1
|
Kim AS, Taylor VE, Castro-Martinez A, Dhakal S, Zamerli A, Mohanty S, Xiao Y, Simic MK, Wen J, Chai R, Croucher PI, Center JR, Girgis CM, McDonald MM. Temporal patterns of osteoclast formation and activity following withdrawal of RANKL inhibition. J Bone Miner Res 2024; 39:484-497. [PMID: 38477789 PMCID: PMC11262142 DOI: 10.1093/jbmr/zjae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.
Collapse
Affiliation(s)
- Albert S Kim
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, 2145, Australia
- Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
| | - Victoria E Taylor
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Ariel Castro-Martinez
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Suraj Dhakal
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Amjad Zamerli
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Sindhu Mohanty
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Ya Xiao
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Marija K Simic
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| | - Jinchen Wen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, United States
| | - Ryan Chai
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Peter I Croucher
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Jacqueline R Center
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, 2145, Australia
- Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
| | - Michelle M McDonald
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
- Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
| |
Collapse
|
2
|
Khoswanto C. Role of matrix metalloproteinases in bone regeneration: Narrative review. J Oral Biol Craniofac Res 2023; 13:539-543. [PMID: 37351418 PMCID: PMC10282173 DOI: 10.1016/j.jobcr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) not only work as enzymes but also as degrading enzymes that have been shown to play an important function in extracellular matrix (ECM) regeneration, including bone regeneration. To generate new bone tissue, bone regeneration or repair relies on a series of regulated processes in which MMPs play an important role. Bone cells express the MMPs in an active state, and these MMPs are assumed to have a crucial role, not only for the viability and functionality of osteoclasts, osteoblasts, and osteocytes but also for the formation and development of chondrocytes. Objective This study aimed to review and present the roles of matrix metalloproteinases in bone regeneration. Methods An analysis of the scientific literature on the topics of matrix metalloproteinases in bone regeneration was done on PubMed and Google Scholar. Search results were screened for articles that described or investigated the impacts matrix metalloproteinases have on bones in relation to dentistry. The journals' cited papers were also assessed for relevance and included if they complied with the criteria for inclusion. Accessibility to the full document was one of the prerequisites for admission. Result Bone regeneration are intricate ongoing processes involving numerous MMPs, especially MMP 2, 9 and 13. MMP-2 appears to alter bone growth through influencing osteoclast and osteoblast activity and proliferation, MMP-9-deficient animals have abnormal bone formation exclusively during endochondral ossification, MMP 13 is responsible for osteoclast receptor activation, has been linked to the breakdown bone resorption. Conclusions MMP 2, 9, and 13 play a major protective role in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University. Jln. Mayjend. Prof. Dr. Moestopo No. 47, Surabaya, 60132, Indonesia
| |
Collapse
|
3
|
Ni X, Xing X, Deng Y, Li Z. Applications of Stimuli-Responsive Hydrogels in Bone and Cartilage Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030982. [PMID: 36986842 PMCID: PMC10056098 DOI: 10.3390/pharmaceutics15030982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Bone and cartilage regeneration is an area of tremendous interest and need in health care. Tissue engineering is a potential strategy for repairing and regenerating bone and cartilage defects. Hydrogels are among the most attractive biomaterials in bone and cartilage tissue engineering, mainly due to their moderate biocompatibility, hydrophilicity, and 3D network structure. Stimuli-responsive hydrogels have been a hot topic in recent decades. They can respond to external or internal stimulation and are used in the controlled delivery of drugs and tissue engineering. This review summarizes current progress in the use of stimuli-responsive hydrogels in bone and cartilage regeneration. The challenges, disadvantages, and future applications of stimuli-responsive hydrogels are briefly described.
Collapse
Affiliation(s)
- Xiaoqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yunfan Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. BIOMATERIALS ADVANCES 2022; 140:213058. [PMID: 35933955 DOI: 10.1016/j.bioadv.2022.213058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The well-known synergetic interplay between the skeletal and immune systems has changed the design of advanced bone tissue engineering strategies. The immune system is essential during the bone lifetime, with macrophages playing multiple roles in bone healing and biomaterial integration. If in the past, the most valuable aspect of implants was to avoid immune responses of the host, nowadays, it is well-established how important are the crosstalks between immune cells and bone-engineered niches for an efficient regenerative process to occur. For that, it is essential to recapitulate the multiphenotypic cellular environment of bone tissue when designing new approaches. Indeed, the lack of osteoimmunomodulatory knowledge may be the explanation for the poor translation of biomaterials into clinical practice. Thus, smarter hydrogels incorporating immunomodulatory bioactive factors, stem cells, and immune cells are being proposed to develop a new generation of bone tissue engineering strategies. This review highlights the power of immune cells to upgrade the development of innovative engineered strategies, mainly focusing on orthopaedic and dental applications.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
6
|
Ding Z, Qiu M, Alharbi MA, Huang T, Pei X, Milovanova TN, Jiao H, Lu C, Liu M, Qin L, Graves DT. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone 2021; 148:115905. [PMID: 33662610 PMCID: PMC8106874 DOI: 10.1016/j.bone.2021.115905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Fracture healing is a multistage process characterized by inflammation, cartilage formation, bone deposition, and remodeling. Chondrocytes are important in producing cartilage that forms the initial anlagen for the hard callus needed to stabilize the fracture site. We examined the role of FOXO1 by selective ablation of FOXO1 in chondrocytes mediated by Col2α1 driven Cre recombinase. Experimental mice with lineage-specific FOXO1 deletion (Col2α1Cre+FOXO1L/L) and negative control littermates (Col2α1Cre-FOXO1L/L) were used for in vivo, closed fracture studies. Unexpectedly, we found that in the early phases of fracture healing, FOXO1 deletion significantly increased the amount of cartilage formed, whereas, in later periods, FOXO1 deletion led to a greater loss of cartilage. FOXO1 was functionally important as its deletion in chondrocytes led to diminished bone formation on day 22. Mechanistically, the early effects of FOXO1 deletion were linked to increased proliferation of chondrocytes through enhanced expression of cell cycle genes that promote proliferation and reduced expression of those that inhibit it and increased expression of cartilage matrix genes. At later time points experimental mice with FOXO1 deletion had greater loss of cartilage, enhanced formation of osteoclasts, increased IL-6 and reduced numbers of M2 macrophages. These results identify FOXO1 as a transcription factor that regulates chondrocyte behavior by limiting the early expansion of cartilage and preventing rapid cartilage loss at later phases.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Qiu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mohammed A Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tiffany Huang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, China
| | - Tatyana N Milovanova
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongli Jiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Morse A, McDonald MM, Mikulec K, Schindeler A, Munns CF, Little DG. Pretreatment with Pamidronate Decreases Bone Formation but Increases Callus Bone Volume in a Rat Closed Fracture Model. Calcif Tissue Int 2020; 106:172-179. [PMID: 31578632 DOI: 10.1007/s00223-019-00615-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Clinical concerns have been raised over prior exposure to bisphosphonates impairing fracture healing. To model this, groups of male Wistar rats were assigned to saline control or treatment groups receiving 0.15 mg/kg (low dose), 0.5 mg/kg (medium dose), and 5 mg/kg (high dose) Pamidronate (PAM) twice weekly for 4 weeks. At this point, closed fractures were made using an Einhorn apparatus, and bisphosphonate dosing was continued until the experimental endpoint. Specimens were analyzed at 2 and 6 weeks (N = 8 per group per time point). Twice weekly PAM dosing was found to have no effect on early soft callus remodeling at 2 weeks post fracture. At this time point, the highest dose PAM group gave significant increases in bone volume (+ 10%, p < 0.05), bone mineral content (+ 30%, p < 0.01), and bone mineral density (+ 10%, p < 0.01). This PAM dosing regimen showed more substantive effects on hard callus at 6 weeks post fracture, with PAM treatment groups showing + 46-79% increased bone volume. Dynamic bone labeling showed reduced calcein signal in the PAM-treated calluses (38-63%, p < 0.01) and reduced MAR (32-49%, p < 0.01), suggesting a compensatory reduction in bone anabolism. These data support the concept that bisphosphonates lead to profound decreases in bone turnover in fracture repair, however, this does not affect soft callus remodeling.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michelle M McDonald
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Bone Biology Division, The Garvan Institute for Medical Research, Sydney, Australia
| | - Kathy Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Craig F Munns
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department for Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Su YW, Chim SM, Zhou L, Hassanshahi M, Chung R, Fan C, Song Y, Foster BK, Prestidge CA, Peymanfar Y, Tang Q, Butler LM, Gronthos S, Chen D, Xie Y, Chen L, Zhou XF, Xu J, Xian CJ. Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116:232-247. [PMID: 30125729 PMCID: PMC6550307 DOI: 10.1016/j.bone.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin‑3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaming Fan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Qian Tang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Lisa M Butler
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Stan Gronthos
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
9
|
Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone nonunions - types, aetiology, economics, and treatment recommendations. INTERNATIONAL ORTHOPAEDICS 2017; 42:247-258. [PMID: 29273837 DOI: 10.1007/s00264-017-3734-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6-8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between "vital" (hypertrophic) and "avital" (hypo-/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The "diamond concept" units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.
Collapse
Affiliation(s)
- Markus Rupp
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Christoph Biehl
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Matthäus Budak
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Ulrich Thormann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Christian Heiss
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany.
| |
Collapse
|
10
|
Graney PL, Roohani-Esfahani SI, Zreiqat H, Spiller KL. In vitro response of macrophages to ceramic scaffolds used for bone regeneration. J R Soc Interface 2017; 13:rsif.2016.0346. [PMID: 27466438 DOI: 10.1098/rsif.2016.0346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophages, the primary cells of the inflammatory response, are major regulators of healing, and mediate both bone fracture healing and the inflammatory response to implanted biomaterials. However, their phenotypic contributions to biomaterial-mediated bone repair are incompletely understood. Therefore, we used gene expression and protein secretion analysis to investigate the interactions in vitro between primary human monocyte-derived macrophages and ceramic scaffolds that have been shown to have varying degrees of success in promoting bone regeneration in vivo Specifically, baghdadite (Ca3ZrSi2O9) and strontium-hardystonite-gahnite (Sr-Ca2ZnSi2O7-ZnAl2O4) scaffolds were chosen as two materials that enhanced bone regeneration in vivo in large defects under load compared with clinically used tricalcium phosphate-hydroxyapatite (TCP-HA). Principal component analysis revealed that the scaffolds differentially regulated macrophage phenotype. Temporal changes in gene expression included shifts in markers of pro-inflammatory M1, anti-inflammatory M2a and pro-remodelling M2c macrophage phenotypes. Of note, TCP-HA scaffolds promoted upregulation of many M1-related genes and downregulation of many M2a- and M2c-related genes. Effects of the scaffolds on macrophages were attributed primarily to direct cell-scaffold interactions because of only minor changes observed in transwell culture. Ultimately, elucidating macrophage-biomaterial interactions will facilitate the design of immunomodulatory biomaterials for bone repair.
Collapse
Affiliation(s)
- Pamela L Graney
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
12
|
Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res 2017; 35:213-223. [PMID: 27743449 PMCID: PMC6120140 DOI: 10.1002/jor.23460] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
Delayed healing and nonunion of fractures represent enormous burdens to patients and healthcare systems. There are currently no approved pharmacological agents for the treatment of established nonunions, or for the acceleration of fracture healing, and no pharmacological agents are approved for promoting the healing of closed fractures. Yet several pharmacologic agents have the potential to enhance some aspects of fracture healing. In preclinical studies, various agents working across a broad spectrum of molecular pathways can produce larger, denser and stronger fracture calluses. However, untreated control animals in most of these studies also demonstrate robust structural and biomechanical healing, leaving unclear how these interventions might alter the healing of recalcitrant fractures in humans. This review describes the physiology of fracture healing, with a focus on aspects of natural repair that may be pharmacologically augmented to prevent or treat delayed or nonunion fractures (collectively referred to as DNFs). The agents covered in this review include recombinant BMPs, PTH/PTHrP receptor agonists, activators of Wnt/β-catenin signaling, and recombinant FGF-2. Agents from these therapeutic classes have undergone extensive preclinical testing and progressed to clinical fracture healing trials. Each can promote bone formation, which is important for the stability of bridged calluses, and some but not all can also promote cartilage formation, which may be critical for the initial bridging and subsequent stabilization of fractures. Appropriately timed stimulation of chondrogenesis and osteogenesis in the fracture callus may be a more effective approach for preventing or treating DNFs compared with stimulation of osteogenesis alone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:213-223, 2017.
Collapse
Affiliation(s)
- Paul Kostenuik
- School of DentistryUniversity of MichiganPhylon Pharma ServicesNewbury ParkCalifornia
| | | |
Collapse
|
13
|
El-Jawhari JJ, Jones E, Giannoudis PV. The roles of immune cells in bone healing; what we know, do not know and future perspectives. Injury 2016; 47:2399-2406. [PMID: 27809990 DOI: 10.1016/j.injury.2016.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key events occurring during the bone healing include well-orchestrated and complex interactions between immune cells, multipotential stromal cells (MSCs), osteoblasts and osteoclasts. Through three overlapping phases of this physiological process, innate and adaptive immune cells, cytokines and chemokines have a significant role to play. The aim of the escalating immune response is to achieve an osseous healing in the shortest time and with the least complications facilitating the restoration of function. The uninterrupted progression of these biological events in conjunction with a favourable mechanical environment (stable fracture fixation) remains the hallmark of successful fracture healing. When failure occurs, either the biological environment or the mechanical one could have been disrupted. Not infrequently both may be compromised. Consequently, regenerative treatments involving the use of bone autograft, allograft or synthetic matrices supplemented with MSCs are increasingly used. A better understanding of the bone biology and osteoimmunology can help to improve these evolving cell-therapy based strategies. Herein, an up to date status of the role of immune cells during the different phases of bone healing is presented. Additionally, the known and yet to know events about immune cell interactions with MSCs and osteoblasts and osteoclasts and the therapeutic implications are being discussed.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK; Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK.
| |
Collapse
|
14
|
Ablation of Y1 receptor impairs osteoclast bone-resorbing activity. Sci Rep 2016; 6:33470. [PMID: 27646989 PMCID: PMC5028844 DOI: 10.1038/srep33470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Y1 receptor (Y1R)-signalling pathway plays a pivotal role in the regulation of bone metabolism. The lack of Y1R-signalling stimulates bone mass accretion that has been mainly attributed to Y1R disruption from bone-forming cells. Still, the involvement of Y1R-signalling in the control of bone-resorbing cells remained to be explored. Therefore, in this study we assessed the role of Y1R deficiency in osteoclast formation and resorption activity. Here we demonstrate that Y1R germline deletion (Y1R−/−) led to increased formation of highly multinucleated (n > 8) osteoclasts and enhanced surface area, possibly due to monocyte chemoattractant protein-1 (MCP-1) overexpression regulated by RANKL-signalling. Interestingly, functional studies revealed that these giant Y1R−/− multinucleated cells produce poorly demineralized eroded pits, which were associated to reduce expression of osteoclast matrix degradation markers, such as tartrate-resistant acid phosphatase-5b (TRAcP5b), matrix metalloproteinase-9 (MMP-9) and cathepsin-K (CTSK). Tridimensional (3D) morphologic analyses of resorption pits, using an in-house developed quantitative computational tool (BonePit), showed that Y1R−/− resorption pits displayed a marked reduction in surface area, volume and depth. Together, these data demonstrates that the lack of Y1Rs stimulates the formation of larger multinucleated osteoclasts in vitro with reduced bone-resorbing activity, unveiling a novel therapeutic option for osteoclastic bone diseases based on Y1R-signalling ablation.
Collapse
|
15
|
Cheng TL, Schindeler A, Little DG. BMP-2 delivered via sucrose acetate isobutyrate (SAIB) improves bone repair in a rat open fracture model. J Orthop Res 2016; 34:1168-76. [PMID: 26679381 DOI: 10.1002/jor.23131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Human bone morphogenetic proteins (BMPs) are an alternative to bone graft for the treatment of high-energy open fractures. The standard delivery system for BMP-2 is a porous collagen sponge, but we have previously found that the biocompatible, high viscosity carrier, Sucrose acetate isobutyrate (SAIB) is an effective and potentially less invasive alternative. The efficacy of SAIB as a BMP-2 delivery system was examined in an open fracture model featuring a femoral osteotomy with periosteal stripping in 9-week-old male Sprague Dawley rats. SAIB containing BMP-2 (SAIB/BMP-2) was delivered into the fracture site during surgery and an additional group was further co-treated with zoledronic acid and hydroxyapatite nanoparticles (SAIB/BMP-2/HA/ZA). These were compared to untreated fractures and SAIB carrier alone (negative controls), and BMP-2 loaded collagen sponge (positive control). The rate of radiographic union and the biomechanical properties of the healed fractures were compared after 6-week. Untreated and SAIB-treated fractures showed poor repair, with 53% and 64%, respectively, not bridged at 6 week. In contrast, collagen/BMP-2, SAIB/BMP-2, and SAIB/BMP-2/HA/ZA showed significantly increased union (100%, 100%, and 94%, respectively, p < 0.05). Four-point bend testing revealed that collagen/BMP-2 and SAIB/BMP-2/HA/ZA restored the strength of fractured femora to that of intact femora by 6 week, whereas untreated and SAIB remained less than intact controls by 60% and 67%, respectively (p < 0.05). Overall, the SAIB/BMP-2/HA/ZA formulation was comparable to BMP-2 infused collagen sponge in terms of promoting open fractures repair, but with the additional potential for less invasive delivery. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1168-1176, 2016.
Collapse
Affiliation(s)
- Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Suen PK, Qin L. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review. J Orthop Translat 2015; 4:1-13. [PMID: 30035061 PMCID: PMC5987014 DOI: 10.1016/j.jot.2015.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis and its associated fracture risk has become one of the major health burdens in our aging population. Currently, bisphosphonate, one of the most popular antiresorptive drugs, is used widely to treat osteoporosis but so far still no consensus has been reached for its application in treatment of osteoporotic fractures. However, in old patients, boosting new bone formation and its remodelling is essential for bone healing in age-related osteoporosis and osteoporotic fractures. Sclerostin, an inhibitor of the Wnt/β-catenin signalling pathway that regulates bone growth, has become an attractive therapeutic target for treating osteoporosis. In this review, we summarize the recent findings of sclerostin and its potential as an effective drug target for treating both osteoporosis and osteoporotic fractures.
Collapse
Affiliation(s)
- Pui Kit Suen
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2015; 5:21-34. [PMID: 25727198 PMCID: PMC4358754 DOI: 10.1002/9780470942390.mo140166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fractures are one of the most common large-organ, traumatic injuries in humans, and osteoporosis-related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post-natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co-morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented.
Collapse
Affiliation(s)
- Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| |
Collapse
|
18
|
Yuasa M, Yamada T, Taniyama T, Masaoka T, Xuetao W, Yoshii T, Horie M, Yasuda H, Uemura T, Okawa A, Sotome S. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS One 2015; 10:e0116462. [PMID: 25659106 PMCID: PMC4319911 DOI: 10.1371/journal.pone.0116462] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/10/2014] [Indexed: 01/24/2023] Open
Abstract
We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2.
Collapse
Affiliation(s)
- Masato Yuasa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Yamada
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Taniyama
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomokazu Masaoka
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei Xuetao
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Horie
- Hyperbaric Medical Center, University Hospital of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Yasuda
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshimasa Uemura
- National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Sotome
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Research and Development, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Stansfield R, Gossiel F, Morton A, Newman C, Eastell R. Type I collagen degradation during tissue repair: comparison of mechanisms following fracture and acute coronary syndromes. Bone 2014; 69:1-5. [PMID: 25193029 DOI: 10.1016/j.bone.2014.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022]
Abstract
There is turnover of type I collagen during tissue repair. The degradation of type I collagen by matrix metalloproteinases (MMPs) is reflected by serum ICTP and that by cathepsins by CTX-I. There is evidence for increases in ICTP after acute coronary syndromes (ACS) and in CTX-I during fracture repair. The involvement of the MMP pathway in fracture repair and cathepsins after myocardial infarction is unclear. We studied 74 men; 22 were admitted to the hospital on the day of their ACS (ST or non-ST elevation myocardial infarction) (mean age 56 years, range 39 to 82) and 9 attended hospital on the day of their tibial shaft fracture (mean age 33 years, range 21 to 79); we had 43 age-matched controls (mean age 54 years, range 20 to 82). Subjects with ACS and tibial shaft fracture were followed up for up to one year; control subjects were used to establish a reference interval. We measured serum ICTP by ELISA (reference interval 1.1 to 17.6 ng/mL) and CTX-I by chemiluminescence (reference interval 0.094 to 0.991 ng/mL). After ACS, the mean ICTP increased from 5.41 to 6.60 ng/mL within one day of admission (p<0.05); the mean CTX-I increased from 0.263 to 0.414 ng/mL (p<0.05). In two cases, the CTX increased to above the reference interval. After tibial shaft fracture, the mean ICTP increased from 5.51 to maximum of 8.71 ng/mL within 28 days of admission (p<0.01); the mean CTX increased from 0.200 to 0.374 ng/mL (p<0.001). In four cases, the CTX increased to above the reference interval. We conclude that the MMP and cathepsin pathways are both implicated in tissue repair in the bone and heart. This may have clinical implications; drugs that block either pathway (TIMPs, cathepsin K inhibitors) may affect the repair of both tissues.
Collapse
Affiliation(s)
- Rachel Stansfield
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Fatma Gossiel
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Allison Morton
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom; Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Christopher Newman
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard Eastell
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
20
|
Paiva KBS, Granjeiro JM. Bone tissue remodeling and development: Focus on matrix metalloproteinase functions. Arch Biochem Biophys 2014; 561:74-87. [PMID: 25157440 DOI: 10.1016/j.abb.2014.07.034] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
|
21
|
Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3192-204. [PMID: 25285719 DOI: 10.1016/j.ajpath.2014.08.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
The distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80(+)Mac-2(+)) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front. They were also associated with key events during soft-to-hard callus transition. Resident macrophages (F4/80(+)Mac-2(neg)), including osteal macrophages, predominated in the maturing hard callus. Macrophage Fas-induced apoptosis transgenic mice were used to induce macrophage depletion in vivo in the femoral fracture model. Callus formation was completely abolished when macrophage depletion was initiated at the time of surgery and was significantly reduced when depletion was delayed to coincide with initiation of early anabolic phase. Treatment initiating 5 days after fracture with the pro-macrophage cytokine colony stimulating factor-1 significantly enhanced soft callus formation. The data support that inflammatory macrophages were required for initiation of fracture repair, whereas both inflammatory and resident macrophages promoted anabolic mechanisms during endochondral callus formation. Overall, macrophages make substantive and prolonged contributions to fracture healing and can be targeted as a therapeutic approach for enhancing repair mechanisms. Thus, macrophages represent a viable target for the development of pro-anabolic fracture treatments with a potentially broad therapeutic window.
Collapse
Affiliation(s)
- Liza J Raggatt
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Martin E Wullschleger
- Trauma Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; School of Medicine, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Kylie A Alexander
- UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Andy C K Wu
- UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Susan M Millard
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Simranpreet Kaur
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Michelle L Maugham
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Laura S Gregory
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Allison R Pettit
- Bone and Immunology Laboratory, Mater Research Institute-UQ, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia; UQ-Centre for Clinical Research, Faculty of Health Sciences, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
22
|
El-Hoss J, Kolind M, Jackson MT, Deo N, Mikulec K, McDonald MM, Little CB, Little DG, Schindeler A. Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone 2014; 59:151-61. [PMID: 24269278 DOI: 10.1016/j.bone.2013.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
MEK inhibitors (MEKi) PD0325901 and AZD6244 (Selumetinib) are drugs currently under clinical investigation for cancer treatment, however the Ras-MAPK pathway is also an important mediator of normal bone cell differentiation and function. In this study we examined the effects of these compounds on endochondral processes using both in vitro and in vivo models. Treatment with PD0325901 or AZD6244 significantly increased Runx2 and Alkaline phosphate gene expression in calvarial osteoblasts and decreased TRAP+ cells in induced osteoclast cultures. To test the effects of these drugs on bone healing, C57/Bl6 mice underwent a closed tibial fracture and were treated with PD0325901 or AZD6244 at 10mg/kg/day. Animals were culled at day 10 and at day 21 post-fracture for analysis of the fracture callus and the femoral growth plate in the contralateral leg. MEKi treatment markedly increased cartilage volume in the soft callus at day 10 post-fracture (+60% PD0325901, +20% AZD6244) and continued treatment led to a delay in cartilage remodeling. At the growth plate, we observed an increase in the height of the hypertrophic zone relative to the proliferative zone of +78% in PD0325901 treated mice. Osteoclast surface was significantly decreased both at the terminal end of the growth plate and within the fracture calluses of MEKi treated animals. The mechanistic effects of MEKi on genes encoding cartilage matrix proteins and catabolic enzymes were examined in articular chondrocyte cultures. PD0325901 or AZD6244 led to increased matrix protein expression (Col2a1 and Acan) and decreased expression of catabolic factors (Mmp13 and Adamts-5). Taken together, these data support the hypothesis that MEKi treatment can impact chondrocyte hypertrophy, matrix resorption, and fracture healing. These compounds can also affect bone architecture by expanding the hypertrophic zone of the growth plate and reducing osteoclast surface systemically.
Collapse
Affiliation(s)
- J El-Hoss
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - M Kolind
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M T Jackson
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - N Deo
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - K Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M M McDonald
- Bone Biology Group, Garvan Institute for Medical Research, Sydney, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - D G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Unraveling macrophage contributions to bone repair. BONEKEY REPORTS 2013; 2:373. [PMID: 25035807 DOI: 10.1038/bonekey.2013.107] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 12/23/2022]
Abstract
Macrophages have reemerged to prominence with widened understanding of their pleiotropic contributions to many biologies and pathologies. This includes clear advances in revealing their importance in wound healing. Here we have focused on the current state of knowledge with respect to bone repair, which has received relatively little scientific attention compared with its soft-tissue counterparts. Our detailed characterization of resident tissue macrophages residing in bone-lining tissues (osteomacs), including their pro-anabolic function, exposed a more prominent role for these cells in bone biology than previously anticipated. Recent studies have confirmed the importance of macrophages in early inflammatory processes that establish the healing cascade after bone fracture. Emerging data support that macrophage influence extends into both anabolic and catabolic phases of repair, suggesting that these cells have prolonged and diverse functions during fracture healing. More research is needed to clarify macrophage phase-specific contributions, temporospatial subpopulation variance and macrophage specific-molecular mediators. There is also clear motivation for determining whether macrophage alterations underlie compromised fracture healing. Overall, there is strong justification to pursue strategies targeting macrophages and/or their products for improving normal bone healing and overcoming failed repair.
Collapse
|