1
|
Matsuzaka T, Matsugaki A, Ishihara K, Nakano T. Osteogenic tailoring of oriented bone matrix organization using on/off micropatterning for osteoblast adhesion on titanium surfaces. Acta Biomater 2025; 192:487-500. [PMID: 39644943 DOI: 10.1016/j.actbio.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Titanium (Ti) implants are well known for their mechanical reliability and chemical stability, crucial for successful bone regeneration. Various shape control and surface modification techniques to enhance biological activity have been developed. Despite the crucial importance of the collagen/apatite bone microstructure for mechanical function, antimicrobial properties, and biocompatibility, precise and versatile pattern control for regenerating the microstructure remains challenging. Here, we developed a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces genetic-level control of oriented bone matrix organization. This biomaterial was created by micropatterning 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer onto a titanium (Ti) surface through a selective photoreaction. The stripe-micropatterned MPC-Ti substrate establishes a distinct interface for cell adhesion, robustly inducing osteoblast cytoskeleton alignment through actin cytoskeletal alignment, and facilitating the formation of a bone-mimicking-oriented collagen/apatite tissue. Moreover, our study revealed that this bone alignment process is promoted through the activation of the Wnt/β-catenin signaling pathway, which is triggered by nuclear deformation induced by strong cellular alignment guidance. This innovative material is essential for personalized next-generation medical devices, offering high customizability and active restoration of the bone microstructure. STATEMENT OF SIGNIFICANCE: This study demonstrates a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces osteoblast alignment and bone matrix orientation based on genetic mechanism. By employing a light-reactive MPC polymer, we successfully micropatterned the titanium surface, creating a biomaterial that stimulates unidirectional osteoblast alignment and enhances the formation of natural bone-mimetic anisotropic microstructures. The innovative approach of regulating cell adhesion and cytoskeletal alignment activates the Wnt/β-catenin signaling pathway, crucial for both bone differentiation and orientation. This study presents the first biomaterial that artificially induces the construction of mechanically superior anisotropic bone tissue, and it is expected to promote functional bone regeneration by enhancing bone differentiation and orientation-targeting both the quantity and quality of bone tissue.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Raja Somu D, Fuentes M, Lou L, Agarwal A, Porter M, Merk V. Revealing chemistry-structure-function relationships in shark vertebrae across length scales. Acta Biomater 2024; 189:377-387. [PMID: 39349113 DOI: 10.1016/j.actbio.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Shark cartilage presents a complex material composed of collagen, proteoglycans, and bioapatite. In the present study, we explored the link between microstructure, chemical composition, and biomechanical function of shark vertebral cartilage using Polarized Light Microscopy (PLM), Atomic Force Microscopy (AFM), Confocal Raman Microspectroscopy, and Nanoindentation. Our investigation focused on vertebrae from Blacktip and Shortfin Mako sharks. As typical representatives of the orders Carcharhiniformes and Lamniformes, these species differ in preferred habitat, ecological role, and swimming style. We observed structural variations in mineral organization and collagen fiber arrangement using PLM and AFM. In both sharks, the highly calcified corpus calcarea shows a ridged morphology, while a chain-like network is present in the less mineralized intermedialia. Raman spectromicroscopy demonstrates a relative increase of glucosaminocycans (GAGs) with respect to collagen and a decrease in mineral-rich zones, underlining the role of GAGs in modulating bioapatite mineralization. Region-specific testing confirmed that intravertebral variations in mineral content and arrangement result in distinct nanomechanical properties. Local Young's moduli from mineralized regions exceeded bulk values by a factor of 10. Overall, this work provides profound insights into a flexible yet strong biocomposite, which is crucial for the extraordinary speed of cartilaginous fish in the worlds' oceans. STATEMENT OF SIGNIFICANCE: Shark cartilage is a morphologically complex material composed of collagen, sulfated proteoglycans, and calcium phosphate minerals. This study explores the link between microstructure, chemical composition, and biological mechanical function of shark vertebral cartilage at the micro- and nanometer scale in typical Carcharhiniform and Lamniform shark species, which represent different vertebral mineralization morphologies, swimming styles and speeds. By studying the intricacies of shark vertebrae, we hope to lay the foundation for biomimetic composite materials that harness lamellar reinforcement and tailored stiffness gradients, capable of dynamic and localized adjustments during movement.
Collapse
Affiliation(s)
- Dawn Raja Somu
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Malena Fuentes
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Marianne Porter
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Vivian Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
4
|
Wang J, Ishimoto T, Matsuzaka T, Matsugaki A, Ozasa R, Matsumoto T, Hayashi M, Kim HS, Nakano T. Adaptive enhancement of apatite crystal orientation and Young's modulus under elevated load in rat ulnar cortical bone. Bone 2024; 181:117024. [PMID: 38266952 DOI: 10.1016/j.bone.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Functional adaptation refers to the active modification of bone structure according to the mechanical loads applied daily to maintain its mechanical integrity and adapt to the environment. Functional adaptation relates to bone mass, bone mineral density (BMD), and bone morphology (e.g., trabecular bone architecture). In this study, we discovered for the first time that another form of bone functional adaptation of a cortical bone involves a change in bone quality determined by the preferential orientation of apatite nano-crystallite, a key component of the bone. An in vivo rat ulnar axial loading model was adopted, to which a 3-15 N compressive load was applied, resulting in approximately 440-3200 μɛ of compression in the bone surface. In the loaded ulnae, the degree of preferential apatite c-axis orientation along the ulnar long axis increased in a dose-dependent manner up to 13 N, whereas the increase in BMD was not dose-dependent. The Young's modulus along the same direction was enhanced as a function of the degree of apatite orientation. This finding indicates that bone has a mechanism that modifies the directionality (anisotropy) of its microstructure, strengthening itself specifically in the loaded direction. BMD, a scalar quantity, does not allow for load-direction-specific strengthening. Functional adaptation through changes in apatite orientation is an excellent strategy for bones to efficiently change their strength in response to external loading, which is mostly anisotropic.
Collapse
Affiliation(s)
- Jun Wang
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Material Science and Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Aluminium Research Center, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hyoung Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Watanabe R, Matsugaki A, Gokcekaya O, Ozasa R, Matsumoto T, Takahashi H, Yasui H, Nakano T. Host bone microstructure for enhanced resistance to bacterial infections. BIOMATERIALS ADVANCES 2023; 154:213633. [PMID: 37775399 DOI: 10.1016/j.bioadv.2023.213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including β-defensin 2 and β-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.
Collapse
Affiliation(s)
- Ryota Watanabe
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ozkan Gokcekaya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Hidekazu Yasui
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Mihara Y, Ishimoto T, Ozasa R, Omura T, Yamato Y, Yamada T, Okamoto A, Matsuyama Y, Nakano T. Deterioration of apatite orientation in the cholecystokinin B receptor gene (Cckbr)-deficient mouse femurs. J Bone Miner Metab 2023; 41:752-759. [PMID: 37676507 DOI: 10.1007/s00774-023-01460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The discrepancy between bone mineral density (BMD), the gold standard for bone assessment, and bone strength is a constraint in diagnosing bone function and determining treatment strategies for several bone diseases. Gastric hypochlorhydria induced by clinically used proton pump inhibitor (PPI) therapy indicates a discordance between changes in BMD and bone strength. Here, we used Cckbr-deficient mice with gastric hypochlorhydria to examine the effect of gastric hypochlorhydria on bone mass, BMD, and preferential orientation of the apatite crystallites, which is a strong indicator of bone strength. MATERIALS AND METHODS Cckbr-deficient mice were created, and their femurs were analyzed for BMD and preferential orientation of the apatite c-axis along the femoral long axis. RESULTS Cckbr-deficient mouse femurs displayed a slight osteoporotic bone loss at 18 weeks of age; however, BMD was comparable to that of wild-type mice. In contrast, apatite orientation in the femur mid-shaft significantly decreased from 9 to 18 weeks. To the best of our knowledge, this is the first report demonstrating the deterioration of apatite orientation in the bones of Cckbr-deficient mice. CONCLUSION Lesions in Cckbr-deficient mice occurred earlier in apatite orientation than in bone mass. Hence, bone apatite orientation may be a promising method for detecting hypochlorhydria-induced osteoporosis caused by PPI treatment and warrants urgent clinical applications.
Collapse
Affiliation(s)
- Yuki Mihara
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Omura
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yu Yamato
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomohiro Yamada
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ayako Okamoto
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Matsugaki A, Ito M, Kobayashi Y, Matsuzaka T, Ozasa R, Ishimoto T, Takahashi H, Watanabe R, Inoue T, Yokota K, Nakashima Y, Kaito T, Okada S, Hanawa T, Matsuyama Y, Matsumoto M, Taneichi H, Nakano T. Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft. Spine J 2023; 23:609-620. [PMID: 36539040 DOI: 10.1016/j.spinee.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND CONTEXT Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. PURPOSE We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. STUDY DESIGN This was an in vivo animal study. METHODS Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2-L3 or L4-L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. RESULTS The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. CONCLUSIONS The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. CLINICAL SIGNIFICANCE Our results provide a foundation for designing future spacers for interbody fusion in human.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Manabu Ito
- Department of Spine and Spinal Cord Disorders, National Hospital Organization, Hokkaido Medical Center,5-7-1-1, Yamanote, Nishi-ku, Sapporo, Hokkaido, 063-0005, Japan
| | - Yoshiya Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayuki Inoue
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Katsuhiko Yokota
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Yoshio Nakashima
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Hanawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Suzuki O, Hamai R, Sakai S. The material design of octacalcium phosphate bone substitute: increased dissolution and osteogenecity. Acta Biomater 2023; 158:1-11. [PMID: 36581004 DOI: 10.1016/j.actbio.2022.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Octacalcium phosphate (OCP) has been advocated as a precursor of bone apatite crystals. Recent studies have shown that synthetic OCP exhibits highly osteoconductive properties as a bone substitute material that stems from its ability to activate bone tissue-related cells, such as osteoblasts, osteocytes, and osteoclasts. Accumulated experimental evidence supports the proposition that the OCP-apatite phase conversion under physiological conditions increases the stimulatory capacity of OCP. The conversion of OCP progresses by hydrolysis toward Ca-deficient hydroxyapatite with Ca2+ ion incorporation and inorganic phosphate ion release with concomitant increases in the solid Ca/P molar ratio, specific surface area, and serum protein adsorption affinity. The ionic dissolution rate during the hydrolysis reaction was controlled by introducing a high-density edge dislocation within the OCP lattice by preparing it through co-precipitation with gelatin. The enhanced dissolution intensifies the material biodegradation rate and degree of osteogenecity of OCP. Controlling the biodegradation rate relative to the dissolution acceleration may be vital for controlling the osteogenecity of OCP materials. This study investigates the effects of the ionic dissolution of OCP, focusing on the structural defects in OCP, as the enhanced metastability of the OCP phase modulates biodegradability followed by new bone formation. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP) is recognized as a highly osteoconductive material that is biodegradable by osteoclastic resorption, followed by new bone formation by osteoblasts. However, if the degradation rate of OCP is increased by maintaining the original osteoconductivity or acquiring a bioactivity better than its current properties, then early replacement with new bone can be expected. Although cell introduction or growth factor addition by scaffold materials is the standard method for tissue engineering, material activity can be augmented by introducing dislocations into the lattice of the OCP. This review article summarizes the effects of introducing structural defects on activating OCP, which was obtained by co-precipitation with gelatin, as a bone substitute material and the mechanism of improved bone replacement performance.
Collapse
Affiliation(s)
- Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
10
|
Ishimoto T, Kobayashi Y, Takahata M, Ito M, Matsugaki A, Takahashi H, Watanabe R, Inoue T, Matsuzaka T, Ozasa R, Hanawa T, Yokota K, Nakashima Y, Nakano T. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel "honeycomb tree structure" design via guiding bone matrix orientation. Spine J 2022; 22:1742-1757. [PMID: 35675865 DOI: 10.1016/j.spinee.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Therapeutic devices for spinal disorders, such as spinal fusion cages, must be able to facilitate the maintenance and rapid recovery of spinal function. Therefore, it would be advantageous that future spinal fusion cages facilitate rapid recovery of spinal function without secondary surgery to harvest autologous bone. PURPOSE This study investigated a novel spinal cage configuration that achieves in vivo mechanical integrity as a devise/bone complex by inducing bone that mimicked the sound trabecular bone, hierarchically and anisotropically structured trabeculae strengthened with a preferentially oriented extracellular matrix. STUDY DESIGN/SETTINGS In vivo animal study. METHODS A cage possessing an anisotropic through-pore with a grooved substrate, that we termed "honeycomb tree structure," was designed for guiding bone matrix orientation; it was manufactured using a laser beam powder bed fusion method through an additive manufacturing processes. The newly designed cages were implanted into sheep vertebral bodies for 8 and 16 weeks. An autologous bone was not installed in the newly designed cage. A pull-out test was performed to evaluate the mechanical integrity of the cage/bone interface. Additionally, the preferential orientation of bone matrix consisting of collagen and apatite was determined. RESULTS The cage/host bone interface strength assessed by the maximum pull-out load for the novel cage without an autologous bone graft (3360±411 N) was significantly higher than that for the conventional cage using autologous bone (903±188 N) after only 8 weeks post-implantation. CONCLUSIONS These results highlight the potential of this novel cage to achieve functional fusion between the cage and host bone. Our study provides insight into the design of highly functional spinal devices based on the anisotropic nature of bone. CLINICAL SIGNIFICANCE The sheep spine is similar to the human spine in its stress condition and trabecular bone architecture and is widely recognized as a useful model for the human spine. The present design may be useful as a new spinal device for humans.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiya Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Manabu Ito
- Department of Spine and Spinal Cord Disorders, National Hospital Organization, Hokkaido Medical Center, 5-7-1-1, Yamanote, Nishi-ku, Sapporo, Hokkaido, 063-0005, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Takahashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayuki Inoue
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Hanawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Katsuhiko Yokota
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Yoshio Nakashima
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
12
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
13
|
Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration. Acta Biomater 2022; 151:613-627. [PMID: 35995407 DOI: 10.1016/j.actbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Osteocyte network architecture is closely associated with bone turnover. The cellular mechanosensing system regulates osteocyte dendrite formation by enhancing focal adhesion. Therefore, titanium surface nanotopography might affect osteocyte network architecture and improve the peri-implant bone tissue quality, leading to strengthened osseointegration of bone-anchored implants. We aimed to investigate the effects of titanium nanosurfaces on the development of osteocyte lacunar-canalicular networks and osseointegration of dental implants. Alkaline etching created titanium nanosurfaces with anisotropically patterned dense nanospikes, superhydrophilicity, and hydroxyl groups. MLO-Y4 mouse osteocyte-like cells cultured on titanium nanosurfaces developed neuron-like dendrites with increased focal adhesion assembly and gap junctions. Maturation was promoted in osteocytes cultured on titanium nanosurfaces compared to cells cultured on machined or acid-etched micro-roughened titanium surfaces. Osteocytes cultured in type I three-dimensional collagen gels for seven days on nano-roughened titanium surfaces displayed well-developed interconnectivity with highly developed dendrites and gap junctions compared to the poor interconnectivity observed on the other titanium surfaces. Even if superhydrophilicity and hydroxyl groups were maintained, the loss of anisotropy-patterned nanospikes reduced expression of gap junction in osteocytes cultured on alkaline-etched titanium nanosurfaces. Four weeks after placing the titanium nanosurface implants in the upper jawbone of wild-type rats, osteocytes with numerous dendrites were found directly attached to the implant surface, forming well-developed lacunar-canalicular networks around the nano-roughened titanium implants. The osseointegration strength of the nano-roughened titanium implants was significantly higher than that of the micro-roughened titanium implants. These data indicate that titanium nanosurfaces promote osteocyte lacunar-canalicular network development via nanotopographical cues and strengthen osseointegration. STATEMENT OF SIGNIFICANCE: The clinical stability of bone-anchoring implant devices is influenced by the bone quality. The osteocyte network potentially affects bone quality and is established by the three-dimensional (3D) connection of neuron-like dendrites of well-matured osteocytes within the bone matrix. No biomaterials are known to regulate formation of the osteocyte network. The present study provides the first demonstration that titanium nanosurfaces with nanospikes created by alkali-etching treatment enhance the 3D formation of osteocyte networks by promoting osteocyte dendrite formation and maturation by nanotopographic cues, leading to strengthened osseointegration of titanium implants. Osteocytes attached to the titanium nanosurfaces via numerous cellular projections. The success of osteocyte regulation by nanotechnology paves the way for development of epoch-making technologies to control bone quality.
Collapse
|
14
|
Watanabe R, Matsugaki A, Ishimoto T, Ozasa R, Matsumoto T, Nakano T. A Novel Ex Vivo Bone Culture Model for Regulation of Collagen/Apatite Preferential Orientation by Mechanical Loading. Int J Mol Sci 2022; 23:ijms23137423. [PMID: 35806427 PMCID: PMC9267238 DOI: 10.3390/ijms23137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The anisotropic microstructure of bone, composed of collagen fibers and biological apatite crystallites, is an important determinant of its mechanical properties. Recent studies have revealed that the preferential orientation of collagen/apatite composites is closely related to the direction and magnitude of in vivo principal stress. However, the mechanism of alteration in the collagen/apatite microstructure to adapt to the mechanical environment remains unclear. In this study, we established a novel ex vivo bone culture system using embryonic mouse femurs, which enabled artificial control of the mechanical environment. The mineralized femur length significantly increased following cultivation; uniaxial mechanical loading promoted chondrocyte hypertrophy in the growth plates of embryonic mouse femurs. Compressive mechanical loading using the ex vivo bone culture system induced a higher anisotropic microstructure than that observed in the unloaded femur. Osteocytes in the anisotropic bone microstructure were elongated and aligned along the long axis of the femur, which corresponded to the principal loading direction. The ex vivo uniaxial mechanical loading successfully induced the formation of an oriented collagen/apatite microstructure via osteocyte mechano-sensation in a manner quite similar to the in vivo environment.
Collapse
Affiliation(s)
- Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Correspondence: ; Tel.: +81-6-6879-7505
| |
Collapse
|
15
|
Ishimoto T, Saito M, Ozasa R, Matsumoto Y, Nakano T. Ibandronate Suppresses Changes in Apatite Orientation and Young's Modulus Caused by Estrogen Deficiency in Rat Vertebrae. Calcif Tissue Int 2022; 110:736-745. [PMID: 34989822 PMCID: PMC9108105 DOI: 10.1007/s00223-021-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
Bone material quality is important for evaluating the mechanical integrity of diseased and/or medically treated bones. However, compared to the knowledge accumulated regarding changes in bone mass, our understanding of the quality of bone material is lacking. In this study, we clarified the changes in bone material quality mainly characterized by the preferential orientation of the apatite c-axis associated with estrogen deficiency-induced osteoporosis, and their prevention using ibandronate (IBN), a nitrogen-containing bisphosphonate. IBN effectively prevented bone loss and degradation of whole bone strength in a dose-dependent manner. The estrogen-deficient condition abnormally increased the degree of apatite orientation along the craniocaudal axis in which principal stress is applied; IBN at higher doses played a role in maintaining the normal orientation of apatite but not at lower doses. The bone size-independent Young's modulus along the craniocaudal axis of the anterior cortical shell of the vertebra showed a significant and positive correlation with apatite orientation; therefore, the craniocaudal Young's modulus abnormally increased under estrogen-deficient conditions, despite a significant decrease in volumetric bone mineral density. However, the abnormal increase in craniocaudal Young's modulus did not compensate for the degradation of whole bone mechanical properties due to the bone loss. In conclusion, it was clarified that changes in the material quality, which are hidden in bone mass evaluation, occur with estrogen deficiency-induced osteoporosis and IBN treatment. Here, IBN was shown to be a beneficial drug that suppresses abnormal changes in bone mechanical integrity caused by estrogen deficiency at both the whole bone and material levels.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461 Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530 Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
16
|
Ozasa R, Saito M, Ishimoto T, Matsugaki A, Matsumoto Y, Nakano T. Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model. Bone 2022; 157:116309. [PMID: 34998980 DOI: 10.1016/j.bone.2021.116309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy with bisphosphonates and vitamin D3 analogs has been frequently used for the treatment of osteoporosis. However, its effects on bone anisotropies, such as orientations of collagen and apatite at the nanometer-scale, which is a promising bone quality index, and its trabecular architecture at the micrometer scale, are not well understood despite its important mechanical properties and its role in fracture risk. In the present study, we analyzed the effects of ibandronate (IBN), eldecalcitol (ELD), and their combination on the collagen/apatite orientation and trabecular architectural anisotropy using an estrogen-deficiency-induced osteoporotic rat model. Estrogen deficiency caused by ovariectomy (OVX) excessively increased the degree of collagen/apatite orientation or trabecular architectural anisotropy along the craniocaudal axis in the lumbar vertebra compared to that of the sham-operated group. The craniocaudal axis corresponds to the direction of principal stress in the spine. The excessive material anisotropy in the craniocaudal axis contributed to the enhanced Young's modulus, which may compensate for the reduced mechanical resistance by bone loss to some extent. The solo administration of IBN and ELD prevented the reduction of bone fraction (BV/TV) determined by μ-CT, and combination therapy showed the highest efficacy in BV/TV gain. Furthermore, the solo administration and combination treatment significantly decreased the degree of collagen/apatite orientation to the sham level. Based on the results of bone mass and collagen/apatite orientation, combination treatment is an effective strategy. This is the first report to demonstrate the efficacy of IBN, ELD, and combination treatment with IBN and ELD relative to the bone micro-architectural anisotropy characterized by collagen/apatite orientation.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone 2022; 155:116261. [PMID: 34826630 DOI: 10.1016/j.bone.2021.116261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Although increased bone fragility is a well-recognized consequence in patients with rheumatoid arthritis (RA), the essential cause of degenerate bone strength remains unknown. This study aimed to determine factors contributing to bone dysfunction in RA by focusing on the bone matrix micro-arrangement, based on the preferential orientation of collagen and the related apatite c-axis as a bone quality index. The classical understanding of RA is limited to its severe pathological conditions associated with inflammation-induced bone loss. This study examined periarticular proximal tibiae from RA patients as compared with osteoarthritis (OA) patients as controls. Bone tissue material strength was disrupted in the RA group compared with the control. Collagen/apatite micro-arrangement and vBMD were significantly lower in the RA group, and the rate of decrease in apatite c-axis orientation (-45%) was larger than that in vBMD (-22%). Multiple regression analysis showed that the degree of apatite c-axis orientation (β = 0.52, p = 1.9 × 10-2) significantly contributed to RA-induced bone material impairment as well as vBMD (β = 0.46, p = 3.8 × 10-2). To the best of our knowledge, this is the first report to demonstrate that RA reduces bone material strength by deteriorating the micro-arrangement of collagen/apatite bone matrix, leading to decreased fracture resistance. Our findings represent the significance of bone quality-based analysis for precise evaluation and subsequent therapy of the integrity and soundness of the bone in patients with RA.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Kamura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hiroto Yoshida
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Mayu Magi
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Koji Sakuraba
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Kenjiro Fujimura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hisaaki Miyahara
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
19
|
Ishimoto T, Kamioka H, Nakano T. Authors' Response to Letter from Professor Birkedal. Calcif Tissue Int 2022; 110:144-145. [PMID: 34374817 DOI: 10.1007/s00223-021-00901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Matsuzaka T, Matsugaki A, Nakano T. Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli. Biomaterials 2021; 279:121203. [PMID: 34717197 DOI: 10.1016/j.biomaterials.2021.121203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Anisotropic collagen/apatite microstructure is a prominent determinant of bone tissue functionalization; in particular, bone matrix modulates its anisotropic microstructure depending on the surrounding mechanical condition. Although mechanotransduction in bones is governed by osteocyte function, the precise mechanisms linking mechanical stimuli and anisotropic formation of collagen/apatite microstructure are poorly understood. Here we developed a novel anisotropic mechano-coculture system which enables the understanding of the biological mechanisms regulating the oriented bone matrix formation, which is constructed by aligned osteoblasts. The developed model provides bone-mimetic coculture platform that enables simultaneous control of mechanical condition and osteoblast-osteocyte communication with an anisotropic culture scaffold. The engineered coculture device helps in understanding the relationship between osteocyte mechanoresponses and osteoblast arrangement, which is a significant contributor to anisotropic organization of bone tissue. Our study showed that osteocyte responses to oscillatory flow stimuli regulated osteoblast arrangement through soluble molecular interactions. Importantly, we found that prostaglandin E2 is a novel determinant for oriented collagen/apatite organization of bone matrix, through controlling osteoblast arrangement.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Ishimoto T, Kawahara K, Matsugaki A, Kamioka H, Nakano T. Quantitative Evaluation of Osteocyte Morphology and Bone Anisotropic Extracellular Matrix in Rat Femur. Calcif Tissue Int 2021; 109:434-444. [PMID: 34009396 PMCID: PMC8429393 DOI: 10.1007/s00223-021-00852-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Osteocytes are believed to play a crucial role in mechanosensation and mechanotransduction which are important for maintenance of mechanical integrity of bone. Recent investigations have revealed that the preferential orientation of bone extracellular matrix (ECM) mainly composed of collagen fibers and apatite crystallites is one of the important determinants of bone mechanical integrity. However, the relationship between osteocytes and ECM orientation remains unclear. In this study, the association between ECM orientation and anisotropy in the osteocyte lacuno-canalicular system, which is thought to be optimized along with the mechanical stimuli, was investigated using male rat femur. The degree of ECM orientation along the femur longitudinal axis was significantly and positively correlated with the anisotropic features of the osteocyte lacunae and canaliculi. At the femur middiaphysis, there are the osteocytes with lacunae that highly aligned along the bone long axis (principal stress direction) and canaliculi that preferentially extended perpendicular to the bone long axis, and the highest degree of apatite c-axis orientation along the bone long axis was shown. Based on these data, we propose a model in which osteocytes can change their lacuno-canalicular architecture depending on the mechanical environment so that they can become more susceptible to mechanical stimuli via fluid flow in the canalicular channel.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Keita Kawahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts. ACS APPLIED BIO MATERIALS 2021; 4:6821-6831. [PMID: 35006982 DOI: 10.1021/acsabm.1c00533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reconstruction of critical-sized defects (CSDs) in bone shafts remains a major challenge in orthopedics. Honeycomb (HC) scaffolds are considered promising as their uniaxial channels bridge the amputation stumps of bones and promote the ingrowth of bone and blood vessels (BV) into the scaffolds. In this study, the ability of the HC scaffolds, composed of the bone mineral or carbonate apatite (CAp), was evaluated by reconstructing 10, 15, and 20 mm segmental defects in the rabbit ulnar shaft. Radiographic and μ-computed tomography evaluations showed that bony calluses were formed around the scaffolds at 4 weeks post-surgery in all defects, whereas no callus bridged in the ulna without scaffolds. At 12 weeks post-surgery, the scaffolds were connected to the host bone in 10 and 15 mm defects, while a slight gap remained between the scaffold and host bone in the 20 mm defect. New bone formation and scaffold resorption progressed over 12 weeks. Histological evaluations showed that mature bones (MB) and BV were already formed at the edges of the scaffolds at 4 weeks post-surgery in 10, 15, and 20 mm defects. In the central region of the scaffold, in the 10 mm defect, MB and BV were formed at 4 weeks post-surgery. In the 15 mm defect, although BV were formed, a few MB were formed. It is concluded that CAp HC scaffolds have good potential value for the reconstruction of CSDs.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Benavides-Reyes C, Rodriguez-Navarro AB, McCormack HA, Eusemann BK, Dominguez-Gasca N, Alvarez-Lloret P, Fleming RH, Petow S, Dunn IC. Comparative analysis of the morphology, chemistry and structure of the tibiotarsus, humerus and keel bones in laying hens. Br Poult Sci 2021; 62:795-803. [PMID: 34142894 DOI: 10.1080/00071668.2021.1943310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Bone properties are adapted to their specific functions in the animal, so various types of bones develop different characteristics depending on their location in the skeleton.2. The aim of this research was to compare the chemical composition, mineral characteristics and structural organisation in tibiotarsus, humerus and keel bones as representatives of hen skeletal mineralisation. Complementary analytical techniques, such as X-ray radiography, optical and electron microscopy, thermogravimetry and 2D X-ray diffraction, were used for characterisation.3. The humerus had a thinner cortex and cortical bone mineral had higher crystallinity and a greater degree of crystal orientation than the tibiotarsus. The humerus generally lacks medullary bone although, when present, it has a higher mineral content than seen in the tibiotarsus. These differences were attributed to the different forces that stimulate bone formation and remodelling.4. The keel cortical bone had a lower degree of mineralisation than the tibiotarsus or humerus. Its degree of mineralisation decreased from the cranial to the distal end of the bone. This gradient may affect keel mechanical properties, making it more prone to deformation and fractures.5. Data from studying different bones in laying hens can help to understand mineralisation as well as finding solutions to prevent osteoporosis-related fractures.
Collapse
Affiliation(s)
- C Benavides-Reyes
- Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain
| | | | - H A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - B K Eusemann
- Institut Für Tierschutz Und Tierhaltung, Friedrich-Loeffler-Institut, Celle, Germany
| | - N Dominguez-Gasca
- Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain
| | | | - R H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - S Petow
- Institut Für Tierschutz Und Tierhaltung, Friedrich-Loeffler-Institut, Celle, Germany
| | - I C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
24
|
Superior Alignment of Human iPSC-Osteoblasts Associated with Focal Adhesion Formation Stimulated by Oriented Collagen Scaffold. Int J Mol Sci 2021; 22:ijms22126232. [PMID: 34207766 PMCID: PMC8228163 DOI: 10.3390/ijms22126232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.
Collapse
|
25
|
Lee S, Nagata F, Kato K, Kasuga T, Nakano T. Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity. J Biomed Mater Res A 2021; 109:788-803. [PMID: 32720351 PMCID: PMC7984230 DOI: 10.1002/jbm.a.37067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Reconstruction of organ-specific architecture is necessary to recover the original organ function. The anisotropic structure of bone tissue is strongly related to the collagen fibril alignment and bone apatite crystal direction. Bone regeneration indicates following two main process; first, restoration of bone mineral density (BMD; bone quantity), and second, restoring bone apatite c-axis orientation (bone quality). In addition to BMD, bone quality is the most important factor among bone mechanical properties. Recovery of the original bone function requires development of novel scaffolds with simultaneous reconstruction of bone quality and quantity. Herein, novel orthophosphosilicate glass (PSG)/poly(lactic acid) composite anisotropic scaffolds were developed to control cell alignment and enhance bone formation, which are important for the simultaneous reconstruction of bone quality and quantity. The strategy to control cell alignment and bone formation involved designing anisotropic scaffolds in combination with the release of therapeutic ions by PSGs. The morphology of fibrous scaffolds containing PSGs was quantitatively designed using electrospinning. This successfully modulated cell alignment and subsequent bone apatite c-axis orientation along the fiber-oriented direction. The released silicate and Mg2+ ions from PSGs in scaffolds improved cell adhesion, proliferation, and calcification. To best of our knowledge, this is the first report demonstrating that the anisotropic scaffolds containing bioactive glasses regenerate bone tissues with simultaneous reconstruction of bone quality and quantity via stimulating osteoblasts by inorganic ions and designing morphology of scaffolds.
Collapse
Affiliation(s)
- Sungho Lee
- National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
- Division of Materials and Manufacturing Science, Graduate School of EngineeringOsaka UniversityOsakaJapan
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of EngineeringOsaka UniversityOsakaJapan
| |
Collapse
|
26
|
Hara ES, Okada M, Nagaoka N, Nakano T, Matsumoto T. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:246-255. [PMID: 33573463 PMCID: PMC8892978 DOI: 10.1089/ten.teb.2020.0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone regeneration was one of the earliest fields to develop in the context of tissue regeneration, and currently, repair of small-sized bone defects has reached a high success rate. Future researches are expected to incorporate more advanced techniques toward achieving rapid bone repair and modulation of the regenerated bone quality. For these purposes, it is important to have a more integrative understanding of the mechanisms of bone formation and maturation from multiple perspectives and to incorporate these new concepts into the development and designing of novel materials and techniques for bone regeneration. This review focuses on the analysis of the earliest stages of bone tissue development from the biology, material science, and engineering perspectives for a more integrative understanding of bone formation and maturation, and for the development of novel biology-based engineering approaches for tissue synthesis in vitro. More specifically, the authors describe the systematic methodology that allowed the understanding of the different nucleation sites in intramembranous and endochondral ossification, the space-making process for mineral formation and growth, as well as the process of apatite crystal cluster growth in vivo in the presence of suppressing biomolecules.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
27
|
Okada R, Yamato K, Kawakami M, Kodama J, Kushioka J, Tateiwa D, Ukon Y, Zeynep B, Ishimoto T, Nakano T, Yoshikawa H, Kaito T. Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Rep 2021; 14:100757. [PMID: 33681430 PMCID: PMC7910497 DOI: 10.1016/j.bonr.2021.100757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022] Open
Abstract
Effects of high magnetic fields [MFs, ≥ 1 T (T)] on osteoblastic differentiation and the orientation of cells or matrix proteins have been reported. However, the effect of low MFs (< 1 T) on the orientation of bone formation is not well known. This study was performed to verify the effects of low MFs on osteoblastic differentiation, bone formation, and orientation of both cells and newly formed bone. An apparatus was prepared with two magnets (190 mT) aligned in parallel to generate a parallel MF. In vitro, bone marrow-derived stromal cells of rats were used to assess the effects of low MFs on cell orientation, osteoblastic differentiation, and mineralization. A bone morphogenetic protein (BMP)-2-induced ectopic bone model was used to elucidate the effect of low MFs on microstructural indices, trabecula orientation, and the apatite c-axis orientation of newly formed bone. Low MFs resulted in an increased ratio of cells oriented perpendicular to the direction of the MF and promoted osteoblastic differentiation in vitro. Moreover, in vivo analysis demonstrated that low MFs promoted bone formation and changed the orientation of trabeculae and apatite crystal in a direction perpendicular to the MF. These changes led to an increase in the mechanical strength of rhBMP-2-induced bone. These results suggest that the application of low MFs has potential to facilitate the regeneration of bone with sufficient mechanical strength by controlling the orientation of newly formed bone.
Collapse
Key Words
- ALP, alkaline phosphatase
- BMD, bone mineral density
- BMDCs, bone marrow derived stromal cells
- BV, bone volume
- Bone marrow-derived stromal cells
- COL1a1, collagen type1 a1
- FFT, fast Fourier transform
- GFP, green fluorescent protein
- MF, magnetic field
- Magnetic field
- Mechanical strength
- OCN, osteocalcin
- OPN, osteopontin
- OSX, osterix
- Orientation intensity
- Osteoblastic differentiation
- PBS, phosphate-buffered saline
- PEMF, pulsed electromagnetic field
- ROI, region of interest
- RT-PCR, reverse transcription polymerase chain reaction
- RUNX2, runt-related transcription factor 2
- micro-CT, micro-computed tomography
- rhBMP, recombinant human bone morphogenetic protein
- μXRD, microbeam X-ray diffractometer
Collapse
Affiliation(s)
- Rintaro Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kai Yamato
- Department of Research Institute, PIP Corporation, Ibaraki, Osaka, Japan
| | - Minoru Kawakami
- Department of Research Institute, PIP Corporation, Ibaraki, Osaka, Japan
| | - Joe Kodama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Bal Zeynep
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
28
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
29
|
Matsugaki A, Kimura Y, Watanabe R, Nakamura F, Takehana R, Nakano T. Impaired Alignment of Bone Matrix Microstructure Associated with Disorganized Osteoblast Arrangement in Malignant Melanoma Metastasis. Biomolecules 2021; 11:131. [PMID: 33498283 PMCID: PMC7909255 DOI: 10.3390/biom11020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Malignant melanoma favors spreading to bone, resulting in a weakened bone with a high fracture risk. Here, we revealed the disorganized alignment of apatite crystals in the bone matrix associated with the homing of cancer cells by developing an artificially controlled ex vivo melanoma bone metastasis model. The ex vivo metastasis model reflects the progressive melanoma cell activation in vivo, resulting in decreased bone mineral density and expression of MMP1-positive cells. Moreover, less organized intercellular connections were observed in the neighboring osteoblasts in metastasized bone, indicating the abnormal and randomized organization of bone matrix secreted by disconnected osteoblasts. Our study revealed that the deteriorated microstructure associated with disorganized osteoblast arrangement was a determinant of malignant melanoma-related bone dysfunction.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Yumi Kimura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
- Teijin Nakashima Medical Co. Ltd., 688-1, Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan
| | - Fumihito Nakamura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Ryo Takehana
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| |
Collapse
|
30
|
Okamura M, Suzuki T, Oomura Y, Matsunaga S, Nomura T. Effect of Bacterial Infection on Bone Quality and Structure in Osteonecrosis of the Jaw by Bisphosphonate (BP) Administration. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masahiro Okamura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College
| | - Taiki Suzuki
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College
| | - Yusuke Oomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College
| | | | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College
| |
Collapse
|
31
|
Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle. Int J Mol Sci 2020; 21:ijms21207513. [PMID: 33053789 PMCID: PMC7589887 DOI: 10.3390/ijms21207513] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, and muscle mass, based on the phenotype of Ocn-/- mice by Karsenty's group. Recently, Ocn-/- mice were newly generated by two groups independently. Bone strength is determined by bone quantity and quality. The new Ocn-/- mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and spermatogenesis, and muscle mass were normal in the new Ocn-/- mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.
Collapse
|
32
|
Matsugaki A, Matsumoto S, Nakano T. A Novel Role of Interleukin-6 as a Regulatory Factor of Inflammation-Associated Deterioration in Osteoblast Arrangement. Int J Mol Sci 2020; 21:E6659. [PMID: 32932973 PMCID: PMC7555301 DOI: 10.3390/ijms21186659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory disorders are associated with bone destruction; that is, deterioration in bone cell activities are under the control of the innate immune system. Macrophages play a central role in innate immunity by switching their polarized phenotype. A disturbed immune system causes aberrance in the ordered bone matrix microarrangement, which is a dominant determinant of bone tissue functionalization. However, the precise relationship between the immune system and bone tissue organization is unknown. In this study, the controlled in vitro co-culture assay results showed that M1-polarized macrophages disrupted the osteoblast alignment, which directly modulate the oriented bone matrix organization, by secreting pro-inflammatory cytokines. Notably, interleukin-6 was found to be a key regulator of unidirectional osteoblast alignment. Our results demonstrated that inflammatory diseases triggered bone dysfunction by regulating the molecular interaction between the immune system and bone tissue organization. These findings may contribute to the development of therapeutic targets for inflammatory disorders, including rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.M.); (S.M.)
| |
Collapse
|
33
|
Mie K, Ishimoto T, Okamoto M, Iimori Y, Ashida K, Yoshizaki K, Nishida H, Nakano T, Akiyoshi H. Impaired bone quality characterized by apatite orientation under stress shielding following fixing of a fracture of the radius with a 3D printed Ti-6Al-4V custom-made bone plate in dogs. PLoS One 2020; 15:e0237678. [PMID: 32877422 PMCID: PMC7467283 DOI: 10.1371/journal.pone.0237678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Custom-made implants have recently gained attention in veterinary medicine because of their ability to properly fit animal bones having a wide variety of shapes and sizes. The effect of custom-made implants on bone soundness and the regeneration process is not yet clear. We fabricated a 3D printed Ti-6Al-4V custom-made bone plate that fits the shape of the dog radius, and placed it into the radius where an osteotomy had been made. The preferential orientation of the apatite c-axis contributes to the mechanical integrity of the bone and is a reliable measure of bone quality. We determined this parameter as well as the bone shape and bone mineral density (BMD). The bone portion which lies parallel to the bone plate exhibited bone resorption, decreased BMD, and significant degradation of apatite orientation, relative to the portion outside the plate, at 7 months after the operation. This demonstrates the presence of stress shielding in which applied stress is not transmitted to bone due to the insertion of a stiff bone plate. This reduced stress condition clearly influences the bone regeneration process. The apatite orientation in the regenerated site remained different even after 7 months of regeneration, indicating insufficient mechanical function in the regenerated portion. This is the first study in which the apatite orientation and BMD of the radius were evaluated under conditions of stress shielding in dogs. Our results suggest that assessment of bone repair by radiography can indicate the degree of restoration of BMD, but not the apatite orientation.
Collapse
Affiliation(s)
- Keiichiro Mie
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Mari Okamoto
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yasumasa Iimori
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuna Ashida
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Karin Yoshizaki
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidetaka Nishida
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- * E-mail:
| |
Collapse
|
34
|
Hirose K, Ishimoto T, Usami Y, Sato S, Oya K, Nakano T, Komori T, Toyosawa S. Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone 2020; 138:115414. [PMID: 32416287 DOI: 10.1016/j.bone.2020.115414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Fam20C, which phosphorylates many secretory proteins with S-x-E/pS motifs, is highly expressed in bone and tooth tissues, implying that Fam20C-mediated phosphorylation is critical for regulation of these mineralized tissues. Previous studies of Fam20C-deficient mice revealed that Fam20C plays important roles in bone formation and mineralization. However, Fam20C-deficient mice develop hypophosphatemia, a systemic factor that masks the local effect of Fam20C in the bone tissue; consequently, the local role of Fam20C remains unknown. To elucidate the local function of Fam20C in bone tissue, we studied osteoblast-specific Fam20C transgenic (Fam20C-Tg) mice, which have no alteration in serum calcium and phosphate levels. Fam20C-Tg mice had more highly phosphorylated proteins in bone tissue than wild-type mice. In cortical bone of Fam20C-Tg mice, bone volume, mineralization surface (MS/BS), and mineral apposition rate (MAR) were elevated; in addition, the transgenic mice had an elevated number of vascular canals, resulting in an increased cortical porosity. Osteocyte number was elevated in the transgenics, but osteoblast number was unchanged. The microstructure of bone matrix characterized by the preferential orientation of collagen and apatite, was degraded and thus the mechanical function of bone material was deteriorated. In trabecular bone of Fam20C-Tg mice, bone volume was reduced, whereas MS/BS and MAR were unchanged. Osteoclast number was elevated and eroded surface area was non-significantly elevated with an increased serum CTX-I level, whereas osteoblast number was unchanged. These findings indicated that Fam20C overexpression in osteoblasts promotes cortical bone formation by increasing MS/BS and MAR and promoting osteocyte differentiation, but does not affect trabecular bone formation. Furthermore, Fam20C overexpression indirectly promotes osteoclastic bone resorption in cortical and trabecular bones. Our findings show that osteoblastic Fam20C-mediated phosphorylation in bone tissue regulates bone formation and resorption, and bone material quality.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kaori Oya
- Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Matsugaki A, Matsuzaka T, Murakami A, Wang P, Nakano T. 3D Printing of Anisotropic Bone-Mimetic Structure with Controlled Fluid Flow Stimuli for Osteocytes: Flow Orientation Determines the Elongation of Dendrites. Int J Bioprint 2020; 6:293. [PMID: 33088998 PMCID: PMC7557340 DOI: 10.18063/ijb.v6i4.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although three-dimensional (3D) bioprinting techniques enable the construction of various living tissues and organs, the generation of bone-like oriented microstructures with anisotropic texture remains a challenge. Inside the mineralized bone matrix, osteocytes play mechanosensing roles in an ordered manner with a well-developed lacunar-canaliculi system. Therefore, control of cellular arrangement and dendritic processes is indispensable for construction of artificially controlled 3D bone-mimetic architecture. Herein, we propose an innovative methodology to induce controlled arrangement of osteocyte dendritic processes using the laminated layer method of oriented collagen sheets, combined with a custom-made fluid flow stimuli system. Osteocyte dendritic processes showed elongation depending on the competitive directional relationship between flow and substrate. To the best of our knowledge, this study is the first to report the successful construction of the anisotropic bone-mimetic microstructure and further demonstrate that the dendritic process formation in osteocytes can be controlled with selective fluid flow stimuli, specifically by regulating focal adhesion. Our results demonstrate how osteocytes adapt to mechanical stimuli by optimizing the anisotropic maturation of dendritic cell processes.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ami Murakami
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Pan Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, 637662, Singapore
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
What is the function of osteocalcin? J Oral Biosci 2020; 62:223-227. [PMID: 32535287 DOI: 10.1016/j.job.2020.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Osteocalcin is the most abundant non-collagenous protein in bone and is specifically expressed in osteoblasts. Previous studies using osteocalcin-deficient (Ocn-/-) mice demonstrated that osteocalcin inhibits bone formation, and serum uncarboxylated osteocalcin functions as a hormone that improves glucose metabolism, induces testosterone synthesis in the testes, and maintains muscle mass. Furthermore, the relationship between serum osteocalcin and glucose metabolism or cardiovascular risk in humans has been reported. However, new Ocn-/- mice exhibited different phenotypes. HIGHLIGHT Bone volume, formation, and resorption were normal in the new Ocn-/- mice. The orientation of collagen fibers was parallel to the bone longitudinal direction and the size of apatite crystals was normal, but the c-axis of apatite crystals was random and bone strength was reduced in new Ocn-/- mice. Glucose metabolism, testosterone synthesis, and muscle mass were normal in new Ocn-/- mice. Exercise improved glucose metabolism and increased bone formation, leading to an increase in the serum osteocalcin level, which is a marker for bone formation. CONCLUSION Contrary to previous findings, new Ocn-/- mice revealed that osteocalcin has no function in the regulation of bone quantity, but instead, functions to direct the parallel alignment of the c-axis of apatite crystals with collagen fibrils. Moreover, it has no physiological function as a hormone that regulates glucose metabolism, testosterone synthesis, or muscle mass. These controversial phenotypes require further investigation. The relationship of serum osteocalcin with glucose metabolism or cardiovascular risk suggests the importance of exercise for their improvement.
Collapse
|
37
|
Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 2020; 16:e1008586. [PMID: 32463816 PMCID: PMC7255595 DOI: 10.1371/journal.pgen.1008586] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn–/–) mice by deleting Bglap and Bglap2. Analysis of Ocn–/–mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn–/–bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone. The strength of bone depends on both its quantity and quality. Osteocalcin (Ocn) is the most abundant non-collagenous protein in bone, but its function remains unclear. Earlier studies by other investigators have suggested that Ocn decreases the quantity of bone by decreasing bone formation; and in addition it works as a hormone to regulate glucose metabolism, testosterone synthesis, and muscle mass in distant tissues. We have generated Ocn-deficient mice and show herein that Ocn is not required for bone formation. It is, however, required for optimal bone quality and strength. Specifically, we show that in the Ocn-deficient mice collagen fibers align normally, but apatite crystallites align randomly against collagen, resulting in disorganized mineralization and reduced bone strength. Furthermore, we show that glucose metabolism, testosterone synthesis, and muscle mass are normal in the Ocn-deficient mice. We conclude that Ocn acts in bone to optimize its quality and strength, but not quantity. And, in contrast to earlier claims, it does not work as a hormone to control glucose metabolism, testosterone synthesis, and muscle mass.
Collapse
|
38
|
A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants. METALS 2020. [DOI: 10.3390/met10050648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study is a contribution to our understanding of the mechanical behaviour of dental implants through the use of the finite element and the photoelastic methods. Two internal connection and bone level dental implants with different design have been analysed (M-12 by Oxtein S.L., Zaragoza, Spain, and ASTRA, from Dentsply Sirona, Charlotte, NC, USA), evaluating the stress distribution produced by axial stresses and a comparison has been established between them, as well as between the two methods used, in order to validate the adopted hypotheses and correlate the numerical modelling performed with experimental tests. To load the implant in laboratory testing, a column was placed, such that the loading point was about 9.3 mm from the upper free surface of the resin plate. This column connects the implant with the weights used to define the test load. In turn, support for both plates was achieved by two 6 mm bolts 130 mm apart and located on a parallel line with the resin (flush with the maximum level of the implant), at a depth of 90 mm. The results obtained with both methods used were similar enough. The comparison of results is fundamentally visual, but ensures that, at least in the range of forces used, both methods are similar. Therefore, the photoelastic method can be used to confirm in a real way the virtual conditions of the finite element models, with the implications in the investigation of dental implants that this entails.
Collapse
|
39
|
Zhao L, He X, Todoh M. Mechanical behavior of biomimetically mineralized collagen matrix using the polymer - induced liquid precursor process. J Biomech 2020; 104:109738. [PMID: 32188573 DOI: 10.1016/j.jbiomech.2020.109738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022]
Abstract
Biomimetic mineralization is a promising technique in biomedical applications. To understand the mechanical behavior of biomimetically mineralized collagen material (BMC), we examined the composition and structure of the mineral deposition in BMCs mineralized by the polymer-induced liquid precursor (PILP) process and applied wide angle x-ray scattering (WAXS) with in situ tensile testing to investigate the mineral-to-tissue co-deformation in the material. We found that the PILP process is able to achieve good biomimetic mineralization in bulk collagen matrix. Compositionally, the mineral deposition showed high crystallinity with no carbonation. However, the morphology of extrafibrillar mineral deposition and the preferential crystal orientation were different from natural bone. Further, the Young's modulus and mineral-to-tissue co-deformation ratio of the BMC were significantly lower than both natural bone and partially demineralized bone with similar mineral volume fraction. It was concluded that while biomimetic mineralization can achieve good mineral deposition volume in the BMC, the mechanical behavior of the material was different from natural bone.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Japan.
| | - Xingming He
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Japan
| | - Masahiro Todoh
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Japan
| |
Collapse
|
40
|
Kasahara M, Matsunaga S, Someya T, Kitamura K, Odaka K, Ishimoto T, Nakano T, Abe S, Hattori M. Micro- and nano-bone analyses of the human mandible coronoid process and tendon-bone entheses. J Biomed Mater Res B Appl Biomater 2020; 108:2799-2806. [PMID: 32190994 DOI: 10.1002/jbm.b.34609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 11/07/2022]
Abstract
The coronoid process provides attachment to temporalis and masseter muscles, and thus plays an important role in mastication. Tendons connect muscles and bones, mediating the transmission of functional loads to bones. Thus, tendon-bone entheses govern mechanical stress in bones. The preferential orientation of biological apatite (BAp) crystallites, the main mineral component in bones, is an important index for bone quality and function, and is largely influenced by locally applied stress. In this study, we analyzed BAp orientation, Young's modulus, and bone mineral density (BMD) at different sites in the human coronoid process. No differences in BMD were found among the analyzed sites, but BAp crystal orientation was observed to differ. BAp crystallites showed a uni-directional orientation in the mesiodistal direction at the coronoid process apex, but were oriented in the direction vertical to the occlusal plane at other sites. Young's modulus tended to vary according to the BAp orientation. At the apex, a tendon form with characteristics different from those at other sites, including the presence of a fibrocartilaginous layer that may act as a stretching brake to control stress concentration, was observed. These findings suggest that the functional pressure of the temporalis muscle affects bone quality and strength.
Collapse
Affiliation(s)
- Masaaki Kasahara
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Tomoko Someya
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Kei Kitamura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Histology and Developmental Biology, Tokyo, Japan
| | - Kento Odaka
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Hattori
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
41
|
Hoelzig H, Muenster T, Blanke S, Kloess G, Garmasukis R, Koenig A. Ivory vs. osseous ivory substitutes-Non-invasive diffractometric discrimination. Forensic Sci Int 2020; 308:110159. [PMID: 32006880 DOI: 10.1016/j.forsciint.2020.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
A new discrimination method for the bioapatite materials bone, antler and ivory was developed using X-ray diffractometry and comprises non-invasive measurements in order to take valuable objects into account. Our approach deals with the analysis of peak intensity ratios resulting from several measurements on each object. For instance, the intensity ratio of the apatite reflections 002 and 310 has been described in the literature as representing the degree of apatite crystal orientation and varies depending on the sample orientation. The decisive factor for the material identification is the value dispersion of intensity ratios resulting from the total of all measurements on one object. This pattern of data points, visualised via kernel density estimation (KDE), is characteristic for ivory, bone and antler, respectively, and enables the discrimination of these materials. The observation is justifiable since apatite crystal orientation adapts to the collagen fibre arrangement which shows major differences between different sorts of bioapatite materials. The patterns of data points were received via analysis of 88 objects made of bone (n = 30), antler (n = 27) and ivory (n = 31). In order to verify several identifications X-ray computer tomography was supplemented. The presented method usefully supplements already existing approaches concerning microscopic, elementary and biochemical analyses.
Collapse
Affiliation(s)
- H Hoelzig
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany.
| | - T Muenster
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - S Blanke
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - G Kloess
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - R Garmasukis
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - A Koenig
- Department of Prosthodontics and Material Sciences, Leipzig University, Germany
| |
Collapse
|
42
|
Lee S, Nagata F, Kato K, Nakano T. Bone apatite anisotropic structure control via designing fibrous scaffolds. RSC Adv 2020; 10:13500-13506. [PMID: 35492990 PMCID: PMC9051546 DOI: 10.1039/d0ra01295e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
Bone tissue has an anisotropic structure, associated with the collagen fibrils' orientation and the c-axis direction of the bone apatite crystal. The bone regeneration process comprises two main phases: bone mineral density restoration (bone quantity), and subsequent recovery of bone apatite c-axis orientation (bone quality). Bone quality is the determinant factor for mechanical properties of bone. Control of osteoblast alignment is one of the strategies for reconstructing bone quality since the collagen/apatite matrix orientation in calcified tissues is dependent on the osteoblast orientation. In this work, fibrous scaffolds designed for reconstruction of bone quality via cell alignment control was investigated. The fibrous scaffolds were fabricated using the electrospinning method with poly(lactic acid) at various fiber collecting speeds. The degree of fiber alignment in the prepared fibrous scaffolds increased with increasing fiber collecting speed, indicating that the fibers were oriented in a single direction. The alignment of osteoblasts on the fibrous scaffolds as well as the subsequent apatite c-axis orientation increased with increasing fiber collecting speed. We successfully controlled cell alignment and apatite c-axis orientation using the designed morphology of fibrous scaffolds. To the best of our knowledge, this is the first report demonstrating that adjusting the degree of fiber orientation for fibrous scaffolds can manipulate the regeneration of bone quality. Osteoblast alignment on the fibrous scaffolds as well as the subsequent apatite c-axis orientation increased with increasing fiber collecting speed. We successfully controlled cell alignment and apatite c-axis orientation using the designed morphology of fibrous scaffolds.![]()
Collapse
Affiliation(s)
- Sungho Lee
- National Institute of Advanced Industrial Science and Technology
- Nagoya 463-8560
- Japan
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology
- Nagoya 463-8560
- Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology
- Nagoya 463-8560
- Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| |
Collapse
|
43
|
Matsugaki A, Yamazaki D, Nakano T. Selective patterning of netrin-1 as a novel guiding cue for anisotropic dendrogenesis in osteocytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110391. [PMID: 31923977 DOI: 10.1016/j.msec.2019.110391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022]
Abstract
Although protein patterning approaches have found widespread applications in tuning surface characteristics of biomaterials, selective control of growth in cell body and dendrites utilizing such platforms remains difficult. The functional roles assumed by cell body and dendrites in a physiological milieu have extremely high specificity. In particular, osteocytes embedded inside the mineralized bone matrix are interconnected via dendritic cell processes characterized by an anisotropic arrangement of the lacunar-canalicular system, where the fluid-flow inside the canaliculi system regulates the mechanoresponsive functionalization of bone. Control of cellular networks connected by dendritic cell processes is, therefore, imperative for constructing artificially controlled bone-mimetic structures and as an extension, for gaining insights into the molecular mechanisms underlying dendrogenesis inside the mineralized bone matrix. Here, we report an innovative strategy to induce controlled elongation of cell body or dendritic process structures in selective directions by using the inkjet printing technique. Artificial runways employing netrin-1, inspired by neural architecture, were utilized to trigger controlled elongation in the osteocyte dendritic processes in desired directions. This is the first report, to the best of our knowledge, demonstrating that anisotropic dendrogenesis of osteocytes can be controlled with selective patterning of extracellular proteins, specifically via the axon guidance ligand netrin-1.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Yamazaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
44
|
Ishimoto T, Suetoshi R, Cretin D, Hagihara K, Hashimoto J, Kobayashi A, Nakano T. Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound. Bone 2019; 127:82-90. [PMID: 31170537 DOI: 10.1016/j.bone.2019.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Anisotropic arrangement of apatite crystallites, i.e., preferential orientation of the apatite c-axis, is known to be an important bone quality parameter that governs the mechanical properties. However, noninvasive evaluation of apatite orientation has not been achieved to date. The present paper reports the potential of quantitative ultrasound (QUS) for noninvasive evaluation of the degree of apatite orientation in human bone for the first time. A novel QUS instrument for implementation of the axial transmission (AT) method is developed, so as to achieve precise measurement of the speed of sound (SOS) in the cortex (cSOS) of human long bone. The advantages of our QUS instrument are the following: (i) it is equipped with a cortical bone surface-morphology detection system to correct the ultrasound transmission distance, which should be necessary for AT measurement of long bone covered by soft tissue of non-uniform thickness; and (ii) ultrasound with a relatively high frequency of 3 MHz is employed, enabling thickness-independent cSOS measurement even for the thin cortex by preventing guide wave generation. The reliability of the proposed AT measurement system is confirmed through comparison with the well-established direct transmission (DT) method. The cSOS in human long bone is found to exhibit considerable direction-dependent anisotropy; the axial cSOS (3870 ± 66 m/s) is the highest, followed by the tangential (3411 ± 94 m/s) and radial (3320 ± 85 m/s) cSOSs. The degree of apatite orientation exhibits the same order, despite the unchanged bone mineral density. Multiple regression analysis reveals that the cSOS of human long bone strongly reflects the apatite orientation. The cSOS determined by the AT method is positively correlated with that determined by the DT method and sensitively reflects the apatite orientation variation, indicating the validity of the AT instrument developed in this study. Our instrument will be beneficial for noninvasive evaluation of the material integrity of the human long-bone cortex, as determined by apatite c-axis orientation along the axial direction.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ryoichi Suetoshi
- Research and Innovation Center, Furuno Electric Co., Ltd., 9-52, Ashihara-cho, Nishinomiya, Hyogo 662-8580, Japan
| | - Dorian Cretin
- Research and Innovation Center, Furuno Electric Co., Ltd., 9-52, Ashihara-cho, Nishinomiya, Hyogo 662-8580, Japan
| | - Koji Hagihara
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Jun Hashimoto
- Department of Rheumatology, National Hospital Organization, Osaka-Minami Medical Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan
| | - Akio Kobayashi
- Department of Orthopaedic Surgery, Shiraniwa Hospital Joint Arthroplasty Center, 6-10-1 Shiraniwadai Ikoma, Nara 630-0136, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
King HE, Tommasini SM, Rodriguez-Navarro AB, Mercado BQ, Skinner HCW. Correlative vibrational spectroscopy and 2D X-ray diffraction to probe the mineralization of bone in phosphate-deficient mice. J Appl Crystallogr 2019; 52:960-971. [PMID: 31636517 PMCID: PMC6782074 DOI: 10.1107/s1600576719009361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
Bone crystallite chemistry and structure change during bone maturation. However, these properties of bone can also be affected by limited uptake of the chemical constituents of the mineral by the animal. This makes probing the effect of bone-mineralization-related diseases a complicated task. Here it is shown that the combination of vibrational spectroscopy with two-dimensional X-ray diffraction can provide unparalleled information on the changes in bone chemistry and structure associated with different bone pathologies (phosphate deficiency) and/or health conditions (pregnancy, lactation). Using a synergistic analytical approach, it was possible to trace the effect that changes in the remodelling regime have on the bone mineral chemistry and structure in normal and mineral-deficient (hypophosphatemic) mice. The results indicate that hypophosphatemic mice have increased bone remodelling, increased carbonate content and decreased crystallinity of the bone mineral, as well as increased misalignment of crystallites within the bone tissue. Pregnant and lactating mice that are normal and hypophosphatemic showed changes in the chemistry and misalignment of the apatite crystals that can be related to changes in remodelling rates associated with different calcium demand during pregnancy and lactation.
Collapse
Affiliation(s)
- Helen E King
- Department of Earth Sciences, Utrecht University, Princetonlaan 8a, Utrecht 3584 CB, The Netherlands
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut CT-06511, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar Street, New Haven, Connecticut CT-06510, USA
| | | | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut CT-06511, USA
| | - H Catherine W Skinner
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut CT-06511, USA
| |
Collapse
|
46
|
Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019; 16:20190259. [PMID: 31362615 PMCID: PMC6685012 DOI: 10.1098/rsif.2019.0259] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
In recent decades, cementless implants have been widely used in clinical practice to replace missing organs, to replace damaged or missing bone tissue or to restore joint functionality. However, there remain risks of failure which may have dramatic consequences. The success of an implant depends on its stability, which is determined by the biomechanical properties of the bone-implant interface (BII). The aim of this review article is to provide more insight on the current state of the art concerning the evolution of the biomechanical properties of the BII as a function of the implant's environment. The main characteristics of the BII and the determinants of implant stability are first introduced. Then, the different mechanical methods that have been employed to derive the macroscopic properties of the BII will be described. The experimental multi-modality approaches used to determine the microscopic biomechanical properties of periprosthetic newly formed bone tissue are also reviewed. Eventually, the influence of the implant's properties, in terms of both surface properties and biomaterials, is investigated. A better understanding of the phenomena occurring at the BII will lead to (i) medical devices that help surgeons to determine an implant's stability and (ii) an improvement in the quality of implants.
Collapse
Affiliation(s)
- Xing Gao
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Manon Fraulob
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| |
Collapse
|
47
|
Hanawa T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front Bioeng Biotechnol 2019; 7:170. [PMID: 31380361 PMCID: PMC6650641 DOI: 10.3389/fbioe.2019.00170] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Titanium (Ti) and its alloys are widely used for medical and dental implant devices-artificial joints, bone fixators, spinal fixators, dental implant, etc. -because they show excellent corrosion resistance and good hard-tissue compatibility (bone formation and bone bonding ability). Osseointegration is the first requirement of the interface structure between titanium and bone tissue. This concept of osseointegration was immediately spread to dental-materials researchers worldwide to show the advantages of titanium as an implant material compared with other metals. Since the concept of osseointegration was developed, the cause of osseointegration has been actively investigated. The surface chemical state, adsorption characteristics of protein, and bone tissue formation process have also been evaluated. To accelerate osseointegration, roughened and porous surfaces are effective. HA and TiO2 coatings prepared by plasma spray and an electrochemical technique, as well as alkalinization of the surface, are also effective to improve hard-tissue compatibility. Various immobilization techniques for biofunctional molecules have been developed for bone formation and prevention of platelet and bacteria adhesion. These techniques make it possible to apply Ti to a scaffold of tissue engineering. The elucidation of the mechanism of the excellent biocompatibility of Ti can provide a shorter way to develop optimal surfaces. This review should enhance the understanding of the properties and biocompatibility of Ti and highlight the significance of surface treatment.
Collapse
Affiliation(s)
- Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
48
|
Ozasa R, Ishimoto T, Miyabe S, Hashimoto J, Hirao M, Yoshikawa H, Nakano T. Osteoporosis Changes Collagen/Apatite Orientation and Young's Modulus in Vertebral Cortical Bone of Rat. Calcif Tissue Int 2019; 104:449-460. [PMID: 30588540 DOI: 10.1007/s00223-018-0508-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
This study revealed the distinguished changes of preferential orientation of collagen and apatite and Young's modulus in two different types of osteoporotic bones compared with the normal bone. Little is known about the bone material properties of osteoporotic bones; therefore, we aimed to assess material properties in osteoporotic bones. 66 female Sprague-Dawley rats were used. We analyzed the volumetric bone mineral density, collagen/apatite orientation, and Young's modulus of fifth lumbar vertebral cortex for osteoporotic rats caused by ovariectomy (OVX), administration of low calcium and phosphate content (LCaP) diet, and their combination (OVX + LCaP), as well as sham-operated control. Osteocyte conditions were assessed by hematoxylin and eosin and immunohistochemical (matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein 1 (DMP1)) staining. All osteoporotic animals showed bone loss compared with the sham-operated control. OVX improved craniocaudal Young's modulus by enhancing collagen/apatite orientation along the craniocaudal axis, likely in response to the elevated stress due to osteoporotic bone loss. Conversely, LCaP-fed animals showed either significant bone loss or degraded collagen/apatite orientation and Young's modulus. Osteocytes in LCaP and OVX + LCaP groups showed atypical appearance and MEPE- and DMP1-negative phenotype, whereas those in the OVX group showed similarity with osteocytes in the control group. This suggests that osteocytes are possibly involved in the osteoporotic changes in collagen/apatite orientation and Young's modulus. This study is the first to demonstrate that osteoporosis changes collagen/apatite orientation and Young's modulus in an opposite manner depending on the cause of osteoporosis in spite of common bone loss.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sayaka Miyabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun Hashimoto
- Department of Rheumatology, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashi, Kawachinagano, Osaka, 586-8521, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
49
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
50
|
Lee S, Matsugaki A, Kasuga T, Nakano T. Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. J Biomed Mater Res A 2019; 107:1031-1041. [PMID: 30675975 PMCID: PMC6593822 DOI: 10.1002/jbm.a.36619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 11/06/2018] [Indexed: 01/27/2023]
Abstract
During the bone regeneration process, the anisotropic microstructure of bone tissue (bone quality) recovers much later than bone mass (bone quantity), resulting in severe mechanical dysfunction in the bone. Hence, restoration of bone microstructure in parallel with bone mass is necessary for ideal bone tissue regeneration; for this, development of advanced bifunctional biomaterials, which control both the quality and quantity in regenerated bone, is required. We developed novel oriented bioactive glass/poly(lactic acid) composite scaffolds by introducing an effective methodology for controlling cell alignment and proliferation, which play important roles for achieving bone anisotropy and bone mass, respectively. Our strategy is to manipulate the cell alignment and proliferation by the morphological control of the scaffolds in combination with controlled ion release from bioactive glasses. We quantitatively controlled the morphology of fibermats containing bioactive glasses by electrospinning, which successfully induced cell alignment along the fibermats. Also, the substitution of CaO in Bioglass®(45S5) with MgO and SrO improved osteoblast proliferation, indicating that dissolved Mg2+ and Sr2+ ions promoted cell adhesion and proliferation. Our results indicate that the fibermats developed in this work are candidates for the scaffolds to bone tissue regeneration that enable recovery of both bone quality and bone quantity. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1031–1041, 2019.
Collapse
Affiliation(s)
- Sungho Lee
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|