1
|
Katchkovsky S, Meiri R, Lacham-Hartman S, Orenstein Y, Levaot N, Papo N. Mapping the sclerostin-LRP4 binding interface identifies critical interaction hotspots in loops 1 and 3 of sclerostin. FEBS Lett 2024. [PMID: 39443289 DOI: 10.1002/1873-3468.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
The interaction of sclerostin (Scl) with the low-density lipoprotein receptor-related protein 4 (LRP4) leads to a marked reduction in bone formation by inhibiting the Wnt/β-catenin pathway. To characterize the Scl-LRP4 binding interface, we sorted a combinatorial library of Scl variants and isolated variants with reduced affinity to LRP4. We identified Scl single-mutation variants enriched during the sorting process and verified their reduction in affinity toward LRP4-a reduction that was not a result of changes in the variants' secondary structure or stability. We found that Scl positions K75 (loop 1) and V136 (loop 3) are critical hotspots for binding to LRP4. Our findings establish the foundation for targeting these hotspots for developing novel therapeutic strategies to promote bone formation.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reut Meiri
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Hendrickx G, Boudin E, Mateiu L, Yorgan TA, Steenackers E, Kneissel M, Kramer I, Mortier G, Schinke T, Van Hul W. An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling. Calcif Tissue Int 2024; 114:171-181. [PMID: 38051321 DOI: 10.1007/s00223-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Eveline Boudin
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ellen Steenackers
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geert Mortier
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wim Van Hul
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Cassim A, Hettiarachchi D, Dissanayake VHW. Genetic determinants of syndactyly: perspectives on pathogenesis and diagnosis. Orphanet J Rare Dis 2022; 17:198. [PMID: 35549993 PMCID: PMC9097448 DOI: 10.1186/s13023-022-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The formation of the digits is a tightly regulated process. During embryogenesis, disturbance of genetic pathways in limb development could result in syndactyly; a common congenital malformation consisting of webbing in adjacent digits. Currently, there is a paucity of knowledge regarding the exact developmental mechanism leading to this condition. The best studied canonical interactions of Wingless‐type–Bone Morphogenic Protein–Fibroblast Growth Factor (WNT–BMP–FGF8), plays a role in the interdigital cell death (ICD) which is thought to be repressed in human syndactyly. Animal studies have displayed other pathways such as the Notch signaling, metalloprotease and non-canonical WNT-Planar cell polarity (PCP), to also contribute to failure of ICD, although less prominence has been given. The current diagnosis is based on a clinical evaluation followed by radiography when indicated, and surgical release of digits at 6 months of age is recommended. This review discusses the interactions repressing ICD in syndactyly, and characterizes genes associated with non-syndromic and selected syndromes involving syndactyly, according to the best studied canonical WNT-BMP-FGF interactions in humans. Additionally, the controversies regarding the current syndactyly classification and the effect of non-coding elements are evaluated, which to our knowledge has not been previously highlighted. The aim of the review is to better understand the developmental process leading to this condition.
Collapse
Affiliation(s)
- Afraah Cassim
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka.
| | - Dineshani Hettiarachchi
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| | - Vajira H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| |
Collapse
|
4
|
Katchkovsky S, Chatterjee B, Abramovitch-Dahan CV, Papo N, Levaot N. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Cell Mol Life Sci 2022; 79:113. [PMID: 35099616 PMCID: PMC11073160 DOI: 10.1007/s00018-022-04127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl-LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl-LRP4 interactions offer a potential strategy to promote anabolic bone functions.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Biplab Chatterjee
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
6
|
Huybrechts Y, Boudin E, Hendrickx G, Steenackers E, Hamdy N, Mortier G, Martínez Díaz-Guerra G, Bracamonte MS, Appelman-Dijkstra NM, Van Hul W. Identification of Compound Heterozygous Variants in LRP4 Demonstrates That a Pathogenic Variant outside the Third β-Propeller Domain Can Cause Sclerosteosis. Genes (Basel) 2021; 13:genes13010080. [PMID: 35052419 PMCID: PMC8774882 DOI: 10.3390/genes13010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Sclerosteosis is a high bone mass disorder, caused by pathogenic variants in the genes encoding sclerostin or LRP4. Both proteins form a complex that strongly inhibits canonical WNT signaling activity, a pathway of major importance in bone formation. So far, all reported disease-causing variants are located in the third β-propeller domain of LRP4, which is essential for the interaction with sclerostin. Here, we report the identification of two compound heterozygous variants, a known p.Arg1170Gln and a novel p.Arg632His variant, in a patient with a sclerosteosis phenotype. Interestingly, the novel variant is located in the first β-propeller domain, which is known to be indispensable for the interaction with agrin. However, using luciferase reporter assays, we demonstrated that both the p.Arg1170Gln and the p.Arg632His variant in LRP4 reduced the inhibitory capacity of sclerostin on canonical WNT signaling activity. In conclusion, this study is the first to demonstrate that a pathogenic variant in the first β-propeller domain of LRP4 can contribute to the development of sclerosteosis, which broadens the mutational spectrum of the disorder.
Collapse
Affiliation(s)
- Yentl Huybrechts
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Eveline Boudin
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Gretl Hendrickx
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Ellen Steenackers
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Neveen Hamdy
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2332 ZA Leiden, The Netherlands; (N.H.); (N.M.A.-D.)
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | | | - Milagros Sierra Bracamonte
- Endocrinology and Nutrition Resident, 12 de Octubre University Hospital, 28041 Madrid, Spain; (G.M.D.-G.); (M.S.B.)
| | - Natasha M. Appelman-Dijkstra
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2332 ZA Leiden, The Netherlands; (N.H.); (N.M.A.-D.)
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
- Correspondence: ; Tel.: +32-(0)3-275-97-61
| |
Collapse
|
7
|
De Maré A, D’Haese PC, Verhulst A. The Role of Sclerostin in Bone and Ectopic Calcification. Int J Mol Sci 2020; 21:ijms21093199. [PMID: 32366042 PMCID: PMC7246472 DOI: 10.3390/ijms21093199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sclerostin, a 22-kDa glycoprotein that is mainly secreted by the osteocytes, is a soluble inhibitor of canonical Wnt signaling. Therefore, when present at increased concentrations, it leads to an increased bone resorption and decreased bone formation. Serum sclerostin levels are known to be increased in the elderly and in patients with chronic kidney disease. In these patient populations, there is a high incidence of ectopic cardiovascular calcification. These calcifications are strongly associated with cardiovascular morbidity and mortality. Although data are still controversial, it is likely that there is a link between ectopic calcification and serum sclerostin levels. The main question, however, remains whether sclerostin exerts either a protective or deleterious role in the ectopic calcification process.
Collapse
|
8
|
Xu Y, Gao C, He J, Gu W, Yi C, Chen B, Wang Q, Tang F, Xu J, Yue H, Zhang Z. Sclerostin and Its Associations With Bone Metabolism Markers and Sex Hormones in Healthy Community-Dwelling Elderly Individuals and Adolescents. Front Cell Dev Biol 2020; 8:57. [PMID: 32117983 PMCID: PMC7020200 DOI: 10.3389/fcell.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Sclerostin is an important regulator of bone mass involving Wnt/β-catenin signaling pathway. We aimed to obtain the profile of serum sclerostin level and explore its associations with bone metabolism markers and sex hormones in healthy community-dwelling Chinese elderly individuals and adolescents. A cross-sectional study was performed in three communities in Shanghai. In all, 861 participants, including 574 healthy elderly individuals, and 287 healthy adolescents, were recruited. The levels of serum sclerostin, procollagen type 1 N-terminal propeptide (P1NP), β-CrossLaps of type I collagen containing cross-linked C-telopeptide (β-CTX), parathyroid hormone (PTH), 25-hydroxyvitamin D [25(OH)D], estradiol (E2), testosterone (T), and sex hormone-binding globulin (SHBG) were measured in blood samples from all participants. Median sclerostin level was higher in males than in females and in elderly individuals than in adolescents (elderly males: 54.89 pmol/L, elderly females: 39.95 pmol/L, adolescent males: 36.58 pmol/L, adolescent females: 27.06 pmol/L; both P < 0.05). In elderly individuals, serum sclerostin was positively correlated with age (β = 0.176, P < 0.001) and T (β = 0.248, P = 0.001), but negatively associated to P1NP (β = −0.140, P = 0.001). In adolescents, circulating sclerostin was significantly and positively associated with P1NP (β = 0.192, P = 0.003). The directions of the association between sclerostin and P1NP were opposite in Chinese elderly individuals and adolescents, which may reflect that sclerostin plays distinct roles in different functional states of the skeleton. Our findings revealed the rough profile of circulating sclerostin level in general healthy Chinese population and its associations with bone metabolism markers and sex hormones, which may provide a clue to further elucidate the cross action of sclerostin in bone metabolism and sexual development.
Collapse
Affiliation(s)
- Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Gao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinwei He
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenqin Gu
- Fenglin Community Health Service Center, Shanghai, China
| | - Chuntao Yi
- Fenglin Community Health Service Center, Shanghai, China
| | - Bihua Chen
- Longhua Community Health Service Center, Shanghai, China
| | - Qingqing Wang
- Longhua Community Health Service Center, Shanghai, China
| | - Feng Tang
- Qixian Community Health Service Center, Shanghai, China
| | - Juliang Xu
- Qixian Community Health Service Center, Shanghai, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Abstract
The 11 existing FDA-approved osteoporosis drug treatments include hormone replacement therapy, 2 SERMs (raloxifene and bazedoxifene), 5 inhibitors of bone-resorbing osteoclasts (4 bisphosphonates and anti-RANKL denosumab), 2 parathyroid hormone analogues (teriparatide and abaloparatide), and 1 WNT signaling enhancer (romosozumab). These therapies are effective and provide multiple options for patients and physicians. As the genomic revolution continues, potential novel targets for future drug development are identified. This review takes a wide perspective to describe potentially rewarding topics to explore, including knowledge of genes and pathways involved in bone cell metabolism, the utility of animal models, targeting drugs to bone, and ongoing advances in drug design and delivery.
Collapse
|
10
|
Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin In Vivo. iScience 2019; 20:205-215. [PMID: 31585407 PMCID: PMC6817631 DOI: 10.1016/j.isci.2019.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Wnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse. Missense mutation in the third beta-propeller of Lrp4 improve bone properties The R1170W mutation in Lrp4 interferes with sclerostin inhibition in vivo The R1170W Lrp4 mutation alters the bone wasting effects of mechanical disuse
Collapse
|
11
|
Youlten SE, Baldock PA. Using mouse genetics to understand human skeletal disease. Bone 2019; 126:27-36. [PMID: 30776501 DOI: 10.1016/j.bone.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Technological advances have enabled the study of the human genome in incredible detail with relative ease. However, our ability to interpret the functional significance of the millions of genetic variants present within each individual is limited. As a result, the confident assignment of disease-causing variant calls remains a significant challenge. Here we explore how mouse genetics can help address this deficit in functional genomic understanding. Underpinned by marked genetic correspondence, skeletal biology shows inter-species similarities which provide important opportunities to use data from mouse models to direct research into the genetic basis of skeletal pathophysiology. In this article we outline critical resources that may be used to establish genotype/phenotype relationships in skeletal tissue, identify genes with established skeletal effects and define the transcriptome of critical skeletal cell types. Finally, we outline how these mouse resources might be utilized to progress from a list of human sequence variants toward plausible gene candidates that contribute to skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia.
| | - Paul A Baldock
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia; University of Notre Dame Australia, Sydney, NSW, 2010, Australia
| |
Collapse
|
12
|
Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone-Vascular Axis. Toxins (Basel) 2019; 11:toxins11070428. [PMID: 31330917 PMCID: PMC6669501 DOI: 10.3390/toxins11070428] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sclerostin is a well-known inhibitor of bone formation that acts on Wnt/β-catenin signaling. This manuscript considers the possible role of sclerostin in vascular calcification, a process that shares many similarities with physiological bone formation. Rats were exposed to a warfarin-containing diet to induce vascular calcification. Vascular smooth muscle cell transdifferentiation, vascular calcification grade, and bone histomorphometry were examined. The presence and/or production of sclerostin was investigated in serum, aorta, and bone. Calcified human aortas were investigated to substantiate clinical relevance. Warfarin-exposed rats developed vascular calcifications in a time-dependent manner which went along with a progressive increase in serum sclerostin levels. Both osteogenic and adipogenic pathways were upregulated in calcifying vascular smooth muscle cells, as well as sclerostin mRNA and protein levels. Evidence for the local vascular action of sclerostin was found both in human and rat calcified aortas. Warfarin exposure led to a mildly decreased bone and mineralized areas. Osseous sclerostin production and bone turnover did not change significantly. This study showed local production of sclerostin in calcified vessels, which may indicate a negative feedback mechanism to prevent further calcification. Furthermore, increased levels of serum sclerostin, probably originating from excessive local production in calcified vessels, may contribute to the linkage between vascular pathology and impaired bone mineralization.
Collapse
|
13
|
Asadipooya K, Weinstock A. Cardiovascular Outcomes of Romosozumab and Protective Role of Alendronate. Arterioscler Thromb Vasc Biol 2019; 39:1343-1350. [PMID: 31242037 DOI: 10.1161/atvbaha.119.312371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis and cardiovascular diseases are major public health issues. Bone and cardiovascular remodeling share multiple biological markers and pathways. Medical intervention, such as using romosozumab, an antisclerostin antibody, improves the clinical outcome of osteoporosis. However, blocking sclerostin leads to Wnt (wingless/integrated) activation and participation in the cardiovascular remodeling process, which could potentially lead to adverse events. Based on the opposing roles of bisphosphonates and the Wnt pathway on endothelial dysfunction, lipid accumulation and calcification of the vessel walls, the combination of romosozumab and bisphosphonates could be a new therapeutic approach to reducing the risks of adverse cardiovascular events in romosozumab receivers. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- From the Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington (K.A.)
| | - Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York (A.W.)
| |
Collapse
|
14
|
Saito H, Gasser A, Bolamperti S, Maeda M, Matthies L, Jähn K, Long CL, Schlüter H, Kwiatkowski M, Saini V, Pajevic PD, Bellido T, van Wijnen AJ, Mohammad KS, Guise TA, Taipaleenmäki H, Hesse E. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 2019; 10:1354. [PMID: 30902975 PMCID: PMC6430773 DOI: 10.1038/s41467-019-08778-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.
Collapse
Affiliation(s)
- Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Andreas Gasser
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Miki Maeda
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Levi Matthies
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Katharina Jähn
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Courtney L Long
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Marcel Kwiatkowski
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D₃. Int J Mol Sci 2019; 20:ijms20020385. [PMID: 30658432 PMCID: PMC6358963 DOI: 10.3390/ijms20020385] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 01/28/2023] Open
Abstract
Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia. Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts and osteoblasts. Since the differentiation and activation of these cells is coordinated by vitamin D₃ (VD3), we investigated the effects of high extracellular Mg, as well as its impact on VD3 activity, in these cells. U937 cells were induced to osteoclastic differentiation by VD3 in the presence of supra-physiological concentrations (>1 mM) of extracellular Mg. The effect of high Mg concentrations was also studied in human bone-marrow-derived mesenchymal stem cells (bMSCs) induced to differentiate into osteoblasts by VD3. We demonstrate that high extra-cellular Mg levels potentiate VD3-induced osteoclastic differentiation, while decreasing osteoblastogenesis. We hypothesize that Mg might reprogram VD3 activity on bone remodeling, causing an unbalanced activation of osteoclasts and osteoblasts.
Collapse
|
16
|
Li S, Huang B, Jiang B, Gu M, Yang X, Yin Y. Sclerostin Antibody Mitigates Estrogen Deficiency-Inducted Marrow Lipid Accumulation Assessed by Proton MR Spectroscopy. Front Endocrinol (Lausanne) 2019; 10:159. [PMID: 30949129 PMCID: PMC6436376 DOI: 10.3389/fendo.2019.00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 11/25/2022] Open
Abstract
Sclerostin knock-out mice or sclerostin antibody (Scl-Ab) treated wild-type mice displayed decreased marrow adiposity. But the effects of Scl-Ab on estrogen deficiency-induced marrow fat expansion remain elusive. In this work, 45 female New Zealand rabbits were equally divided into sham-operation, ovariectomy controls, and ovariectomy treated with Scl-Ab for 5 months. MR spectroscopy was performed to longitudinally assess marrow fat fraction at baseline conditions, 2.5 and 5 months post-operatively, respectively. We evaluated bone mineral density (BMD), bone structural parameters, serum bone biomarkers, and quantitative parameters of marrow adipocytes. Ovariectomized rabbits markedly exhibited expansion of marrow fat in a time-dependent manner, with a variation of marrow fat fraction (+17.8%) at 2.5 months relative to baseline and it was maintained until 5 months (+30.4%, all P < 0.001), which was accompanied by diminished BMD and deterioration of trabecular microstructure. Compared to sham controls, adipocyte mean diameter, adipocyte density and adipocytes area percentage was increased by 42.9, 68.3, and 108.6% in ovariectomized rabbits, respectively. Scl-Ab treatment increased serum bone formation marker and alleviated the ovariectomy escalation of serum bone resorption marker. It remarkably lessened the ovariectomy-mediated deterioration of BMD, and morphometric characteristics of trabecular bone. Marrow fat fraction was decreased significantly with Scl-Ab to levels matching that of sham-operated controls and correlated positively with reductions in adipocyte mean diameter, percentage adipocyte volume per marrow volume, and adipocyte density. Taken together, early Scl-Ab treatment reverts marrow fat expansion seen in ovariectomized rabbits in addition to having a beneficial effect on bone mass and microstructural properties.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
- *Correspondence: Shaojun Li
| | - Bingcang Huang
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Bo Jiang
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Mingjun Gu
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Xiaodan Yang
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Ying Yin
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| |
Collapse
|
17
|
|
18
|
Whyte MP, Deepak Amalnath S, McAlister WH, Pedapati R, Muthupillai V, Duan S, Huskey M, Bijanki VN, Mumm S. Sclerosteosis: Report of type 1 or 2 in three Indian Tamil families and literature review. Bone 2018; 116:321-332. [PMID: 30077757 DOI: 10.1016/j.bone.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023]
Abstract
Sclerosteosis (SOST) refers to two extremely rare yet similar skeletal dysplasias featuring a diffusely radiodense skeleton together with congenital syndactyly. SOST1 is transmitted as an autosomal recessive (AR) trait and to date caused by ten homozygous loss-of-function mutations within the gene SOST that encodes the inhibitor of Wnt-mediated bone formation, sclerostin. SOST2 is transmitted as an autosomal dominant (AD) or AR trait and to date caused by one heterozygous or two homozygous loss-of-function mutation(s), respectively, within the gene LRP4 that encodes the sclerostin interaction protein, low-density lipoprotein receptor-related protein 4 (LRP4). Herein, we investigated two teenagers and one middle-aged man with SOST in three families living in the state of Tamil Nadu in southern India. Next generation sequencing of their genomic DNA using our high bone density gene panel revealed SOST1 in the teenagers caused by a unique homozygous nonsense SOST mutation (c.129C > G, p.Tyr43X) and SOST2 in the man caused by homozygosity for one of the two known homozygous missense LRP4 mutations (c.3508C > T, p.Arg1170Trp). He becomes the fourth individual and the first non-European recognized with SOST2. His clinical course was milder than the life-threatening SOST1 demonstrated by the teenagers who suffered blindness, deafness, and raised intracranial pressure, yet his congenital syndactyly was more striking by featuring bony fusion of digits. All three patients were from consanguineous families and heterozygosity for the SOST mutation was documented in the mothers of both teenagers. Thus, on the endogamous genetic background of Indian Tamils, SOST1 from sclerostin deficiency compared to SOST2 from LRP4 deactivation is a more severe and life-threatening disorder featuring complications due to osteosclerosis of especially the skull. In contrast, the syndactyly of SOST2 is particularly striking by involving bony fusion of some digits. Both the SOST and LRP4 mutations in this ethnic population likely reflect genetic founders.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - S Deepak Amalnath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Radhakrishna Pedapati
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - Vivekanandan Muthupillai
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Witcher PC, Miner SE, Horan DJ, Bullock WA, Lim KE, Kang KS, Adaniya AL, Ross RD, Loots GG, Robling AG. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018; 3:98673. [PMID: 29875318 DOI: 10.1172/jci.insight.98673] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.
Collapse
Affiliation(s)
- Phillip C Witcher
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara E Miner
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Physical Sciences & Engineering, Anderson University, Anderson, Indiana, USA
| | - Alison L Adaniya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
21
|
Baron R, Gori F. Targeting WNT signaling in the treatment of osteoporosis. Curr Opin Pharmacol 2018; 40:134-141. [PMID: 29753194 DOI: 10.1016/j.coph.2018.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a widespread chronic disease characterized by low bone density, altered microstructure and bone fragility, leading to low impact fractures in affected individuals. The discovery of a few mutations that cause extremely rare human diseases has identified the WNT signaling pathway as a candidate for therapeutic intervention aimed at increasing bone mass and strength. In particular, inhibition of sclerostin, a WNT antagonist secreted by osteocytes, has proven in clinical trials to be a very efficient osteo-anabolic approach. One year of monthly administration of antibodies to sclerostin rapidly decreases bone resorption and increases bone formation and bone density at all sites, decreasing markedly fracture risk in treated patients. Their effect is however limited in time and cardiovascular adverse events have been reported in one clinical trial.
Collapse
Affiliation(s)
- Roland Baron
- Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard School of Dental Medicine, Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Boston, MA, USA.
| | - Francesca Gori
- Harvard School of Dental Medicine, Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Boston, MA, USA
| |
Collapse
|
22
|
Sebastian A, Loots GG. Genetics of Sost/SOST in sclerosteosis and van Buchem disease animal models. Metabolism 2018; 80:38-47. [PMID: 29080811 DOI: 10.1016/j.metabol.2017.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
Abstract
Sclerosteosis and van Buchem disease (VBD) are two rare autosomal recessive disorders that results from osteoblast hyperactivity, in which progressive bone overgrowth leads to very dense bones, distortion of the face, and entrapment of cranial nerves. Sclerosteosis is caused by loss-of-function mutations in the SOST gene which encodes a secreted glycoprotein, sclerostin. VBD is caused by a noncoding deletion that removes a SOST-specific regulatory element in bone. In bone, SOST is expressed predominantly by osteocytes and sclerostin suppresses bone formation by inhibiting the canonical Wnt signaling pathway. Here we describe how human genetics studies in sclerosteosis and VBD patients, in combination with the generation of transgenic and knockout mice, has led to a better understanding of the role of sclerostin in bone metabolism.
Collapse
Affiliation(s)
- Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
23
|
Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized ε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7380389. [PMID: 29682553 PMCID: PMC5846386 DOI: 10.1155/2018/7380389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
Abstract
Current approaches of regenerative therapies constitute strategies for bone tissue reparation and engineering, especially in the context of genetical diseases with skeletal defects. Bone regeneration using electrospun nanofibers' implant has the following objectives: bone neoformation induction with rapid healing, reduced postoperative complications, and improvement of bone tissue quality. In vivo implantation of polycaprolactone (PCL) biomembrane functionalized with BMP-2/Ibuprofen in mouse maxillary defects was followed by bone neoformation kinetics evaluation using microcomputed tomography. Wild-Type (WT) and Tabby (Ta) mice were used to compare effects on a normal phenotype and on a mutant model of ectodermal dysplasia (ED). After 21 days, no effect on bone neoformation was observed in Ta treated lesion (4% neoformation compared to 13% in the control lesion). Between the 21st and the 30th days, the use of biomembrane functionalized with BMP-2/Ibuprofen in maxillary bone lesions allowed a significant increase in bone neoformation peaks (resp., +8% in mutant Ta and +13% in WT). Histological analyses revealed a neoformed bone with regular trabecular structure, areas of mineralized bone inside the membrane, and an improved neovascularization in the treated lesion with bifunctionalized membrane. In conclusion, PCL functionalized biomembrane promoted bone neoformation, this effect being modulated by the Ta bone phenotype responsible for an alteration of bone response.
Collapse
|
24
|
Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, Joro R, Nedeljkovic I, Zheng HF, Zhu K, Atalay M, Liu CT, Nethander M, Broer L, Porleifsson G, Mullin BH, Handelman SK, Nalls MA, Jessen LE, Heppe DH, Richards JB, Wang C, Chawes B, Schraut KE, Amin N, Wareham N, Karasik D, Van der Velde N, Ikram MA, Zemel BS, Zhou Y, Carlsson CJ, Liu Y, McGuigan FE, Boer CG, Bønnelykke K, Ralston SH, Robbins JA, Walsh JP, Zillikens MC, Langenberg C, Li-Gao R, Williams FM, Harris TB, Akesson K, Jackson RD, Sigurdsson G, den Heijer M, van der Eerden BC, van de Peppel J, Spector TD, Pennell C, Horta BL, Felix JF, Zhao JH, Wilson SG, de Mutsert R, Bisgaard H, Styrkársdóttir U, Jaddoe VW, Orwoll E, Lakka TA, Scott R, Grant SF, Lorentzon M, van Duijn CM, Wilson JF, Stefansson K, Psaty BM, Kiel DP, Ohlsson C, Ntzani E, van Wijnen AJ, Forgetta V, Ghanbari M, Logan JG, Williams GR, Bassett JD, Croucher PI, Evangelou E, Uitterlinden AG, Ackert-Bicknell CL, Tobias JH, Evans DM, Rivadeneira F. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet 2018; 102:88-102. [PMID: 29304378 DOI: 10.1016/j.ajhg.2017.12.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.
Collapse
|