1
|
Kondo H, Takayama T, Onizawa T, Isobe S, Tanabe N, Suzuki N, Yamano S, Sato S. Enhanced bone formation of rat mandibular bone defects with collagen membranes loaded on bone morphogenetic protein-9. J Dent Sci 2024; 19:2114-2125. [PMID: 39347086 PMCID: PMC11437268 DOI: 10.1016/j.jds.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Bone morphogenetic protein-9 (BMP-9) has demonstrated multiple advantages in promoting osteogenesis. Our previous findings have indicated that the use of an absorbable collagen membrane (ACM) as a carrier for growth factors is effective in stimulating bone regeneration. The objective of this study was to assess the synergistic impact of BMP-9 incorporated into ACM (ACM/BMP-9) on bone formation within rat mandibular bone defects. Materials and methods Circular bone defects of critical size were surgically induced on both sides of the rat mandibular bone, with subsequent random allocation into distinct groups: control, ACM alone, and ACM loaded with low (0.5 μg) or high (2.0 μg) concentrations of BMP-9. We conducted real-time in vivo micro-computerized tomography scans at the baseline and at 2, 4, and 6 weeks, and measured the volume of newly formed bone (NFB), bone mineral density (BMD) of NFB, and the closure percentage of the NFB area. Histological and histomorphometric analyses were performed at 6 weeks. Results Real-time assessment revealed notably higher levels of bone volume, BMD, and closure percentage in the NFB area for the groups treated with ACM/BMP-9 compared to the control and ACM groups. Within the high concentration of BMP-9 group, the volume and BMD of NFB exhibited a significant increase at 6 weeks compared to baseline. Histological examination confirmed the existence of osteoblasts, osteocytes, and blood vessels within the NFB. Conclusion Considering the limitations of this research, the real-time evaluation finding indicates that ACM/BMP-9 effectively promotes bone formation in critical-size mandibular defects in rats.
Collapse
Affiliation(s)
- Hiroki Kondo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Tadahiro Takayama
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Onizawa
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Shunsuke Isobe
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, NY, USA
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
2
|
Ito T, Katsumi S, Shinohara A, Arimura D, Obata S, Ikegami T, Saito M. Myositis Ossificans of the Psoas Major Muscle After XLIF With Preoperative Administration of Romosozumab: A Case Report. JBJS Case Connect 2024; 14:01709767-202409000-00011. [PMID: 39028835 DOI: 10.2106/jbjs.cc.23.00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
CASE A 62-year-old woman receiving romosozumab for 3 months underwent extreme lateral interbody fusion (XLIF) for lumbar degenerative spondylolisthesis. From 1 week after surgery, she experienced gradually increasing pain from the right groin to the front of the thigh. Examination revealed ossifying myositis in bilateral psoas major muscles. Etidronate treatment was initiated, improving pain after 4 days. Computed tomography showed lesion disappearance by 3 months after surgery. CONCLUSION We report a rare case of myositis ossificans in bilateral psoas major muscles following XLIF surgery, possibly influenced by intraoperative manipulation and romosozumab treatment. Etidronate administration may be effective, as with heterotopic ossification.
Collapse
Affiliation(s)
- Tsuyoki Ito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Liu Y, Li Y, Liu Y, Gao Z, Zhang J, Qiu Y, Wang C, Lu X, Yang J. Investigation of the Shared Biomarkers in Heterotopic Ossification Between Ossification of the Ligamentum Flavum and Ankylosing Spondylitis. Global Spine J 2024:21925682241255894. [PMID: 38757696 DOI: 10.1177/21925682241255894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
STUDY DESIGN Bioinformatics analysis of Gene Expression Omnibus (GEO). OBJECTIVE Ossification of the ligamentum flavum (OLF) and ankylosing spondylitis (AS) represent intricate conditions marked by the gradual progression of endochondral ossification. This investigation endeavors to unveil common biomarkers associated with heterotopic ossification and explore the potential molecular regulatory mechanisms. METHODS Microarray and RNA-sequencing datasets retrieved from the Gene Expression Omnibus (GEO) repository were harnessed to discern differentially expressed genes (DEGs) within the OLF and AS datasets. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was implemented to pinpoint co-expression modules linked to OLF and AS. Common genes were further subjected to an examination of functional pathway enrichment. Moreover, hub intersection genes were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by an evaluation of diagnostic performance in external OLF and AS cohorts. Lastly, an analysis of immune cell infiltration was conducted to scrutinize the correlation of immune cell presence with shared biomarkers in OLF and AS. RESULTS A total of 1353 and 91 Differentially Expressed Genes (DEGs) were identified in OLF and AS, respectively. Using the Weighted Gene Co-expression Network Analysis (WGCNA), 2 modules were found to be notably significant for OLF and AS. The integrative bioinformatic analysis revealed 3 hub genes (MAB21L2, MEGF10, ISLR) as shared risk biomarkers, with MAB21L2 being the central focus. Receiver Operating Characteristic (ROC) analysis exhibited a strong diagnostic potential for these hub genes. Gene Ontology (GO) analysis indicated their involvement in the positive regulation of myoblast proliferation. Notably, MAB21L2 was singled out as the optimal common biomarker for OLF and AS. Furthermore, an analysis of immune infiltration demonstrated a correlation between MAB21L2 expression and changes in immune cells. Activated CD8 T cells were identified as shared differential immune infiltrating cells significantly linked to MAB21L2 in both OLF and AS. CONCLUSION This study represents the first instance of identifying MAB21L2 as a prospective diagnostic marker for patients contending with OLF associated with AS. The research results indicate that the ECM-receptor interaction and the cell-cell adhesion may play a role in both disease processes. This newfound knowledge not only enhances our understanding of the pathogenesis behind spinal ligament ossification but also uncovers potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yishan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Spinal Surgery, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| | - Yang Li
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yixuan Liu
- Department of Spinal Surgery, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Zhongya Gao
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianjun Zhang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Youcai Qiu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Xuhua Lu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiandong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Department of Spinal Surgery, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| |
Collapse
|
4
|
Siverino C, Fahmy-Garcia S, Niklaus V, Kops N, Dolcini L, Misciagna MM, Ridwan Y, Farrell E, van Osch GJ, Nickel J. Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo. Bioact Mater 2023; 29:241-250. [PMID: 37502679 PMCID: PMC10371762 DOI: 10.1016/j.bioactmat.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9's mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential.
Collapse
Affiliation(s)
- Claudia Siverino
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Shorouk Fahmy-Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Viktoria Niklaus
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Nicole Kops
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Laura Dolcini
- Fin-Ceramica Faenza SpA, Via Granarolo 177/3, 48018, Faenza, Italy
| | | | - Yanto Ridwan
- AMIE Core Facility, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Fraunhofer ISC, Translational Center RT, Wuerzburg, Germany
| |
Collapse
|
5
|
Lu X, Li L, Wu N, Chen W, Hong S, Xu M, Ding Y, Gao Y. BMP9 functions as a negative regulator in the myogenic differentiation of primary mouse myoblasts. Biosci Biotechnol Biochem 2023; 87:1255-1264. [PMID: 37553201 DOI: 10.1093/bbb/zbad104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
BMP9, a member of the TGF-β superfamily, reveals the great translational promise for it has been shown to have the strong effect of osteogenic activity in vitro and in vivo. However, the implantation of certain BMPs (bone morphogenetic proteins) into muscular tissues induces ectopic bone formation. BMPs induce osteoblastic differentiation in skeletal muscle, suggesting that myogenic stem cells, such as myoblasts, are the potential progenitors of osteoblasts during heterotopic bone differentiation. Here, we investigate the role of BMP9 during primary mouse myoblasts differentiation. We found BMP9 enhanced cell proliferation and reduced myogenic differentiation of primary mouse myoblasts. In addition, adenovirus-mediated overexpression of BMP9 delayed muscle regeneration after BaCl2-induced injury. ALK1 knockdown reversed the inhibition of myoblast differentiation induced by BMP9. Our data indicate that BMP9 inhibits myogenic differentiation in primary mouse myoblasts and delays skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Liang Li
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Shanghai, China
| | - Nanhui Wu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Wenjuan Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Sheng Hong
- Department of Dermatology, Changhai Hospital, Shanghai, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yunlu Gao
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
6
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
7
|
Xu Z, Rao ZZ, Tang ZW, Song ZQ, Zeng M, Gong HL, Wen J. Post-traumatic heterotopic ossification in front of the ankle joint for 23 years: A case report and review of literature. World J Clin Cases 2023; 11:193-200. [PMID: 36687178 PMCID: PMC9846978 DOI: 10.12998/wjcc.v11.i1.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Heterotopic ossification (HO) refers to the formation of new bone in non-skeletal tissues such as muscles, tendons or other soft tissues. Severe muscle and soft tissue injury often lead to the formation of HO. However, anterior HO of the ankle is rarely reported.
CASE SUMMARY We report a patient with massive HO in front of the ankle joint for 23 years. In 1998, the patient was injured by a falling object on the right lower extremity, which gradually formed a massive heterotopic bone change in the right calf and dorsum of the foot. The patient did not develop gradual ankle function limitations until nearly 36 mo ago, and underwent resection of HO. Even after 23 years and resection of HO, the ankle joint was still able to move.
CONCLUSION It is recommended that the orthopedist should be aware of HO and distinguish it from bone tumor.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhen-Qi Song
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Ming Zeng
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Hao-Li Gong
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha 410013, Hunan, China
| |
Collapse
|
8
|
Bahmad HF, Lopez O, Sutherland T, Vinas M, Ben-David K, Howard L, Poppiti R, Alghamdi S. Heterotopic mesenteric ossification: a report of two cases. J Pathol Transl Med 2022; 56:294-300. [PMID: 36128866 PMCID: PMC9510041 DOI: 10.4132/jptm.2022.07.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heterotopic mesenteric ossification (HMO) is abnormal bone formation in tissues which usually do not undergo ossification. There are approximately 75 cases reported worldwide. We present two cases of HMO. The first case is that of a 39-year-old man who presented with abdominal pain and a computerized tomography scan of the abdomen and pelvis revealed an apple core lesion resulting in small bowel obstruction. The second case is that of a 36-year-old woman who presented 2 months after undergoing robotic gastric sleeve resection complaining of weakness and emesis. An esophagogram revealed kinking at the distal esophagus. Surgical resection was performed in both, yielding the diagnosis of HMO. There are various theories as to the pathophysiology of HMO, but no clearly defined mechanism has been established. Management should be conservative whenever possible to prevent further ossification with subsequent surgical intervention.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL,
USA
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL,
USA
| | - Tyson Sutherland
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL,
USA
| | - Marisa Vinas
- Department of General Surgery, Mount Sinai Medical Center, Miami Beach, FL,
USA
| | - Kfir Ben-David
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL,
USA
- Department of General Surgery, Mount Sinai Medical Center, Miami Beach, FL,
USA
| | - Lydia Howard
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL,
USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL,
USA
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL,
USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL,
USA
| | - Sarah Alghamdi
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL,
USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL,
USA
| |
Collapse
|
9
|
Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep 2022; 39:110785. [PMID: 35545045 PMCID: PMC9535675 DOI: 10.1016/j.celrep.2022.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury. Leinroth et al. explore the heterogeneity of Pdgfra+ muscle-resident mesenchymal cells, demonstrating that Pdgfra+ subpopulations have unique gene expression profiles, exhibit two distinct cell trajectories from a common progenitor, differ in their abilities to respond to muscle injuries, and show variable adipogenic and mineralizing capacities.
Collapse
|
10
|
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021; 11:16. [PMID: 34210364 PMCID: PMC8247239 DOI: 10.1186/s13395-021-00265-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism-all the functions needed for an individual's health and well-being. The muscle connective tissue's main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, 2052, Australia.
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fabio M V Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
11
|
Althaqafi RMM, Assiri SA, Aloufi RA, Althobaiti F, Althobaiti B, Al Adwani M. A case report and literature review of heterotopic mesenteric ossification. Int J Surg Case Rep 2021; 82:105905. [PMID: 33962265 PMCID: PMC8113807 DOI: 10.1016/j.ijscr.2021.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction and importance Heterotopic mesenteric ossification is a benign bony tissue growth in the mesentery that mostly follows repetitive or severe abdominal injuries leading to reactive bone formation in the mesentery. There are only 73 cases (51 publications) identified in the literature up to the beginning of 2020. Case presentation 45-year-old Saudi male underwent multiple laparotomies to manage complicated appendicitis which ended with a diverting ileostomy and a colostomy as a mucus fistula. After 9 months, the patient was admitted to the General Surgery department in Al-Hada Armed Forces Hospital for an open ileostomy and colostomy reversal surgery where several irregular bone-like tissues of hard consistency and sharp edges with some spindle-shaped structures resembling needles were found in the mesentery of the small intestine and histopathology revealed of trabecular bone fragments confirming the diagnosis. Clinical discussion The majority of cases occur mid to late adulthood with a predilection in the male gender, and usually present with bowel obstruction or an enterocutaneous fistula. Although it has no malignant potential, it may cause severe bowel obstruction that can lead to mortality, it's a rare occurrence and, therefore, is difficult to diagnose among many common abdominal disturbances. Conclusion Here we report a rare case of heterotopic mesenteric ossification, which should be considered as one of the delayed complications of abdominal surgery or trauma. The time range of expecting the presentation of heterotopic mesenteric ossification following major abdominal trauma or surgery should be extended and continuously considered during differential diagnosis. One of the delayed complications of abdominal surgery or trauma is Heterotopic mesenteric ossification. Since 1983 there are only 73 cases of Heterotopic mesenteric ossification published to date. Preoperative diagnosis of Heterotopic mesenteric ossification should be based mainly on the characteristic radiographic findings without relying on the levels of calcium or alkaline phosphatase. The only way to reach the definitive diagnosis is through excision and histopathological analysis. Heterotopic mesenteric ossification has no malignant potential, but it can cause severe bowel obstruction that can lead to mortality in already sick patients.
Collapse
Affiliation(s)
| | | | | | - Fawaz Althobaiti
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Budur Althobaiti
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Mohammad Al Adwani
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| |
Collapse
|
12
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
13
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Cappato S, Gamberale R, Bocciardi R, Brunelli S. Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines 2020; 8:biomedicines8120611. [PMID: 33327623 PMCID: PMC7765130 DOI: 10.3390/biomedicines8120611] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification is defined as an aberrant formation of bone in extraskeletal soft tissue, for which both genetic and acquired conditions are known. This pathologic process may occur in many different sites such as the skin, subcutaneous tissue, skeletal muscle and fibrous tissue adjacent to joints, ligaments, walls of blood vessels, mesentery and other. The clinical spectrum of this disorder is wide: lesions may range from small foci of ossification to massive deposits of bone throughout the body, typical of the progressive genetically determined conditions such as fibrodysplasia ossificans progressiva, to mention one of the most severe and disabling forms. The ectopic bone formation may be regarded as a failed tissue repair process in response to a variety of triggers and evolving towards bone formation through a multistage differentiation program, with several steps common to different clinical presentations and distinctive features. In this review, we aim at providing a comprehensive view of the genetic and acquired heterotopic ossification disorders by detailing the clinical and molecular features underlying the different human conditions in comparison with the corresponding, currently available mouse models.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genova, 16132 Genova, Italy;
| | - Riccardo Gamberale
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Milano, Italy; (R.G.); (S.B.)
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genova, 16132 Genova, Italy;
- UOC Genetica Medica, IRCCS Giannina Gaslini, 16147 Genova, Italy
- Correspondence:
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Milano, Italy; (R.G.); (S.B.)
| |
Collapse
|
15
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
16
|
Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach. J Clin Med 2020; 9:jcm9041175. [PMID: 32325892 PMCID: PMC7231246 DOI: 10.3390/jcm9041175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Hematoma and skeletal muscles play a crucial role in bone fracture healing. The muscle resident mesenchymal stromal cells (mrSCs) can promote bone formation by differentiating into osteoblasts upon treatment by bone morphogenetic proteins (BMP), such as BMP9. However, the influence of hematoma fracture extracts (Hema) on human mrSC (hmrSC) response to BMP9 is still unknown. We therefore determined the influence of Hema, human healthy serum (HH), and fetal bovine serum (FBS, control) on BMP9-induced osteoblast commitment of hmrSC by measuring alkaline phosphatase activity. Multiplex assays of 90 cytokines were performed to characterize HH and Hema composition and allow their classification by a multivariate statistical approach depending on their expression levels. We confirmed that BMP9 had a greater effect on osteoblastic differentiation of hmrSCs than BMP2 in presence of FBS. The hmrSCs response to BMP9 was enhanced by both Hema and HH, even though several cytokines were upregulated (IL-6, IL-8, MCP-1, VEGF-A and osteopontin), downregulated (BMP9, PDGF) or similar (TNF-alpha) in Hema compared with HH. Thus, hematoma may potentiate BMP9-induced osteogenic differentiation of hmrSCs during bone fracture healing. The multivariate statistical analyses will help to identify the cytokines involved in such phenomenon leading to normal or pathological bone healing.
Collapse
|
17
|
Salmon RM, Guo J, Wood JH, Tong Z, Beech JS, Lawera A, Yu M, Grainger DJ, Reckless J, Morrell NW, Li W. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nat Commun 2020; 11:1621. [PMID: 32238803 PMCID: PMC7113306 DOI: 10.1038/s41467-020-15425-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1)-mediated endothelial cell signalling in response to bone morphogenetic protein 9 (BMP9) and BMP10 is of significant importance in cardiovascular disease and cancer. However, detailed molecular mechanisms of ALK1-mediated signalling remain unclear. Here, we report crystal structures of the BMP10:ALK1 complex at 2.3 Å and the prodomain-bound BMP9:ALK1 complex at 3.3 Å. Structural analyses reveal a tripartite recognition mechanism that defines BMP9 and BMP10 specificity for ALK1, and predict that crossveinless 2 is not an inhibitor of BMP9, which is confirmed by experimental evidence. Introduction of BMP10-specific residues into BMP9 yields BMP10-like ligands with diminished signalling activity in C2C12 cells, validating the tripartite mechanism. The loss of osteogenic signalling in C2C12 does not translate into non-osteogenic activity in vivo and BMP10 also induces bone-formation. Collectively, these data provide insight into ALK1-mediated BMP9 and BMP10 signalling, facilitating therapeutic targeting of this important pathway.
Collapse
Affiliation(s)
- Richard M Salmon
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jingxu Guo
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jennifer H Wood
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Zhen Tong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John S Beech
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Aleksandra Lawera
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David J Grainger
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jill Reckless
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
18
|
Huang Y, Wang X, Lin H. The hypoxic microenvironment: a driving force for heterotopic ossification progression. Cell Commun Signal 2020; 18:20. [PMID: 32028956 PMCID: PMC7006203 DOI: 10.1186/s12964-020-0509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) refers to the formation of bone tissue outside the normal skeletal system. According to its pathogenesis, HO is divided into hereditary HO and acquired HO. There currently lack effective approaches for HO prevention or treatment. A deep understanding of its pathogenesis will provide promising strategies to prevent and treat HO. Studies have shown that the hypoxia-adaptive microenvironment generated after trauma is a potent stimulus of HO. The hypoxic microenvironment enhances the stability of hypoxia-inducible factor-1α (HIF-1α), which regulates a complex network including bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and neuropilin-1 (NRP-1), which are implicated in the formation of ectopic bone. In this review, we summarize the current understanding of the triggering role and underlying molecular mechanisms of the hypoxic microenvironment in the initiation and progression of HO, focusing mainly on HIF-1 and it's influenced genes BMP, VEGF, and NRP-1. A better understanding of the role of hypoxia in HO unveils novel therapeutic targets for HO that reduce the local hypoxic microenvironment and inhibit HIF-1α activity. Video Abstract. (MP4 52403 kb)
Collapse
Affiliation(s)
- Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 461 BaYi Avenue, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
19
|
Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, Laure B, Bertin H, De Pinieux G, Cherrier G, Guicheux J, Gauthier O, Corre P, Marchat D, Weiss P. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomater Sci Eng 2020; 6:553-563. [PMID: 32158932 PMCID: PMC7064275 DOI: 10.1021/acsbiomaterials.9b01241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Baptiste Charbonnier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Tournier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Julie Lesoeur
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Boris Laure
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
| | - Hélios Bertin
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - Gonzague De Pinieux
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Grégory Cherrier
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Jérome Guicheux
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de rechecherche et d’investigation préclinique (CRIP), 101 route de Gachet, Nantes F - 44300, France
| | - Pierre Corre
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| |
Collapse
|
20
|
Eiraku N, Chiba N, Nakamura T, Amir MS, Seong CH, Ohnishi T, Kusuyama J, Noguchi K, Matsuguchi T. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts. FASEB J 2019; 33:12124-12134. [PMID: 31365832 DOI: 10.1096/fj.201900733rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein (BMP)9 has been reported to be the most potent BMP to induce bone formation. However, the details of BMP9-transduced intracellular signaling remain ambiguous. Here, we have investigated signal transduction mechanisms of BMP9 in comparison to BMP2, another potent inducer of bone formation, in osteoblasts. In a mouse osteoblast cell line, BMP9 induced higher mRNA levels of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2) than BMP2 within 2 h. Unlike BMP2, BMP9 induced rapid phosphorylation of glycogen synthase kinase 3-β (GSK3-β) and protein kinase B (Akt) and increased the cellular protein content of β-catenin. BMP9 moderately increased mRNA levels of several canonical Wingless-related integration site to lower degrees than BMP2. Furthermore, BMP9-induced GSK3-β phosphorylation was not inhibited by pretreatment with actinomycin D, cycloheximide, or Brefeldin A, indicating it is independent of Wnt protein secretion. BMP9-induced GSK3-β phosphorylation was abrogated by Akt or class I PI3K-specific inhibitors. Moreover, inactivation of GSK3-β by LiCl did not further promote ALP and Runx2 mRNA induction by BMP9 as significantly as that by BMP2. Notably, BMP9-induced GSK3-β phosphorylation was inhibited by small interfering RNA against endoglin and GIPC PDZ domain-containing family, member 1. Taken together, our present findings have indicated that BMP9 directly activates GSK3β-β-catenin signaling pathway through class I PI3K-Akt Axis in osteoblasts, which may be essential for the potent osteoinductive activity of BMP9.-Eiraku, N., Chiba, N., Nakamura, T., Amir, M. S., Seong, C.-H., Ohnishi, T., Kusuyama, J., Noguchi, K., Matsuguchi, T. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts.
Collapse
Affiliation(s)
- Nahoko Eiraku
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Li L, Jiang Y, Lin H, Shen H, Sohn J, Alexander PG, Tuan RS. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat 2019; 18:142-153. [PMID: 31508317 PMCID: PMC6718974 DOI: 10.1016/j.jot.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue, which causes pain and restricted range of motion in patients. There are two broad categories of HO, hereditary and acquired. Although different types of HO do not use identical mechanistic pathways of pathogenesis, muscle injury appears to be a unifying feature for all types of HO. However, little is known about the mechanisms by which muscle injury facilitates HO formation. Objective and method This study aimed to explore the cellular and molecular mechanisms linking muscle injury to HO by using cardiotoxin to induce muscle injury in a bone morphogenetic protein-2 (BMP-2)-induced HO mouse model. Results We found that muscle injury augmented HO formation and that this effect was correlated with BMP signalling activation and upregulation of BMP-7 expression at the early phase of HO progression. We further demonstrated that inhibition of BMP-7 activity in vitro suppressed the osteogenesis-promoting effect of conditioned medium derived from injured muscle tissue and in vivo reduced the volume of HO formation. We also showed that antiinflammatory drug treatment reduced the volume of HO with concomitant reduction in BMP-7 production. Conclusion In summary, our study has identified BMP-7 as a key osteoinductive factor in injured muscle that facilitates HO formation. The translational potential of this article Our results provide a candidate mechanistic rationale for the use of antiinflammatory drugs in the prevention of HO.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019; 9:18. [PMID: 31217019 PMCID: PMC6582603 DOI: 10.1186/s13395-019-0202-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trauma-induced heterotopic ossification (HO) is a complication that develops under three conditions: the presence of an osteogenic progenitor cell, an inducing factor, and a permissive environment. We previously showed that a mouse multipotent Sca1+ CD31− Lin− muscle resident stromal cell (mrSC) population is involved in the development of HO in the presence of inducing factors, members of the bone morphogenetic protein family. Interestingly, BMP9 unlike BMP2 causes HO only if the muscle is damaged by injection of cardiotoxin. Because acute trauma often results in blood vessel breakdown, we hypothesized that a hypoxic state in damaged muscles may foster mrSCs activation and proliferation and trigger differentiation toward an osteogenic lineage, thus promoting the development of HO. Methods Three- to - six-month-old male C57Bl/6 mice were used to induce muscle damage by injection of cardiotoxin intramuscularly into the tibialis anterior and gastrocnemius muscles. mrSCs were isolated from damaged (hypoxic state) and contralateral healthy muscles and counted, and their osteoblastic differentiation with or without BMP2 and BMP9 was determined by alkaline phosphatase activity measurement. The proliferation and differentiation of mrSCs isolated from healthy muscles was also studied in normoxic incubator and hypoxic conditions. The effect of hypoxia on BMP synthesis and Smad pathway activation was determined by qPCR and/or Western blot analyses. Differences between normally distributed groups were compared using a Student’s paired t test or an unpaired t test. Results The hypoxic state of a severely damaged muscle increased the proliferation and osteogenic differentiation of mrSCs. mrSCs isolated from damaged muscles also displayed greater sensitivity to osteogenic signals, especially BMP9, than did mrSCs from a healthy muscle. In hypoxic conditions, mrSCs isolated from a control muscle were more proliferative and were more prone to osteogenic differentiation. Interestingly, Smad1/5/8 activation was detected in hypoxic conditions and was still present after 5 days, while Smad1/5/8 phosphorylation could not be detected after 3 h of normoxic incubator condition. BMP9 mRNA transcripts and protein levels were higher in mrSCs cultured in hypoxic conditions. Our results suggest that low-oxygen levels in damaged muscle influence mrSC behavior by facilitating their differentiation into osteoblasts. This effect may be mediated partly through the activation of the Smad pathway and the expression of osteoinductive growth factors such as BMP9 by mrSCs. Conclusion Hypoxia should be considered a key factor in the microenvironment of damaged muscle that triggers HO. Electronic supplementary material The online version of this article (10.1186/s13395-019-0202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Drouin
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Vanessa Couture
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Laboratory of 3D Cell Culture Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Frédéric Balg
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Nathalie Faucheux
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada.
| | - Guillaume Grenier
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
23
|
Wang Y, Sun JC, Wang HB, Xu XM, Kong QJ, Wang YJ, Zheng B, Shi GD, Shi JG. ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice. J Cell Biochem 2019; 120:8185-8194. [PMID: 30556170 DOI: 10.1002/jcb.28100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Osteogenic differentiation refers to the process of bone formation and remodeling, which is controlled by complex molecular mechanisms. Activin A receptor type I (ACVR1) is reported to be associated with osteogenic differentiation. However, the underlying molecular mechanism remains elusive. Therefore, this study evaluates the function of ACVR1 in osteogenic differentiation through the Wnt signaling pathway. The expression of osteocalcin (Oc) and osterix together with osteogenic differentiation and mineralization was examined in ACVR1-knockout (KO) mouse. Furthermore, the Wnt signaling pathway was inhibited in bone marrow stromal cells (BMSCs) of mice to explore the role of the Wnt signaling pathway in osteogenic differentiation by means of alkaline phosphatase (ALP) activity detection and evaluation of mineralized nodules and calcium content. Subsequently, the effect of ACVR1 on the Wnt signaling pathway was assessed by determining the expression of ACVR1, β-catenin, glycogen synthase kinase 3 β (GSK3β), dickkopf-related protein 1 (DKK1), and frizzled class receptor 1 (FZD1). Both their effects on osteogenic differentiation were further evaluated by determination of Oc, osterix, and Runx2 expression. AVCR1 KO mice exhibited increased Oc and osterix expression and promoted bone resorption and formation. ACVR1-knockout was observed to activate the Wnt signaling pathway with an increase of β-catenin and reductions in GSK3β, DKK1, and FZD1. With the inhibited Wnt signaling pathway expression of Oc, osterix, and Runx2 was decreased, and ALP activity, mineralized nodule, and calcium content in cellular matrix were decreased as well, indicating that inactivation of the Wnt signaling pathway reduced the differentiation of BMSCs into osteoclasts. These findings indicate that ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Jing-Chuan Sun
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Hai-Bo Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Xi-Ming Xu
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Qing-Jie Kong
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Ying-Jie Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Bing Zheng
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Guo-Dong Shi
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| | - Jian-Gang Shi
- Department of Orthopedics, Changzheng Hospital Affiliated to the Second Military Medcial University, Shanghai, China
| |
Collapse
|
24
|
Nikolic I, Yung LM, Yang P, Malhotra R, Paskin-Flerlage SD, Dinter T, Bocobo GA, Tumelty KE, Faugno AJ, Troncone L, McNeil ME, Huang X, Coser KR, Lai CSC, Upton PD, Goumans MJ, Zamanian RT, Elliott CG, Lee A, Zheng W, Berasi SP, Huard C, Morrell NW, Chung RT, Channick RW, Roberts KE, Yu PB. Bone Morphogenetic Protein 9 Is a Mechanistic Biomarker of Portopulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:891-902. [PMID: 30312106 PMCID: PMC6444661 DOI: 10.1164/rccm.201807-1236oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RATIONALE BMP9 (bone morphogenetic protein 9) is a circulating endothelial quiescence factor with protective effects in pulmonary arterial hypertension (PAH). Loss-of-function mutations in BMP9, its receptors, and downstream effectors have been reported in heritable PAH. OBJECTIVES To determine how an acquired deficiency of BMP9 signaling might contribute to PAH. METHODS Plasma levels of BMP9 and antagonist soluble endoglin were measured in group 1 PAH, group 2 and 3 pulmonary hypertension (PH), and in patients with severe liver disease without PAH. MEASUREMENTS AND MAIN RESULTS BMP9 levels were markedly lower in portopulmonary hypertension (PoPH) versus healthy control subjects, or other etiologies of PAH or PH; distinguished PoPH from patients with liver disease without PAH; and were an independent predictor of transplant-free survival. BMP9 levels were decreased in mice with PH associated with CCl4-induced portal hypertension and liver cirrhosis, but were normal in other rodent models of PH. Administration of ALK1-Fc, a BMP9 ligand trap consisting of the activin receptor-like kinase-1 extracellular domain, exacerbated PH and pulmonary vascular remodeling in mice treated with hypoxia versus hypoxia alone. CONCLUSIONS BMP9 is a sensitive and specific biomarker of PoPH, predicting transplant-free survival and the presence of PAH in liver disease. In rodent models, acquired deficiency of BMP9 signaling can predispose to or exacerbate PH, providing a possible mechanistic link between PoPH and heritable PAH. These findings describe a novel experimental model of severe PH that provides insight into the synergy between pulmonary vascular injury and diminished BMP9 signaling in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Ivana Nikolic
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Samuel D. Paskin-Flerlage
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Teresa Dinter
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey A. Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Anthony J. Faugno
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan E. McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiuli Huang
- Therapy for Rare and Neglected Diseases Program, National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Kathryn R. Coser
- Pfizer Centers for Therapeutic Innovation, Cambridge, Massachusetts
| | - Carol S. C. Lai
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul D. Upton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Marie Jose Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Centre, Leiden, the Netherlands
| | - Roham T. Zamanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University Medical Center, Stanford, California; and
| | - C. Gregory Elliott
- Department of Medicine, Intermountain Medical Center and University of Utah, Salt Lake City, Utah
| | - Arthur Lee
- Therapy for Rare and Neglected Diseases Program, National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Wei Zheng
- Therapy for Rare and Neglected Diseases Program, National Center for Advancing Translational Sciences, Rockville, Maryland
| | | | - Christine Huard
- Pfizer Centers for Therapeutic Innovation, Cambridge, Massachusetts
| | - Nicholas W. Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | | | - Richard W. Channick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kari E. Roberts
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
26
|
Immunological and morphological analysis of heterotopic ossification differs to healthy controls. BMC Musculoskelet Disord 2018; 19:327. [PMID: 30205831 PMCID: PMC6134767 DOI: 10.1186/s12891-018-2246-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Formation of lamellar bone in non-osseus tissue is a pathological process called heterotopic ossification. It is the aim of this study to analyse the morphology and immunological status of patients with heterotopic ossification compared to individual healthy persons. Methods Human bone marrow and blood samples were obtained from 6 systemically healthy individuals and 4 patients during resection of heterotopic ossification from bone at hip arthroplasty. Bone was fragmented and treated with purified collagenase. Immunofluorescence surface staining was performed and analyzed with flow cytometry. Microcomputed tomography scanning was done performed at a resolution of 11 and 35 μm isometric voxel size respectively using a two different cone beam X-computer tomography systems and a microfocus X-ray tube. Subsequently the volume data was morphometrically analysed. Results The monocytes, stem cells, stroma cells and granulocytes progenitor cells were strongly reduced in the heterotopic ossification patient. Additionally a significant reduction of stromal stem cells cells and CD34 positive stem cells was observed. The frequency of NK-cells, B cells and T cells were not altered in the patients with heterotopic ossification compared to a healthy person. Micromorphometric parameters showed a lower content of mineralized bone tissue compared to normal bone. Mean trabecular thickness showed a high standard deviation, indicating a high variation in trabecular thickness, anisotropy and reducing bone strength. Conclusions This work shows altered immunological distribution that is accompanied by a low decrease in bone volume fraction and tissue mineral density in the heterotopic ossification sample compared to normal bone. Compared to healthy subjects, this might reflect an immunological participation in the development of this entity.
Collapse
|
27
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
28
|
Crowgey EL, Wyffels JT, Osborn PM, Wood TT, Edsberg LE. A Systems Biology Approach for Studying Heterotopic Ossification: Proteomic Analysis of Clinical Serum and Tissue Samples. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:212-220. [PMID: 30010035 PMCID: PMC6076384 DOI: 10.1016/j.gpb.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in soft tissue. Although some of the underlying processes of HO have been described, there are currently no clinical tests using validated biomarkers for predicting HO formation. As such, the diagnosis is made radiographically after HO has formed. To identify potential and novel biomarkers for HO, we used isobaric tags for relative and absolute quantitation (iTRAQ) and high-throughput antibody arrays to produce a semi-quantitative proteomics survey of serum and tissue from subjects with (HO+) and without (HO-) heterotopic ossification. The resulting data were then analyzed using a systems biology approach. We found that serum samples from subjects experiencing traumatic injuries with resulting HO have a different proteomic expression profile compared to those from the matched controls. Subsequent quantitative ELISA identified five blood serum proteins that were differentially regulated between the HO+ and HO- groups. Compared to HO- samples, the amount of insulin-like growth factor I (IGF1) was up-regulated in HO+ samples, whereas a lower amount of osteopontin (OPN), myeloperoxidase (MPO), runt-related transcription factor 2 (RUNX2), and growth differentiation factor 2 or bone morphogenetic protein 9 (BMP-9) was found in HO+ samples (Welch two sample t-test; P < 0.05). These proteins, in combination with potential serum biomarkers previously reported, are key candidates for a serum diagnostic panel that may enable early detection of HO prior to radiographic and clinical manifestations.
Collapse
Affiliation(s)
- Erin L Crowgey
- Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jennifer T Wyffels
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226, USA; Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | | | - Thomas T Wood
- San Antonio Military Medical Center, San Antonio, TX 78219, USA
| | - Laura E Edsberg
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226, USA.
| |
Collapse
|
29
|
Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018; 109:178-186. [PMID: 29409971 PMCID: PMC5866227 DOI: 10.1016/j.bone.2018.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Put most simply, heterotopic ossification (HO) is the abnormal formation of bone at extraskeletal sites. HO can be classified into two main subtypes, genetic and acquired. Acquired HO is a common complication of major connective tissue injury, traumatic central nervous system injury, and surgical interventions, where it can cause significant pain and postoperative disability. A particularly devastating form of HO is manifested in the rare genetic disorder, fibrodysplasia ossificans progressiva (FOP), in which progressive heterotopic bone formation occurs throughout life, resulting in painful and disabling cumulative immobility. While the central role of stem/progenitor cell populations in HO is firmly established, the identity of the offending cell type(s) remains to be conclusively determined, and little is known of the mechanisms that direct these progenitor cells to initiate cartilage and bone formation. In this review, we summarize current knowledge of the cells responsible for acquired HO and FOP, highlighting the strengths and weaknesses of animal models used to interrogate the cellular origins of HO.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
30
|
Fujioka-Kobayashi M, Abd El Raouf M, Saulacic N, Kobayashi E, Zhang Y, Schaller B, Miron RJ. Superior bone-inducing potential of rhBMP9 compared to rhBMP2. J Biomed Mater Res A 2018; 106:1561-1574. [PMID: 29396910 DOI: 10.1002/jbm.a.36359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Recombinant human bone morphogenic protein (rhBMP) 9 has recently been reported to have more osteopromotive potential in vitro when compared to rhBMP2. The aim of the present study was to investigate the bone-inducing potential of rhBMP2 and rhBMP9. We compared rhBMP2, rhBMP7, and rhBMP9 at five different concentrations and showed convincingly that rhBMP9 possesses much greater potential for osteoblast differentiation even at 20 times lower concentrations in vitro. We further show that Noggin, an inhibitor for rhBMP2-induced osteogenesis, did not alter rhBMP9-induced osteogenesis. Thereafter, we show for the first time that rhBMP9 loaded onto atelo-collagen membranes is osteoinductive and has greater potential to form ectopic bone formation when compared to rhBMP2 even at four times lower doses. Similarly new bone formation of rhBMP2 and 9 when loaded on deproteinized bovine bone mineral (DBBM) was investigated in a rabbit calvarial defect. At 8 weeks, both rhBMP2 and rhBMP9 induced significantly higher new bone formation when compared to DBBM alone samples. Interestingly, once again four times lower dose of rhBMP9 group induced comparable or even greater levels of new bone height and new bone area when compared to the rhBMP2 group. The present study revealed that (1) rhBMP9 is capable of inducing ectopic new bone formation in vivo and (2) up to four times lower doses of rhBMP9 may be utilized to regenerate same-size bone defects when compared to rhBMP2. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1561-1574, 2018.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mustafa Abd El Raouf
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
32
|
Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, Tseng HW, Arouche N, Boutin L, Kulina I, Salga M, Jose B, Pettit AR, Clay D, Rochet N, Vlachos E, Genet G, Debaud C, Denormandie P, Genet F, Sims NA, Banzet S, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017; 2:96034. [PMID: 29093266 DOI: 10.1172/jci.insight.96034] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 02/04/2023] Open
Abstract
Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury-induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad.
Collapse
Affiliation(s)
- Frédéric Torossian
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Bernadette Guerton
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Adrienne Anginot
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | - Sabrina Soave
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nassim Arouche
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Laetitia Boutin
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Marjorie Salga
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.,Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France
| | - Beulah Jose
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Denis Clay
- UMS33, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Nathalie Rochet
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Erica Vlachos
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Guillaume Genet
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Charlotte Debaud
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Philippe Denormandie
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - François Genet
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Sébastien Banzet
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jean-Jacques Lataillade
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | | |
Collapse
|
33
|
Shinohara Y, Nakamura T, Shirakata Y, Noguchi K. Bone healing capabilities of recombinant human bone morphogenetic protein-9 (rhBMP-9) with a chitosan or collagen carrier in rat calvarial defects. Dent Mater J 2017; 35:454-60. [PMID: 27252002 DOI: 10.4012/dmj.2015-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to examine the effects of recombinant human BMP-9 (rhBMP-9) with chitosan sponge (ChiS) or absorbable collagen sponge (ACS) on bone formation in rat calvarial defects. The defects were treated by one of the following implantations: ChiS, rhBMP-9/ChiS, ACS, rhBMP-9/ACS and no implantation. The animals were euthanized at 8 weeks for histological evaluation. The percentage of defect closure (DC) in the rhBMP-9/ACS group was significantly greater than that in the ACS group. The rhBMP-9/ACS group demonstrated the highest level of DC among all the groups. The newly formed bone area (NBA) and NBA/total area in the ChiS-implanted groups and in the rhBMP-9/ACS group were significantly greater compared with those in the ACS group. It can be concluded that rhBMP-9/ACS has a potential to induce bone formation in rat calvarial defects. Further studies are required to elucidate the mechanism of bone formation induced by rhBMP-9.
Collapse
Affiliation(s)
- Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences
| | | | | | | |
Collapse
|
34
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
35
|
Nakamura T, Shirakata Y, Shinohara Y, Miron RJ, Hasegawa-Nakamura K, Fujioka-Kobayashi M, Noguchi K. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects. Clin Oral Investig 2017; 21:2671-2679. [PMID: 28197731 DOI: 10.1007/s00784-017-2069-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). MATERIALS AND METHODS Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. RESULTS The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm3, n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm3, n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm3, n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. CONCLUSIONS Within the limits of this study, it can be concluded that rhBMP-2/ACS induced a slight early increase in new bone formation at 2 weeks and that rhBMP-9/ACS provided comparable new bone formation to rhBMP-2/ACS with less adipose tissues after a healing period of 8 weeks in rat CSD. CLINICAL RELEVANCE RhBMP-9/ACS treatment provided new bone formation with less adipose tissues compared with rhBMP-2/ACS.
Collapse
Affiliation(s)
- Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Richard J Miron
- Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kozue Hasegawa-Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
36
|
Fujioka‐Kobayashi M, Schaller B, Saulacic N, Pippenger BE, Zhang Y, Miron RJ. Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2. Clin Exp Dent Res 2017; 3:32-40. [PMID: 29744176 PMCID: PMC5839213 DOI: 10.1002/cre2.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022] Open
Abstract
The use of growth factors for the regeneration of soft and hard tissues has been utilized extensively in dental medicine over the past decade. Recently our group found that recombinant human bone morphogenetic protein 9 (rhBMP9) was more osteopromotive than recombinant human bone morphogenetic protein 2 (rhBMP2) when combined with a deprotenized bovine bone mineral bone grafting material. The aim of the present in vitro study was to evaluate the regenerative potential of an absorbable collagen sponge(ACS) specifically designed for extraction socket healing loaded with rhBMP9 when compared to rhBMP2. The adsorption and release kinetics of rhBMP2 and rhBMP9 were first investigated by enzyme-linked immunosorbent assay quantification. Then, the cellular effects of stromal cell line (ST2) preosteoblasts were investigated utilizing four groups including rhBMP2 and rhBMP9 at both low(10 ng/ml) and high(100 ng/ml) concentrations loaded onto ACS. Cellular attachment(8 hours) and proliferation(1, 3, and 5 days) as well as osteoblast differentiation were investigated by real-time polymerase chain reaction (PCR) at 3 and 14 days, alkaline phosphatase (ALP) activity at 7 days, and alizarin red staining at 14 days. ACS fully adsorbed both rhBMP2 and rhBMP9 that were slowly released up to 10 days. Although neither rhBMP2 nor rhBMP9 had any effects on cell attachment or proliferation, pronounced effects were observed on osteoblast differentiation. ALP activity was increased seven-fold with rhBMP2-high, whereas a marked 10-fold and 20-fold increase was observed with rhBMP9-low and high loaded to ACS, respectively. Furthermore, mRNA levels of collagen1, ALP, bone sialoprotein, and osteocalcin were all significantly higher for rhBMP9 when compared to control or rhBMP2 groups. Alizarin red staining further confirmed that rhBMP9-low and high demonstrated marked increases in mineralization potential when compared to rhBMP2-high. The results demonstrate the marked effect of rhBMP9 on osteoblast differentiation when combined with ACS in comparison to rhBMP2 at doses as much as 10 times lower. Further in vivo studies are necessary to investigate whether the regenerative potential is equally as potent.
Collapse
Affiliation(s)
- Masako Fujioka‐Kobayashi
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
- Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical SciencesTokushima University Graduate SchoolJapan
| | - Benoit Schaller
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | - Nikola Saulacic
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | | | - Yufeng Zhang
- Department of Oral ImplantologyUniversity of WuhanChina
| | - Richard J. Miron
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryMichiganUSA
| |
Collapse
|
37
|
Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential. J Clin Med 2016; 5:jcm5120112. [PMID: 27916889 PMCID: PMC5184785 DOI: 10.3390/jcm5120112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9), one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1) control tissue culture plastic, (2) HA alone, and (3) HA with rhBMP9 (100 ng/mL). Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP) activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN) at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1) HA may serve as a potential carrier for various growth factors, and (2) rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo.
Collapse
|
38
|
Fujioka-Kobayashi M, Schaller B, Zhang Y, Kandalam U, Hernandez M, Miron RJ. Recombinant human bone morphogenetic protein (rhBMP)9 induces osteoblast differentiation when combined with demineralized freeze-dried bone allografts (DFDBAs) or biphasic calcium phosphate (BCP). Clin Oral Investig 2016; 21:1883-1893. [PMID: 27771827 DOI: 10.1007/s00784-016-1983-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recently, recombinant human bone morphogenetic protein 9 (rhBMP9) has been characterized as one of the most osteogenic growth factors among the 15 human BMPs. The aim of the present study was to investigate the effects of rhBMP9 in comparison to the clinically utilized rhBMP2 on in vitro cell behavior when combined with two bone graft materials including demineralized freeze-dried bone allografts (DFDBAs) and biphasic calcium phosphate (BCP). MATERIALS AND METHODS The absorption and release kinetics of rhBMPs from DFDBA and BCP were investigated by ELISA. Moreover, murine bone stromal ST2 cell behavior was investigated on DFDBA or BCP seeded on (1) graft only, (2) rhBMP2 (10 ng/ml), (3) rhBMP2 (100 ng/ml), (4) rhBMP9 (10 ng/ml), and (5) rhBMP9 (100 ng/ml). The effects of rhBMPs on DFDBA and BCP were assessed for cell adhesion, proliferation, and osteoblast differentiation by alkaline phosphatase (ALP) activity, alizarin red staining, and real-time PCR for genes encoding Runx2, ALP, and bone sialoprotein (BSP). RESULTS While both BMPs were gradually released from DFDBA and BCP over time, significantly higher adsorption was observed on BCP when compared to DFDBA. Cell attachment and proliferation was higher on BCP with little influence of either rhBMP2/9. Despite rhBMPs having relatively no effect on cell attachment/proliferation, a pronounced and marked effect was observed on osteoblast differentiation for both rhBMP2/9. Interestingly, it was observed that rhBMP9 induced significantly higher ALP activity, alizarin red staining, and messenger RNA (mRNA) levels of ALP and BSP when compared to rhBMP2. Our results also revealed higher differentiation for rhBMP2/9 with BCP when compared to DFDBA most likely as a result of higher growth factor adsorption. CONCLUSION While both rhBMP2/9 combined with DFDBA or BCP induced osteoblast differentiation, rhBMP9 induced greater osteoblast differentiation when compared to rhBMP2. CLINICAL RELEVANCE rhBMP9 may be a recombinant growth factor with higher potential to induce new bone formation when compared to rhBMP2. Further in vivo studies are necessary to characterize its regenerative potential in various animal models.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Umadevi Kandalam
- Department of Pediatric Dentistry, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Maria Hernandez
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
39
|
Fujioka-Kobayashi M, Schaller B, Saulacic N, Zhang Y, Miron RJ. Growth factor delivery of BMP9 using a novel natural bovine bone graft with integrated atelo-collagen type I: Biosynthesis, characterization, and cell behavior. J Biomed Mater Res A 2016; 105:408-418. [DOI: 10.1002/jbm.a.35921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Periodontology, College of Dental Medicine; Nova Southeastern University; Fort Lauderdale Florida
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
- Department of Oral Surgery; Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology; University of Wuhan; China
| | - Richard J. Miron
- Department of Periodontology, College of Dental Medicine; Nova Southeastern University; Fort Lauderdale Florida
| |
Collapse
|
40
|
Osteogenic potential of recombinant human bone morphogenetic protein-9/absorbable collagen sponge (rhBMP-9/ACS) in rat critical size calvarial defects. Clin Oral Investig 2016; 21:1659-1665. [PMID: 27726024 DOI: 10.1007/s00784-016-1963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES It has been reported that bone morphogenetic protein (BMP)-9 has potent osteoinductive properties among the BMP family by adenovirus-transfection experiments. We very recently reported that absorbable collagen sponge (ACS) as a carrier for recombinant human (rh) BMP-9, compared with chitosan sponge, was suitable for inducing bone healing/regeneration by BMP-9 in a rat calvarial defect model. The aim of this study was to evaluate different doses of rhBMP-9/ACS on new bone formation in rat critical size calvarial defects. MATERIALS AND METHODS Bilateral calvarial defects (n = 32) were surgically created in 16 wistar rats and randomly filled with one of the following materials: (1) absorbable collagen sponge (ACS) alone; (2) 1 μg-rhBMP-9/ACS (L-rhBMP-9/ACS); (3) 5 μg-rhBMP-9/ACS (H-rhBMP-9/ACS); and (4) blank defects (control). The animals were sacrificed 8 weeks postsurgery for radiographic and histomorphometric analyses. RESULTS Bone volume and defect closure were statistically higher in the rhBMP-9/ACS-implanted (L-rhBMP-9/ACS and H-rhBMP-9/ACS) groups when compared with ACS-alone group (p < 0.05). Furthermore, defects filled with H-rhBMP-9/ACS showed the highest levels of newly formed bone area (NBA) and NBA/total defect area among all groups. No significant differences in any of the radiographic and histometric parameters could be observed between both concentrations of rhBMP-9. CONCLUSIONS Within the limits of this study, it can be concluded that rhBMP-9/ACS-induced bone formation can be reached with as little as 1 μg/site in rat critical size calvarial defects. CLINICAL RELEVANCE RhBMP-9 could be a potential therapeutic growth factor for future bone regenerative procedures.
Collapse
|
41
|
Agarwal S, Drake J, Qureshi AT, Loder S, Li S, Shigemori K, Peterson J, Cholok D, Forsberg JA, Mishina Y, Davis TA, Levi B. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS One 2016; 11:e0156253. [PMID: 27494521 PMCID: PMC4975503 DOI: 10.1371/journal.pone.0156253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is the pathologic formation of bone separate from the normal skeleton. Although several models exist for studying HO, an understanding of the common in vitro properties of cells isolated from these models is lacking. We studied three separate animal models of HO including two models of trauma-induced HO and one model of genetic HO, and human HO specimens, to characterize the properties of cells derived from tissue containing pre-and mature ectopic bone in relation to analogous mesenchymal cell populations or osteoblasts obtained from normal muscle tissue. We found that when cultured in vitro, cells isolated from the trauma sites in two distinct models exhibited increased osteogenic differentiation when compared to cells isolated from uninjured controls. Furthermore, osteoblasts isolated from heterotopic bone in a genetic model of HO also exhibited increased osteogenic differentiation when compared with normal osteoblasts. Finally, osteoblasts derived from mature heterotopic bone obtained from human patients exhibited increased osteogenic differentiation when compared with normal bone from the same patients. These findings demonstrate that across models, cells derived from tissues forming heterotopic ossification exhibit increased osteogenic differentiation when compared with either normal tissues or osteoblasts. These cell types can be used in the future for in vitro investigations for drug screening purposes.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - James Drake
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Ammar T Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Shuli Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Kay Shigemori
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan Peterson
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan A Forsberg
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Yuji Mishina
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| |
Collapse
|
42
|
Molligan J, Mitchell R, Schon L, Achilefu S, Zahoor T, Cho Y, Loube J, Zhang Z. Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification. Stem Cells Transl Med 2016; 5:745-53. [PMID: 27112178 DOI: 10.5966/sctm.2015-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED : By using surgical mouse models, this study investigated how the tissue environment influences the osteogenic potential of muscle progenitors (m-progenitors) and potentially contributes to heterotopic ossification (HO). Injury was induced by clamping the gluteus maximus and medius (group M) or osteotomy of greater trochanter (group O) on the right hip, as well as combined muscle injury and osteotomy of greater trochanter (group M+O). The gluteus maximus and medius of the operated hips were harvested at days 1, 3, 5, and 10 for isolation of m-progenitors. The cells were cultured in an osteogenic medium for 3 weeks, and osteogenesis was evaluated by matrix mineralization and the expression of osteogenesis-related genes. The expression of type I collagen, RUNX2 (runt-related transcription factor 2), and osteocalcin by the m-progenitors of group M+O was significantly increased, compared with groups M and O. Osteogenic m-progenitors in group O increased the expression of bone morphogenetic protein 2 and also bone morphogenetic protein antagonist differential screening-selected gene aberrative in neuroblastoma. On histology, there was calcium deposition mostly in the muscles of group M+O harvested at day 10. CD56, representing myogenic progenitors, was highly expressed in the m-progenitors isolated from group M (day 10), but m-progenitors of group M+O (day 10) exhibited the highest expression of platelet-derived growth factor receptor α (PDGFR-α), a marker of muscle-derived mesenchymal stem cells (M-MSCs). The expressions of PDGFR-α and RUNX2 were colocalized in osteogenic m-progenitors. The data indicate that the tissue environment simulated in the M+O model is a favorable condition for HO formation. Most likely, M-MSCs, rather than myogenic progenitors, in the m-progenitors participate in HO formation. SIGNIFICANCE The prevalence of traumatic heterotopic ossification (HO) is high in war injury. The pathogenesis of HO is still unknown. This study clarified the contribution of a tissue environment created by bone or muscle injury to the formation of HO. The study also found that muscle-derived mesenchymal stem cells, but not myogenic progenitors, are involved in the formation of HO. The findings of this study could be used to strategize the prevention and treatment of HO.
Collapse
Affiliation(s)
- Jeremy Molligan
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Samuel Achilefu
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Young Cho
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Jeffery Loube
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Osteogenic potential of rhBMP9 combined with a bovine-derived natural bone mineral scaffold compared to rhBMP2. Clin Oral Implants Res 2016; 28:381-387. [PMID: 26988608 DOI: 10.1111/clr.12804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Combination therapies of growth factors and scaffolds for bone tissue engineering are becoming routine for clinical use. BMP9 has previously been characterized as one of the most osteogenic inducers among the BMP superfamily; however, up until recently, BMP9 has only been available through adenovirus transfection experiments (gene therapy). While recombinant human (rh)BMP2 is regarded as the gold standard for bone regeneration with recombinant growth factors, recently the successful development of rhBMP9 brings intriguing new possibilities for future clinical use. The purpose of this pioneering study was to investigate the effects of rhBMP9 in comparison with rhBMP2 on an in vitro cell behavior of bone-forming osteoblasts when combined with a bone grafting material. MATERIAL AND METHODS Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto bovine-derived natural bone mineral (NBM) particles treated with (i) control, (ii) rhBMP2 (10 ng/ml), (iii) rhBMP2 (100 ng/ml), (iv) rhBMP9 (10 ng/ml) and (v) rhBMP9 (100 ng/ml). The effects of rhBMPs were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and osteoblast differentiation as assessed by real-time PCR at 3 and 14 days for genes encoding Runx2, collagen1alpha2 (COL1a2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, ALP staining and alizarin red staining were used to investigate localization of osteoblast differentiation marker and mineralization on NBM. RESULTS Although neither rhBMP2 nor rhBMP9 influenced cell attachment to NBM particles, both were able to stimulate cell proliferation at 3 days. Furthermore, all concentrations of rhBMPs were able to significantly induce mRNA levels of Runx2, COL1a2 and OCN at 3 days. Interestingly, only rhBMP9 was able to significantly upregulate mRNA levels of ALP up to eightfold, and ALP staining up to 25-fold, when compared to rhBMP2. In addition, only rhBMP9 (100 ng/ml) significantly increased alizarin red staining when compared to control and rhBMP2 (10 ng/ml) samples. CONCLUSION These results demonstrate that both rhBMP2 and rhBMP9 have osteopromotive properties on osteoblast differentiation. It was found that rhBMP9 additionally stimulated the osteopromotive potential of osteoblasts when compared to rhBMP2 by demonstrating higher levels of ALP expression and alizarin red staining. Further animal studies comparing both recombinant proteins are necessary to further characterize the osteoinductive potential of BMP9.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Masako Fujioka-Kobayashi, Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kosaku Sawada
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Kosaku Sawada, Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
44
|
Sun Y, Cai J, Yu S, Chen S, Li F, Fan C. MiR-630 Inhibits Endothelial-Mesenchymal Transition by Targeting Slug in Traumatic Heterotopic Ossification. Sci Rep 2016; 6:22729. [PMID: 26940839 PMCID: PMC4778133 DOI: 10.1038/srep22729] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022] Open
Abstract
Heterotopic ossification (HO) is the abnormal formation of mature bone in extraskeletal soft tissues that occurs as a result of inflammation caused by traumatic injury or associated with genetic mutation. Despite extensive research to identify the source of osteogenic progenitors, the cellular origins of HO are controversial and the underlying mechanisms, which are important for the early detection of HO, remain unclear. Here, we used in vitro and in vivo models of BMP4 and TGF-β2-induced HO to identify the cellular origin and the mechanisms mediating the formation of ectopic bone in traumatic HO. Our results suggest an endothelial origin of ectopic bone in early phase of traumatic HO and indicate that the inhibition of endothelial-mesenchymal transition by miR-630 targeting Slug plays a role in the formation of ectopic bone in HO. A matched case-control study showed that miR-630 is specifically downregulated during the early stages of HO and can be used to distinguish HO from other processes leading to bone formation. Our findings suggest a potential mechanism of post-traumatic ectopic bone formation and identify miR-630 as a potential early indicator of HO.
Collapse
Affiliation(s)
- Yangbai Sun
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jiangyu Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shiyang Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Fengfeng Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
45
|
Abstract
Heterotopic ossification (HO) is a complication of musculoskeletal injury characterized by the formation of mature bone in soft tissues. The etiology of HO is unknown. We investigated the role of bone marrow derived progenitor cells in HO pathophysiology. We isolated the cells from HO specimens by cell explantation. Using flow cytometry and immunofluorescence microscopy, we found that 35 to 65% of the HO cells exhibit a bone marrow derived fibrocyte profile consisting in spindle-shaped morphology associated with type 1 pro-collagen and LSP1 expression. When cultured in osteogenic differentiation medium, active machinery for bone mineralization (high gene expression of Anx2, TNAP, and Pit-1), and calcium/phosphate deposits were found. Interestingly, interferon-alpha 2b significantly reduced the proliferation rate and COL1 gene expression in HO cells. We have characterized a novel subset of bone marrow derived progenitor cells in the HO specimens. The findings from this research study will provide new insights into the development of HO in burn patients.
Collapse
|
46
|
Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Recombinant Human Bone Morphogenetic Protein 9 (rhBMP9) Induced Osteoblastic Behavior on a Collagen Membrane Compared With rhBMP2. J Periodontol 2016; 87:e101-7. [PMID: 26751345 DOI: 10.1902/jop.2016.150561] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has previously been characterized as one of the most osteogenic growth factors of the BMP family. To the best of the authors' knowledge, previous experiments have only used adenovirus transfection (gene therapy). With the recent development of recombinant human BMP9 (rhBMP9), the present study investigates the osteopromotive potential of BMP9 versus rhBMP2 when loaded onto collagen membranes. METHODS ST2 stromal bone marrow cells were seeded onto: 1) control; 2) low-dose rhBMP2 (10 ng/mL); 3) high-dose rhBMP2 (100 ng/mL); 4) low-dose rhBMP9 (10 ng/mL); and 5) high-dose rhBMP9 (100 ng/mL) porcine collagen membranes. The following parameters were compared among groups: 1) cell adhesion (at 8 hours); 2) cell proliferation (at 1, 3, and 5 days); 3) real-time polymerase chain reaction for genes encoding runt-related transcription factor 2; 4) alkaline phosphatase (ALP); 5) bone sialoprotein ([BSP] at 3 and 14 days); and 6) alizarin red staining (at 14 days). RESULTS rhBMP2 and rhBMP9 demonstrated little effect on cell attachment and proliferation; however, pronounced increases were observed in osteoblast differentiation. All groups significantly induced ALP messenger RNA (mRNA) levels at 3 days and BSP levels at 14 days; however, high-dose rhBMP9 showed significantly higher values compared with all other groups for ALP levels (five-fold increase at 3 days and two-fold increase at 14 days). Alizarin red staining further revealed both concentrations of rhBMP9 induced up to three-fold more staining compared with rhBMP2. CONCLUSIONS Results indicate that the combination of collagen membranes with rhBMP9 induced significantly higher ALP mRNA expression and alizarin red staining compared with rhBMP2. These findings suggest that rhBMP9 may be a suitable growth factor for future regenerative procedures in bone biology.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kosaku Sawada
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Eizaburo Kobayashi
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern.,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL
| |
Collapse
|
47
|
Heterotopic Ossification following Tissue Transfer for Combat-Casualty Complex Periarticular Injuries. Plast Reconstr Surg 2015; 136:808e-814e. [DOI: 10.1097/prs.0000000000001796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
49
|
Peterson JR, Eboda ON, Brownley RC, Cilwa KE, Pratt LE, De La Rosa S, Agarwal S, Buchman SR, Cederna PS, Morris MD, Wang SC, Levi B. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev 2015; 24:205-13. [PMID: 25122460 DOI: 10.1089/scd.2014.0291] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heterotopic ossification (HO) is a common and debilitating complication of burns, traumatic brain injuries, and musculoskeletal trauma and surgery. Although the exact mechanism of ectopic bone formation is unknown, mesenchymal stem cells (MSCs) capable of osteogenic differentiation are known to play an essential role. Interestingly, the prevalence of HO in the elderly population is low despite the high overall occurrence of musculoskeletal injury and orthopedic procedures. We hypothesized that a lower osteogenicity of MSCs would be associated with blunted HO formation in old compared with young mice. In vitro osteogenic differentiation of adipose-derived MSCs from old (18-20 months) and young (6-8 weeks) C57/BL6 mice was assessed, with or without preceding burn injury. In vivo studies were then performed using an Achilles tenotomy with concurrent burn injury HO model. HO formation was quantified using μCT scans, Raman spectroscopy, and histology. MSCs from young mice had more in vitro bone formation, upregulation of bone formation pathways, and higher activation of Smad and nuclear factor kappa B (NF-κB) signaling following burn injury. This effect was absent or blunted in cells from old mice. In young mice, burn injury significantly increased HO formation, NF-κB activation, and osteoclast activity at the tenotomy site. This blunted, reactive osteogenic response in old mice follows trends seen clinically and may be related to differences in the ability to mount acute inflammatory responses. This unique characterization of HO and MSC osteogenic differentiation following inflammatory insult establishes differences between age populations and suggests potential pathways that could be targeted in the future with therapeutics.
Collapse
Affiliation(s)
- Jonathan R Peterson
- 1 Division of Plastic Surgery, Department of Surgery, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ausk BJ, Gross TS, Bain SD. Botulinum Toxin-induced Muscle Paralysis Inhibits Heterotopic Bone Formation. Clin Orthop Relat Res 2015; 473:2825-30. [PMID: 25804882 PMCID: PMC4523519 DOI: 10.1007/s11999-015-4271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Short-term muscle atrophy induced by botulinum toxin A (BTxA) has been observed to impair osteogenesis in a rat closed femur fracture model. However, it is unclear whether the underlying mechanism is a direct effect of BTxA on muscle-bone interactions or an indirect effect that is driven by skeletal unloading. Because skeletal trauma in the closed fracture model also leads to disuse atrophy, we sought to mitigate this confounding variable by examining BTxA effects on muscle-bone interactions in two complementary in vivo models in which osteogenesis is induced in the absence of skeletal unloading. The overall aim of this study was to identify a potential strategy to inhibit pathological bone formation and heterotopic ossification (HO). QUESTIONS/PURPOSES (1) Does muscle paralysis inhibit periosteal osteogenesis induced by a transcortical defect? (2) Does muscle paralysis inhibit heterotopic bone formation stimulated by intramuscular bone morphogenetic protein (BMP) injection? METHODS Focal osteogenesis was induced in the right hindlimb of mice through surgical initiation of a small transcortical defect in the tibia (fracture callus; n = 7/group) or intramuscular injection of BMP-2 (HO lesion; n = 6/group), both in the presence/absence of adjacent calf paralysis. High-resolution micro-CT images were obtained in all experimental groups 21 days postinduction and total volume (ie, perimeter of periosteal callus or HO lesion) and bone volume (calcified tissue within the total volume) were quantified as primary outcome measures. Finally, these outcome measures were compared to determine the effect of muscle paralysis on inhibition of local osteogenesis in both studies. RESULTS After a transcortical defect, BTxA-treated mice showed profound inhibition of osteogenesis in the periosteal fracture callus 21 days postsurgery compared with saline-treated mice (total volume: 0.08 ± 0.06 versus 0.42 ± 0.11 mm(3), p < 0.001; bone volume: 0.07 ± 0.05 versus 0.32 ± 0.07 mm(3), p < 0.001). Similarly, BMP-2-induced HO formation was inhibited by adjacent muscle paralysis at the same time point (total volume: 1.42 ± 0.31 versus 3.42 ± 2.11 mm(3), p = 0.034; bone volume: 0.68 ± 0.18 versus 1.36 ± 0.79 mm(3), p = 0.045). CONCLUSIONS Our data indicate that BTxA-induced neuromuscular inhibition mitigated osteogenesis associated with both a transcortical defect and BMP-2-induced HO. CLINICAL RELEVANCE Focal neuromuscular inhibition represents a promising new approach that may lead to a new clinical intervention to mitigate trauma-induced HO, a healthcare challenge that is severely debilitating for civilian and war-wounded populations, is costly to both the patient and the healthcare system, and currently lacks effective treatments.
Collapse
Affiliation(s)
- Brandon J. Ausk
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98105 USA
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98105 USA
| | - Steven D. Bain
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98105 USA
| |
Collapse
|