) to their respective littermate results. We found that Jrt and oim mice shared 185 differentially expressed genes (upregulated: 106 genes; downregulated: 79 genes). A total of seven genes were upregulated by a factor of two or more in both mouse models (Cyp2e1, Slc13a5, Cgref1, Smpd3, Ifitm5, Cthrc1 and Rerg). One gene (Gypa, coding for a blood group antigen) was downregulated by a factor of two or more in both OI mouse models. Overrepresentation analyses revealed that genes involved in ‘ossification’ were significantly overrepresented among upregulated genes in both Jrt and oim mice, whereas hematopoietic genes were downregulated. Several genes involved in Wnt signaling and transforming growth factor beta signaling were upregulated in oim mice, but less so in Jrt mice. Thus, this study identified a set of genes that are dysregulated across various OI mouse models and are likely to play an important role in the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Juliana Marulanda
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Correspondence: ; Tel.: +1-514-282-7193
| |
Collapse
|
23
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
24
|
Mähr M, Blouin S, Behanova M, Misof BM, Glorieux FH, Zwerina J, Rauch F, Hartmann MA, Fratzl-Zelman N. Increased Osteocyte Lacunae Density in the Hypermineralized Bone Matrix of Children with Osteogenesis Imperfecta Type I. Int J Mol Sci 2021; 22:ijms22094508. [PMID: 33925942 PMCID: PMC8123504 DOI: 10.3390/ijms22094508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (−10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.
Collapse
Affiliation(s)
- Matthias Mähr
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Stéphane Blouin
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Martina Behanova
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Barbara M. Misof
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Francis H. Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, ON H4A 0A9, Canada; (F.H.G.); (F.R.)
| | - Jochen Zwerina
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, ON H4A 0A9, Canada; (F.H.G.); (F.R.)
| | - Markus A. Hartmann
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Nadja Fratzl-Zelman
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
- Correspondence: ; Tel.: +43-5-9393-55770
| |
Collapse
|
25
|
Intracellular and Extracellular Markers of Lethality in Osteogenesis Imperfecta: A Quantitative Proteomic Approach. Int J Mol Sci 2021; 22:ijms22010429. [PMID: 33406681 PMCID: PMC7795927 DOI: 10.3390/ijms22010429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.
Collapse
|
26
|
Takeyari S, Kubota T, Ohata Y, Fujiwara M, Kitaoka T, Taga Y, Mizuno K, Ozono K. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 2021; 296:100027. [PMID: 33154166 PMCID: PMC7948972 DOI: 10.1074/jbc.ra120.014709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
27
|
Zhytnik L, Maasalu K, Reimann E, Märtson A, Kõks S. RNA sequencing analysis reveals increased expression of interferon signaling genes and dysregulation of bone metabolism affecting pathways in the whole blood of patients with osteogenesis imperfecta. BMC Med Genomics 2020; 13:177. [PMID: 33228694 PMCID: PMC7684725 DOI: 10.1186/s12920-020-00825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder in which the patients suffer from numerous fractures, skeletal deformities and bluish sclera. The disorder ranges from a mild form to severe and lethal cases. The main objective of this pilot study was to compare the blood transcriptional landscape of OI patients with COL1A1 pathogenic variants and their healthy relatives, in order to find out different gene expression and dysregulated molecular pathways in OI. METHODS We performed RNA sequencing analysis of whole blood in seven individuals affected with different OI severity and their five unaffected relatives from the three families. The data was analyzed using edgeR package of R Bioconductor. Functional profiling and pathway analysis of the identified differently expressed genes was performed with g:GOSt and MinePath web-based tools. RESULTS We identified 114 differently expressed genes. The expression of 79 genes was up-regulated, while 35 genes were down-regulated. The functional analysis identified a presence of dysregulated interferon signaling pathways (IFI27, IFITM3, RSAD12, GBP7). Additionally, the expressions of the genes related to extracellular matrix organization, Wnt signaling, vitamin D metabolism and MAPK-ERK 1/2 pathways were also altered. CONCLUSIONS The current pilot study successfully captured the differential expression of inflammation and bone metabolism pathways in OI patients. This work can contribute to future research of transcriptional bloodomics in OI. Transcriptional bloodomics has a strong potential to become a major contributor to the understanding of OI pathological mechanisms, the discovery of phenotype modifying factors, and the identification of new therapeutic targets. However, further studies in bigger cohorts of OI patients are needed to confirm the findings of the current work.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
28
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
29
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
30
|
Bellido T, Delgado-Calle J. Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus 2020; 4:JBM410345. [PMID: 32161838 PMCID: PMC7059827 DOI: 10.1002/jbm4.10345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Teresita Bellido
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Division of Endocrinology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA
| | - Jesus Delgado-Calle
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA.,Division of Hematology/Oncology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
31
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|