1
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Yao F, Zhong F, Jiang J, Cheng Y, Xu S, Liu J, Lin J, Zhang J, Li S, Li M, Xu Y, Huang B, Wang X. The m 6A regulator KIAA1429 stabilizes RAB27B mRNA and promotes the progression of chronic myeloid leukemia and resistance to targeted therapy. Genes Dis 2024; 11:993-1008. [PMID: 37692484 PMCID: PMC10491918 DOI: 10.1016/j.gendis.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a common adult leukemia. Both the acute phase of the disease and the adverse effects of anti-cancer treatments can lead to a poor prognosis. The N6-methyladenine (m6A) modification plays an important regulatory role in various physiological and pathological processes. KIAA1429 is a known m6A regulator, but the biological role of KIAA1429 in CML is unclear. In this study, we observed that the m6A levels and KIAA1429 expression were significantly up-regulated in patients with blast phase CML. Notably, KIAA1429 regulated the total level of RNA m6A modification in the CML cells and promoted the malignant biological behaviors of CML cells, including proliferation, migration, and imatinib resistance. Inhibiting KIAA1429 in CML cells reduced the stability of RAB27B mRNA through the m6A/YTHDF1 axis, consequently inhibiting CML proliferation and drug efflux, ultimately increasing the sensitivity of CML cells to imatinib. Moreover, the knockdown of RAB27B also inhibited the proliferation and drug resistance of CML cells and promoted their apoptosis. Rucaparib, a recently developed anti-cancer agent, suppressed the expression of KIAA1429 and CML cell proliferation and promoted cell apoptosis. Rucaparib also inhibited the tumorigenesis of CML cells in vivo. The combined use of rucaparib and imatinib enhanced the sensitivity of CML cells to imatinib. Our study provides evidence that elevated KIAA1429 expression in the blast phase of CML enhances the stability of RAB27B mRNA through the m6A/YTHDF1 axis to up-regulate RAB27B expression, thereby promoting CML progression. Rucaparib exerts inhibitory effects on KIAA1429 expression and thus reduces CML progression.
Collapse
Affiliation(s)
| | | | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuqi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Meiyong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Tang L, Yuan L, Yan J, Ge J, Lian Z, Li Z. circ_0029463 promotes osteoclast differentiation by mediating miR-134-5p/Rab27a axis. J Orthop Surg Res 2024; 19:128. [PMID: 38326867 PMCID: PMC10851473 DOI: 10.1186/s13018-024-04610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE Osteoporosis is the imbalance in bone homeostasis between osteoblasts and osteoclasts. In this study, we investigated the effects of the circ_0029463/miR-134-5p/Rab27a axis on RANKL-induced osteoclast differentiation. METHODS RT-qPCR and western blotting were used to detect the expression of circ_0029463, miR-134-5p, and Rab27a in tissues from patients with osteoporosis and in RANKL-induced osteoclasts. Osteoclast differentiation was verified by TRAP staining. Osteoclast biomarkers, including NFATc1, TRAP, and CTSK, were measured. The target and regulatory relationships between circ_0029463, miR-134-5p, and the Rab27a axis were verified using RIP, dual-luciferase reporter gene, and RNA pull-down assays. RESULTS Elevated expression of circ_0029463 and Rab27a and decreased miR-134-5p expression were observed in the tissues of patients with osteoporosis, and a similar expression pattern was observed in RANKL-induced osteoclasts. Suppression of circ_0029463 expression or miR-134-5p overexpression curbed RANKL-induced osteoclast differentiation, whereas such an effect was abolished by Rab27 overexpression. circ_0029463 sponges miR-134-5p to induce Rab27a expression. CONCLUSION circ_0029463 sponges miR-134-5p to abolish its suppressive effect of miR-134-5p on Rab27a expression, thereby promoting osteoclast differentiation.
Collapse
Affiliation(s)
- Lian Tang
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lin Yuan
- Department of Clinical Skills Center, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yan
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianhua Ge
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhi Lian
- Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
5
|
The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis 2022. [PMID: 37492712 PMCID: PMC10363595 DOI: 10.1016/j.gendis.2022.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Exosomes carry and transmit signaling molecules used for intercellular communication. The generation and secretion of exosomes is a multistep interlocking process that allows simultaneous control of multiple regulatory sites. Protein molecules, mainly RAB GTPases, cytoskeletal proteins and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE), are specifically regulated in response to pathological conditions such as altered cellular microenvironment, stimulation by pathogenic factors, or gene mutation. This interferes with the smooth functioning of endocytosis, translocation, degradation, docking and fusion processes, leading to changes in the secretion of exosomes. Large numbers of secreted exosomes are disseminated by the flow of body fluids and absorbed by the recipient cells. By transmitting characteristic functional proteins and genetic information produced under disease conditions, exosomes can change the physiological state of the recipient cells and their microenvironment. The microenvironment, in turn, affects the occurrence and development of disease. Therefore, this review will discuss the mechanism by which exosome secretion is regulated in cells following the formation of mature secretory multivesicular bodies (MVBs). The overall aim is to find ways to eliminate disease-derived exosomes at their source, thereby providing an important new basis for the clinical treatment of disease.
Collapse
|
6
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
7
|
Gould NR, Williams KM, Joca HC, Torre OM, Lyons JS, Leser JM, Srikanth MP, Hughes M, Khairallah RJ, Feldman RA, Ward CW, Stains JP. Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein. eLife 2021; 10:e64393. [PMID: 33779549 PMCID: PMC8032393 DOI: 10.7554/elife.64393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The downregulation of sclerostin in osteocytes mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation of the Sost gene hours after stimulation. Using mouse models and rodent cell lines, we describe the rapid, minute-scale post-translational degradation of sclerostin protein by the lysosome following mechanical load and PTH. We present a model, integrating both new and established mechanically and hormonally activated effectors into the regulated degradation of sclerostin by lysosomes. Using a mouse forelimb mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation by preventing sclerostin degradation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using human Gaucher disease iPSCs. These results reveal how bone anabolic cues post-translationally regulate sclerostin abundance in osteocytes to regulate bone formation.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Katrina M Williams
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Humberto C Joca
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Marcus Hughes
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
8
|
Liao C, Zhou Q, Zhang Z, Wu X, Zhou Z, Li B, Peng J, Shen L, Li D, Luo X, Yang L. Epstein-Barr virus-encoded latent membrane protein 1 promotes extracellular vesicle secretion through syndecan-2 and synaptotagmin-like-4 in nasopharyngeal carcinoma cells. Cancer Sci 2020; 111:857-868. [PMID: 31930596 PMCID: PMC7060476 DOI: 10.1111/cas.14305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC.
Collapse
Affiliation(s)
- Chaoliang Liao
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Qin Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zhibao Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xia Wu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Zhuan Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Bo Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Li
- Institue of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, China
| | - Xiangjian Luo
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| |
Collapse
|
9
|
Nishioka S, Wu PH, Yakabe T, Giaccia AJ, Le QT, Aoyama H, Shimizu S, Shirato H, Onodera Y, Nam JM. Rab27b contributes to radioresistance and exerts a paracrine effect via epiregulin in glioblastoma. Neurooncol Adv 2020; 2:vdaa091. [PMID: 33409495 PMCID: PMC7770522 DOI: 10.1093/noajnl/vdaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Radiotherapy is the standard treatment for glioblastoma (GBM). However, radioresistance of GBM cells leads to recurrence and poor patient prognosis. Recent studies suggest that secretion factors have important roles in radioresistance of tumor cells. This study aims to determine whether Rab27b, a small GTPase involved in secretory vesicle trafficking, plays a role in radioresistance of GBM. METHODS Microarray analysis, cell viability analysis, apoptosis assay, immunostaining, and in vivo experiments were performed to assess the effect of Rab27b on radioresistance of GBM. We further investigated paracrine effects mediated by Rab27b after X-ray irradiation using coculture systems of glioma cell lines. RESULTS Rab27b was specifically upregulated in irradiated U87MG cells. Furthermore, Rab27b knockdown decreased the proliferation of GBM cells after irradiation. Knockdown of Rab27b in U87MG cells combined with radiation treatment suppressed orthotopic tumor growth in the mouse brain and prolonged the survival of recipient mice. Interestingly, the co-upregulation of Rab27b and epiregulin (EREG), a member of the epidermal growth factor (EGF) family, correlated with radioresistance in glioma cell lines. Additionally, EREG, which was secreted from U87MG cells via Rab27b-mediated mechanism, activated EGF receptor and contributed to H4 cell proliferation in a paracrine manner. CONCLUSIONS Our results show that Rab27b mediates the radioresistance of highly malignant GBM cells. Rab27b promotes the proliferation of adjacent cells through EREG-mediated paracrine signaling after irradiation. Thus, the Rab27b-EREG pathway is a novel potential target to improve the efficacy of radiotherapy in GBM.
Collapse
Affiliation(s)
- Soichiro Nishioka
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Ping-Hsiu Wu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Geng YM, Liu CX, Lu WY, Liu P, Yuan PY, Liu WL, Xu PP, Shen XQ. LAPTM5 is transactivated by RUNX2 and involved in RANKL trafficking in osteoblastic cells. Mol Med Rep 2019; 20:4193-4201. [PMID: 31545469 PMCID: PMC6797998 DOI: 10.3892/mmr.2019.10688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/31/2019] [Indexed: 02/03/2023] Open
Abstract
The present study aimed to investigate the role of lysosomal-associated transmembrane protein 5 (LAPTM5) in osteoclast differentiation induced by osteoblasts. The results demonstrated that the expression levels of LAPTM5 were downregulated following runt-related transcription factor 2 (RUNX2) silencing and upregulated following RUNX2 overexpression in ST2 cells. Chromatin immunoprecipitation analysis identified the binding of RUNX2 to the LAPTM5 promoter at the −1176 to −1171 position. Dual-luciferase reporter assays confirmed that RUNX2 directly activated the LAPTM5 gene. The concentration of receptor activator of nuclear factor-κB ligand (RANKL) protein in the cytoplasm and in the media was significantly increased following LAPTM5 knockdown. LAPTM5 silencing in ST2 cells enhanced osteoclastic differentiation of co-cultured RAW264.7 cells. The present study indicated that expression of LAPTM5 was regulated by the interaction of RUNX2 with its promoter region and that LAPTM5 was involved in the trafficking of RANKL. These findings suggested a possible coupling mechanism between osteogenesis and osteoclastogenesis in which RUNX2 may be involved in osteoclast differentiation through the regulation of the lysosome-associated genes that modulate RANKL expression.
Collapse
Affiliation(s)
- Yuan-Ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Cheng-Xia Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Ying Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ping Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Pei-Yan Yuan
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Long Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ping-Ping Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao-Qing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
11
|
Sone E, Noshiro D, Ikebuchi Y, Nakagawa M, Khan M, Tamura Y, Ikeda M, Oki M, Murali R, Fujimori T, Yoda T, Honma M, Suzuki H, Ando T, Aoki K. The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochem Biophys Res Commun 2018; 509:435-440. [PMID: 30594398 DOI: 10.1016/j.bbrc.2018.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
We recently found that the membrane-bound receptor activator of NF-κB ligand (RANKL) on osteoblasts works as a receptor to stimulate osteoblast differentiation, however, the reason why the RANKL-binding molecules stimulate osteoblast differentiation has not been well clarified. Since the induction of cell-surface receptor clustering is known to lead to cell activation, we hypothesized that the induction of membrane-RANKL clustering on osteoblasts might stimulate osteoblast differentiation. Immunoblotting showed that the amount of RANKL on the membrane was increased by the RANKL-binding peptide OP3-4, but not by osteoprotegerin (OPG), the other RANKL-binding molecule, in Gfp-Rankl-transfected ST2 cells. Observation under a high-speed atomic force microscope (HS-AFM) revealed that RANKL molecules have the ability to form clusters. The induction of membrane-RANKL-OPG-Fc complex clustering by the addition of IgM in Gfp-Rankl-transfected ST2 cells could enhance the expression of early markers of osteoblast differentiation to the same extent as OP3-4, while OPG-Fc alone could not. These results suggest that the clustering-formation of membrane-RANKL on osteoblasts could stimulate early osteoblast differentiation.
Collapse
Affiliation(s)
- Eri Sone
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tetsuya Yoda
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
12
|
Screening for Key Pathways Associated with the Development of Osteoporosis by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8589347. [PMID: 28466021 PMCID: PMC5390640 DOI: 10.1155/2017/8589347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023]
Abstract
Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis.
Collapse
|
13
|
Sun W, Zhao C, Li Y, Wang L, Nie G, Peng J, Wang A, Zhang P, Tian W, Li Q, Song J, Wang C, Xu X, Tian Y, Zhao D, Xu Z, Zhong G, Han B, Ling S, Chang YZ, Li Y. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov 2016; 2:16015. [PMID: 27462462 PMCID: PMC4886818 DOI: 10.1038/celldisc.2016.15] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function.
Collapse
Affiliation(s)
- Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Chenyang Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Liang Wang
- Institute of Orthopedics, 309 Hospital of Chinese People's Liberation Army , Beijing, China
| | - Guangjun Nie
- Key Laboratory of Chinese Academy of Sciences for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of Chinese People's Liberation Army , Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, General Hospital of Chinese People's Liberation Army , Beijing, China
| | - Pengfei Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Weiming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology , Harbin, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Cheng Wang
- Institute of Orthopedics, General Hospital of Chinese People's Liberation Army , Beijing, China
| | - Xiaolong Xu
- Institute of Orthopedics, General Hospital of Chinese People's Liberation Army , Beijing, China
| | - Yanhua Tian
- Key Laboratory of Chinese Academy of Sciences for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Bingxing Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| | - Yan-Zhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing, China
| |
Collapse
|
14
|
Notomi T, Kuno M, Hiyama A, Ezura Y, Honma M, Ishizuka T, Ohura K, Yawo H, Noda M. Membrane depolarization regulates intracellular RANKL transport in non-excitable osteoblasts. Bone 2015. [PMID: 26211991 DOI: 10.1016/j.bone.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (VD3) are important factors in Ca(2+) homeostasis, and promote osteoclastogenesis by modulating receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression. However, their contribution to RANKL intracellular transport (RANKLiT), including the trigger for RANKL lysosomal vesicle (RANKL-lv) fusion to the cell membrane, is unclear. In neurons, depolarization of membrane potential increases the intracellular Ca(2+) level ([Ca(2+)]i) and promotes neurotransmitter release via fusion of the synaptic vesicles to the cell membrane. To determine whether membrane depolarization also regulates cellular processes such as RANKLiT in MC3T3-E1 osteoblasts (OBs), we generated a light-sensitive OB cell line and developed a system for altering their membrane potential via delivery of a blue light stimulus. In the membrane fraction of RANKL-overexpressing OBs, PTH and VD3 increased the membrane-bound RANKL (mbRANKL) level at 10 min after application without affecting the mRNA expression level, and depolarized the cell membrane while transiently increasing [Ca(2+)]i. In our novel OB line stably expressing the channelrhodopsin-wide receiver, blue light-induced depolarization increased the mbRANKL level, which was reversed by treatment of blockers for L-type voltage-gated Ca(2+) channels and Ca(2+) release from the endoplasmic reticulum. In co-cultures of osteoclast precursor-like RAW264.7 cells and light-sensitive OBs overexpressing RANKL, light stimulation induced an increase in tartrate-resistant acid phosphatase activity and promoted osteoclast differentiation. These results indicate that depolarization of the cell membrane is a trigger for RANKL-lv fusion to the membrane and that membrane potential contributes to the function of OBs. In addition, the non-genomic action of VD3-induced RANKL-lv fusion included the membrane-bound VD3 receptor (1,25D3-MARRS receptor). Elucidating the mechanism of RANKLiT regulation by PTH and VD3 will be useful for the development of drugs to prevent bone loss in osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Takuya Notomi
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan; Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan; Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan.
| | - Miyuki Kuno
- Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | - Akiko Hiyama
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
15
|
Abstract
The osteoblastic expression of RANKL, which is essential for the communication between osteoblastic cells and osteoclastogenic cells, is stimulated by locally acting or circulating osteotropic cytokines and hormones such as PTH and 1,25-(OH)2-D3 during the bone remodeling process. However, mechanisms those control subcellular trafficking events, membrane expression and extracellular secretion of the newly synthesized RANKL are still not well understood. In our previous study, we have found that the deficiency of osteoblastic Arl6ip5 (ADP-ribosylation-like factor 6 interacting protein 5), an endoplasmic reticulum (ER)-localized protein belonging to the prenylated rab-acceptor-family, enhanced osteoclastogenesis by increasing RANKL transcription in an ER stress dependent signaling. Here we found that over-expression of hemagglutinin (HA)-tagged Arl6ip5 in UAMS32 stromal/osteoblastic cells inhibited osteoclastogenesis, decreased the amount of soluble RANKL in culture supernatant and increased RANKL retention in ER. Moreover, Arl6ip5 bound with RANKL and disturbed the RANKL-OPG complex in UAMS-32 cells. Finally, 1 to 36 amino acid deletion on the NH2 lumen terminus of Arl6ip5 impaired the interaction between Arl6ip5 and RANKL, restored the level of soluble RANKL and the osteoclastogenic ability. These findings indicated that Arl6ip5 was an anti-catabolic factor by binding with RANKL and disturbing its subcellular trafficking in osteoblast.
Collapse
|
16
|
Shimada-Sugawara M, Sakai E, Okamoto K, Fukuda M, Izumi T, Yoshida N, Tsukuba T. Rab27A regulates transport of cell surface receptors modulating multinucleation and lysosome-related organelles in osteoclasts. Sci Rep 2015; 5:9620. [PMID: 25882854 PMCID: PMC5381753 DOI: 10.1038/srep09620] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
Rab27A regulates transport of lysosome-related organelles (LROs) and release of secretory granules in various types of cells. Here, we identified up-regulation of Rab27A during differentiation of osteoclasts (OCLs) from bone-marrow macrophages (BMMs), by DNA microarray analysis. Rab27A deficiency in OCLs, using small interfering RNA (siRNA) knockdown in RAW-D cell line or BMMs derived from ashen mice, which display genetic defects in Rab27A expression, induced multinucleated and giant cells. Upon stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), essential cytokines for OCL differentiation, phosphorylation levels of extracellular signal-regulated kinase (Erk), proto-oncogene tyrosine-protein kinase (Src), and p-38 were slightly enhanced in ashen BMMs than in wild-type BMMs. The cell surface level of c-fms, an M-CSF receptor, was slightly higher in ashen BMMs than in wild-type BMMs, and down-regulation of RANK, a RANKL receptor, was delayed. In addition to receptors, OCLs derived from ashen mice exhibited aberrant actin ring formation, abnormal subcellular localization of lysosome-associated membrane protein (LAMP2) and cathepsin K (CTSK), and marked reduction in resorbing activity. Thus, these findings suggest that Rab27A regulates normal transport of cell surface receptors modulating multinucleation and LROs in OCLs.
Collapse
Affiliation(s)
- Megumi Shimada-Sugawara
- 1] Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan [2] Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Eiko Sakai
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsuro Izumi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Noriaki Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
17
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
18
|
Solberg LB, Stang E, Brorson SH, Andersson G, Reinholt FP. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem Cell Biol 2014; 143:195-207. [PMID: 25201349 PMCID: PMC4298672 DOI: 10.1007/s00418-014-1272-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson's correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- L B Solberg
- Department of Pathology, The Core Facility for Advanced Electron Microscopy, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway,
| | | | | | | | | |
Collapse
|
19
|
Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep 2014; 12:115-20. [PMID: 24477414 DOI: 10.1007/s11914-014-0189-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is important to understand the molecular mechanisms regulating osteoclast formation, as excess activation of osteoclasts is associated with various osteopenic disorders. Receptor activator of nuclear factor kappa B (RANKL) is a central player in osteoclastogenesis. Recent findings suggest that osteocytes are the major supplier of RANKL to osteoclast precursors. It has also been suggested that osteocyte cell death upregulates the RANKL/osteoprotegerin (OPG) ratio in viable osteocytes adjacent to apoptotic osteocytes in areas of bone microdamage, thus, contributing to localized osteoclast formation. Indeed, viable osteocytes can provide RANKL through direct interactions with osteoclast precursors at osteocyte dendritic processes. In addition, OPG tightly regulates RANKL cell surface presentation in osteocytes, which contributes to the inhibition of RANKL signaling, as well as the decoy receptor function of OPG. By contrast, the physiological role of RANKL in osteoblasts is yet to be clarified, although similar mechanisms of regulation are observed in both osteocytes and osteoblasts.
Collapse
Affiliation(s)
- Masashi Honma
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | |
Collapse
|
20
|
Peng Y, Deng L, Ding Y, Chen Q, Wu Y, Yang M, Wang Y, Fu Q. Comparative study of somatostatin-human serum albumin fusion proteins and natural somatostatin on receptor binding, internalization and activation. PLoS One 2014; 9:e89932. [PMID: 24587133 PMCID: PMC3937410 DOI: 10.1371/journal.pone.0089932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/25/2014] [Indexed: 01/08/2023] Open
Abstract
Albumin fusion technology, the combination of small molecular proteins or peptides with human serum albumin (HSA), is an effective method for improving the medicinal values of natural small molecular proteins or peptides. However, comparative studies between HSA-fusion proteins or peptides and the parent small molecules in biological and molecular mechanisms are less reported. In this study, we examined the binding property of two novel somatostatin-HSA fusion proteins, (SST14)2-HSA and (SST28)2-HSA, to human SSTRs in stably expressing SSTR1-5 HEK 293 cells; observed the regulation of receptor internalization and internalized receptor recycling; and detected the receptors activation of HSA fusion proteins in stably expressing SSTR2- and SSTR3-EGFP cells. We showed that both somatostatin-HSA fusion proteins had high affinity to all five SSTRs, stimulated the ERK1/2 phosphorylation and persistently inhibited the accumulation of forskolin-stimulated cAMP in SSTR2- and SSTR3-expressing cells; but were less potent than the synthetic somatostatin-14 (SST-14). Our experiments also showed that somatostatin-HSA fusion proteins did not induce the receptors internalization; rather, they accelerated the recycling of the internalized receptors induced by SST-14 to the plasma membrane. Our results indicated that somatostatin-HSA fusion proteins, different from SST-14, exhibit some particular properties in binding, regulating, and activating somatostatin receptors.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Lili Deng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yuedi Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Quancheng Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yu Wu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Meilin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaping Wang
- Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
- * E-mail: (YW); (QF)
| | - Qiang Fu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
- * E-mail: (YW); (QF)
| |
Collapse
|
21
|
Role of vesicular trafficking in skeletal dynamics. Curr Opin Pharmacol 2014; 16:7-14. [PMID: 24566133 DOI: 10.1016/j.coph.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
Vesicular trafficking is critical for the function of bone cells, exemplified by bone diseases such as osteopetrosis, which frequently results from defects in this process. Recent work has further dissected the role of the endolysosomal system in both bone formation by osteoblasts and bone resorption by osteoclasts. This pathway also plays an important role in the communication between these and other cells in bone, through trafficking and degradation of growth factors and their receptors, and microvesicle release. In addition, a crucial role for autophagy in bone remodelling and bone disease is beginning to emerge. These insights into the molecular control of bone remodelling raise the possibility of developing novel therapeutics for bone diseases designed to target specific aspects of this process.
Collapse
|
22
|
Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, Suzuki H. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res 2013; 28:1936-49. [PMID: 23529793 DOI: 10.1002/jbmr.1941] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
The receptor activator of the NF-κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well-designed in vitro experimental systems. Thus, we developed a novel co-culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane-bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG-mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- Masashi Honma
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Tokyo, Japan. mhonma‐
| | | | | | | | | | | | | |
Collapse
|
23
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
24
|
Zhao H. Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 2012; 13:1307-14. [PMID: 22759194 DOI: 10.1111/j.1600-0854.2012.01395.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/21/2022]
Abstract
The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Internal Medicine, Center for Osteoporosis and Bone Metabolic Diseases, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
| |
Collapse
|
25
|
|
26
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Taylor A, Mules EH, Seabra MC, Helfrich MH, Rogers MJ, Coxon FP. Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases 2011; 2:131-142. [PMID: 21776414 PMCID: PMC3136943 DOI: 10.4161/sgtp.2.3.16488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/13/2011] [Indexed: 12/20/2022] Open
Abstract
Vesicular trafficking is crucial for bone resorption by osteoclasts, in particular for formation of the ruffled border membrane and for removal of the resultant bone degradation products by transcytosis. These processes are regulated by Rab family GTPases, whose activity is dependent on post-translational prenylation by Rab geranylgeranyl transferase (RGGT). Specific pharmacological inhibition of RGGT inhibits bone resorption in vitro and in vivo, illustrating the importance of Rab prenylation for osteoclast function. The gunmetal (gm/gm) mouse bears a mutation in the catalytic subunit of RGGT, causing a loss of 75% of the activity of this enzyme and hence hypoprenylation of several Rabs in melanocytes, platelets and cytotoxic T cells. We have now found that prenylation of several Rab proteins is also defective in gm/gm osteoclasts. Moreover, while osteoclast formation and cytoskeletal polarization occurs normally, gm/gm osteoclasts exhibit a substantial reduction in resorptive activity in vitro compared with osteoclasts from +/gm mice, which do not have a prenylation defect. Surprisingly, rather than the osteosclerosis that would be expected to result from defective osteoclast function in vivo, gm/gm mice exhibited a slightly lower bone mass than +/gm mice, indicating that defects in other cell types, such as osteoblasts, in which hypoprenylation of Rabs was also detected, may contribute to the phenotype. However, gm/gm mice were partially protected from ovariectomy-induced bone loss, suggesting that levels of Rab prenylation in gm/gm osteoclasts may be sufficient to maintain normal physiological levels of activity, but not pathological levels of bone resorption in vivo.
Collapse
Affiliation(s)
- Adam Taylor
- Musculoskeletal Programme; Division of Applied Medicine; Institute of Medical Sciences; University of Aberdeen; Foresterhill, Aberdeen UK
| | | | | | | | | | | |
Collapse
|