1
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Sadhukhan S, Sethi S, Rajender S, Mithal A, Chattopadhyay N. Understanding the characteristics of idiopathic osteoporosis by a systematic review and meta-analysis. Endocrine 2023; 82:513-526. [PMID: 37733181 DOI: 10.1007/s12020-023-03505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE To understand the pathophysiology of idiopathic osteoporosis (IOP) better, we conducted a systematic review and meta-analysis of bone mineral density (BMD), hormones, and bone turnover markers (BTMs) between IOP patients and healthy controls. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an appropriate search query was created, and three databases, including PubMed, ScienceDirect, and Google Scholar, were searched for screening relevant original articles. Feasible information, both qualitative and quantitative, was extracted and used to conduct meta-analyses. Publication bias and heterogeneity among studies were evaluated using appropriate statistical tools. RESULTS A total of 21 studies were included in the meta-analysis. There was reduced BMD at the lumbar spine (LS) (pooled: SDM: -2.38, p-value: 0.0001), femoral neck (FN) (pooled: SDM: -1.75 p-value: 0.0001), total hip (TH) (pooled: SDM: -1.825, p-value: 0.0001) and distal radius (DR) (pooled: SDM of -0.476, p-value: 0.0001), of which LS was the most affected site. There was no significant change in BTMs compared with healthy controls. Total estradiol (SDM: -1.357, p-value: 0.003) was reduced, and parathyroid hormone (PTH) (SDM: 1.51, p-value: 0.03) and sex hormone-binding globulin (SHBG) (SDM: 1.454, p-value: 0.0001) were elevated in IOP patients compared with healthy controls. CONCLUSION Our meta-analysis, the first of its kind on IOP, defines it as showing BMD decline maximally at LS compared with healthy controls without any alterations in the BTMs. Further studies are required to understand gender differences and the significance of altered hormonal profiles in this condition.
Collapse
Affiliation(s)
- Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambrish Mithal
- Endocrinology & Diabetes, Max Super Speciality Hospital, Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Differential Expression of Dickkopf 1 and Periostin in Mouse Strains with High and Low Bone Mass. BIOLOGY 2022; 11:biology11121840. [PMID: 36552348 PMCID: PMC9775221 DOI: 10.3390/biology11121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
By expressing different genes and proteins that regulate osteoclast as well as osteoblast formation, osteocytes orchestrate bone metabolism. The aim of this project was the evaluation of the differences in the osteocytes’ secretory activity in the low bone mass mouse strain C57BL/6J and the high bone mass strain C3H/J. The femura of eight- and sixteen-week-old male C57BL/6J and C3H/J mice—six animals per group—were analyzed. Using immunohistochemistry, osteocytes expressing dickkopf 1, sclerostin, periostin, fibroblast growth factor 23 (FGF23), and osteoprotegerin were detected. By means of the OsteoMeasure-System, 92.173 osteocytes were counted. At the age of eight weeks, approximately twice as many cortical and trabecular osteocytes from the C57BL/6J mice compared to the C3H/J mice expressed dickkopf 1 (p < 0.005). The number of cortical osteocytes expressing sclerostin was also higher in the C57BL/6J mice (p < 0.05). In contrast, the cortical and trabecular osteocytes expressing periostin were twice as high in the C3H/J mice (p < 0.005). The dickkopf 1 expressing osteocytes of the C57BL/6J mice decreased with age and showed a strain-specific difference only in cortical bone by 16 weeks of age (p < 0.05). In the C3H/J mice, the amount of osteocytes expressing periostin tended to increase with age. Thus, strain-related differences were maintained in 16-week-old rodents (p < 0.005). No strain-specific differences in the expression of FGF23 or osteoprotegerin in the cortical compartment could be detected. This experimental study showed that the osteocytes’ protein expression reflects differences in bone characteristics and strain-related differences during skeletal maturation. Besides the osteocytes’ expression of sclerostin, their expression of dickkopf 1 and periostin seems to be important for bone properties as well.
Collapse
|
5
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
6
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
7
|
Rozenberg S, Bruyère O, Bergmann P, Cavalier E, Gielen E, Goemaere S, Kaufman JM, Lapauw B, Laurent MR, De Schepper J, Body JJ. How to manage osteoporosis before the age of 50. Maturitas 2020; 138:14-25. [PMID: 32631584 DOI: 10.1016/j.maturitas.2020.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
This narrative review discusses several aspects of the management of osteoporosis in patients under 50 years of age. Peak bone mass is genetically determined but can also be affected by lifestyle factors. Puberty constitutes a vulnerable period. Idiopathic osteoporosis is a rare, heterogeneous condition in young adults due in part to decreased osteoblast function and deficient bone acquisition. There are no evidence-based treatment recommendations. Drugs use can be proposed to elderly patients at very high risk. Diagnosis and management of osteoporosis in the young can be challenging, in particular in the absence of a manifest secondary cause. Young adults with low bone mineral density (BMD) do not necessarily have osteoporosis and it is important to avoid unnecessary treatment. A determination of BMD is recommended for premenopausal women who have had a fragility fracture or who have secondary causes of osteoporosis: secondary causes of excessive bone loss need to be excluded and treatment should be targeted. Adequate calcium, vitamin D, and a healthy lifestyle should be recommended. In the absence of fractures, conservative management is generally sufficient, but in rare cases, such as chemotherapy-induced osteoporosis, antiresorptive medication can be used. Osteoporosis in young men is most often of secondary origin and hypogonadism is a major cause; testosterone replacement therapy will improve BMD in these patients. Diabetes is characterized by major alterations in bone quality, implying that medical therapy should be started sooner than for other causes of osteoporosis. Primary hyperparathyroidism, hyperthyroidism, Cushing's syndrome and growth hormone deficiency or excess affect cortical bone more often than trabecular bone.
Collapse
Affiliation(s)
- S Rozenberg
- Department of Gynaecology-Obstetrics, CHU St Pierre, Université Libre de Bruxelles, Brussels, Belgium.
| | - O Bruyère
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium.
| | - P Bergmann
- Honorary Consulent, Nuclear Medicine CHU Brugmann CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - E Cavalier
- Department of Clinical Chemistry, UnilabLg, CIRM, University of Liège, CHU de Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | - E Gielen
- Gerontology & Geriatrics, Department of Public Health and Primary Care, KU Leuven & Department of Geriatric Medicine, UZ Leuven, Leuven, Belgium
| | - S Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - J M Kaufman
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - B Lapauw
- Department of Endocrinology Ghent University Hospital, Ghent, Belgium
| | - M R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Imelda Hospital, Bonheiden, Belgium
| | - J De Schepper
- Department of Pediatrics, UZ Brussel, Brussels, Belgium, Belgium
| | - J J Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Wakolbinger R, Muschitz C, Wallwitz J, Bodlaj G, Feichtinger X, Schanda JE, Resch H, Baierl A, Pietschmann P. Serum levels of sclerostin reflect altered bone microarchitecture in patients with hepatic cirrhosis. Wien Klin Wochenschr 2020; 132:19-26. [PMID: 31912287 PMCID: PMC6978289 DOI: 10.1007/s00508-019-01595-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Background Patients with hepatic cirrhosis are at increased risk of bone loss. Recent work on areal bone mineral density has reported contradictory findings. As the assessment of bone microarchitecture is complex, a search was made for correlations with new serum markers of bone turnover. Current data on serum sclerostin levels in patients with increased fracture risk are divergent and to date only one study has examined patients with hepatic cirrhosis. Therefore, the aim of this study was to evaluate serum sclerostin levels and to test for correlations with microarchitecture. Methods This study was performed in 32 patients with recently diagnosed hepatic cirrhosis and 32 controls. The parameters of bone microarchitecture were assessed by high-resolution peripheral quantitative computed tomography. Sclerostin was detected via a new ELISA that detects the active receptor interaction site at loop 2 of the sclerostin core region. Results Sclerostin levels were slightly, but not significantly lower in the patient group, compared to controls. In contrast, patients with alcoholic liver cirrhosis had significantly lower levels than the controls. A significant correlation with areal bone mineral density (BMD) and trabecular microarchitecture was observed in the patient group. However, there was hardly any correlation between sclerostin and bone microarchitecture in the controls. Conclusion In hepatic cirrhosis, sclerostin is related to altered bone microarchitecture and lower areal BMD. In alcoholic liver disease, low sclerostin concentrations were seen.
Collapse
Affiliation(s)
- Robert Wakolbinger
- Department of Physical and Rehabilitation Medicine, Danube Hospital - Social Medical Center East, Academic Teaching Hospital of the Medical University of Vienna, Langobardenstraße 122, 1220, Vienna, Austria
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
| | - Christian Muschitz
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria.
| | - Jacqueline Wallwitz
- The Antibody Lab, Divischgasse 4, 1210, Vienna, Austria
- Division of Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Gerd Bodlaj
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
| | - Xaver Feichtinger
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
- AUVA Trauma Center Meidling, Kundratstraße 37, 1120, Vienna, Austria
| | - Jakob E Schanda
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
- AUVA Trauma Center Meidling, Kundratstraße 37, 1120, Vienna, Austria
| | - Heinrich Resch
- Medical Department II - The VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
- Karl Landsteiner Institute for Gastroenterology and Rheumatology, Stumpergasse 13, 1060, Vienna, Austria
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
9
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
10
|
Feng L, Wang Y, Zhou J, Tian B, Xia B. Screening of differentially expressed genes in male idiopathic osteoporosis via RNA sequencing. Mol Med Rep 2018; 18:67-76. [PMID: 29750314 PMCID: PMC6059696 DOI: 10.3892/mmr.2018.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
As a type of osteoporosis (OP), male idiopathic OP (MIO) is a bone disorder that occurs in young males and is a public health problem worldwide. However, the detailed pathogenesis of MIO remains to be elucidated. In the present study, blood samples of patients with MIO, senile OP, postmenopausal OP and normal controls (NCs) were obtained for RNA sequencing. Compared with the NC group, differentially expressed genes (DEGs) in the three types of OP were identified. DEGs that were common among the three types of OP and the DEGs that were unique to patients with MIO were determined. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted. MIO‑specific and OP‑specific protein‑protein interaction (PPI) networks were constructed. Compared with NCs, a total of 519, 368 and 1,472 DEGs were identified in samples from MIO, senile OP and postmenopausal OP, respectively. Tetraspanin 5 (TSPAN5) and α‑synuclein (SNCA) were unique DEGs in MIO that were not identified in the other two types of OP compared with NCs. Furthermore, the expression of carbonic anhydrase 1 (CA1) and S100 calcium‑binding protein P (S100P) in MIO was significantly different compared with senile OP, postmenopausal OP and NC samples. 'MAPK signaling pathway', 'type I diabetes mellitus' and 'hematopoietic cell lineage' were among significantly enriched pathways of DEGs in MIO. SNCA and CDC‑like kinase 1 were the hub genes in the MIO‑specific PPI network. In conclusion, the mitogen‑activated protein kinase signaling and type I diabetes mellitus pathways may be involved in bone formation; SNCA and TSPAN5 may be associated with bone resorption. These two pathways and two genes may serve a role in MIO. CA1 and S100P may regulate the process of MIO by modulation of calcification and dysregulation of calcium binding. These findings may have provided an experimental basis for elucidating the underlying mechanisms and developing potential diagnostic biomarkers of MIO.
Collapse
Affiliation(s)
- Li Feng
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yan Wang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jing Zhou
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Baofang Tian
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bo Xia
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
11
|
Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci Rep 2018; 8:4867. [PMID: 29559644 PMCID: PMC5861059 DOI: 10.1038/s41598-018-22844-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022] Open
Abstract
The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p < 0.05). Three miRNAs, namely, miR-29b-3p, miR-324-3p, and miR-550a-3p showed significant correlations to histomorphometric parameters of bone formation as well as microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.
Collapse
Affiliation(s)
- Xaver Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria.,AUVA Trauma Center Meidling, Vienna, Austria
| | - Christian Muschitz
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria Department of Traumatology, Medical University of Vienna, Vienna, Austria.,Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | - Astrid Fahrleitner-Pammer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Heinrich Resch
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria.,Medical Faculty of Bone Diseases, Sigmund Freud University, Vienna, Austria
| | | | | | - Rainer Dormann
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Fabian Plachel
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- TAmiRNA GmbH, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | - Roland Kocijan
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Serum Osteocalcin and Testosterone Concentrations in Adult Males with or without Primary Osteoporosis: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9892048. [PMID: 28831400 PMCID: PMC5558632 DOI: 10.1155/2017/9892048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 01/01/2023]
Abstract
Osteocalcin (Ocn) and testosterone play important roles in male skeleton. However, the concentrations of serum osteocalcin and testosterone have never been systematically compared between populations with and without primary male osteoporosis, a common skeletal disorder in adult males. We searched the PubMed, Embase, and Cochrane Library for relevant studies. A meta-analysis was performed to compare the serum osteocalcin and testosterone concentrations between primary osteoporotic males and age-matched nonosteoporotic (non-OP) males. Five case-control studies with 300 adult males were included. We found no significant difference between cases and controls in serum total osteocalcin (TOcn) [95% confidence interval (CI): −1.25, 1.31; p = 0.96] and total testosterone (TT) concentrations [95% CI: −0.88, 4.22; p = 0.20]. The level of evidence of this carefully performed meta-analysis is 3a according to Oxford (UK) CEBM Levels of Evidence. Future well-designed studies with larger sample size and better standardization of Ocn assay are awaited to confirm and update our current findings.
Collapse
|
13
|
Reppe S, Datta HK, Gautvik KM. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease. Bone 2017; 101:88-95. [PMID: 28450214 DOI: 10.1016/j.bone.2017.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/13/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease.
Collapse
Affiliation(s)
- Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway; Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, Oslo, Norway.
| | - Harish K Datta
- Pathology Department, Biochemistry Section, James Cook University Hospital, Middlesbrough, UK; Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kaare M Gautvik
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, Oslo, Norway; University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| |
Collapse
|
14
|
Patsch JM, Rasul S, Huber FA, Leitner K, Thomas A, Kocijan R, Boutroy S, Weber M, Resch H, Kainberger F, Schüller-Weidekamm C, Kautzky-Willer A. Similarities in trabecular hypertrophy with site-specific differences in cortical morphology between men and women with type 2 diabetes mellitus. PLoS One 2017; 12:e0174664. [PMID: 28384358 PMCID: PMC5383225 DOI: 10.1371/journal.pone.0174664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/13/2017] [Indexed: 01/13/2023] Open
Abstract
The goal of our study was to investigate interactions between sex and type 2 diabetes mellitus (T2DM) with regard to morphology of the peripheral skeleton. We recruited 85 subjects (mean age, 57±11.4 years): women with and without T2DM (n = 17; n = 16); and men with and without T2DM (n = 26; n = 26). All patients underwent high-resolution, peripheral, quantitative, computed tomography (HR-pQCT) imaging of the ultradistal radius (UR) and tibia (UT). Local bone geometry, bone mineral density (BMD), and bone microarchitecture were obtained by quantitative analysis of HR-pQCT images. To reduce the amount of data and avoid multi-collinearity, we performed a factor-analysis of HR-pQCT parameters. Based on factor weight, trabecular BMD, trabecular number, cortical thickness, cortical BMD, and total area were chosen for post-hoc analyses. At the radius and tibia, diabetic men and women exhibited trabecular hypertrophy, with a significant positive main effect of T2DM on trabecular number. At the radius, cortical thickness was higher in diabetic subjects (+20.1%, p = 0.003). Interestingly, there was a statistical trend that suggested attenuation of tibial cortical hypertrophy in diabetic men (cortical thickness, pinteraction = 0.052). Moreover, we found an expected sexual dichotomy, with higher trabecular BMD, Tb.N, cortical BMD, Ct.Th, and total area in men than in women (p≤ 0.003) at both measurement sites. Our results suggest that skeletal hypertrophy associated with T2DM is present in men and women, but appears attenuated at the tibial cortex in men.
Collapse
Affiliation(s)
- Janina M. Patsch
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian A. Huber
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Karoline Leitner
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
| | - Anita Thomas
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
| | - Roland Kocijan
- Department of Internal Medicine II, Karl Landsteiner Institute for Rheumatology and Gastroenterology, St. Vincent Hospital Vienna, Vienna, Austria
| | | | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Heinrich Resch
- Department of Internal Medicine II, Karl Landsteiner Institute for Rheumatology and Gastroenterology, St. Vincent Hospital Vienna, Vienna, Austria
| | - Franz Kainberger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Claudia Schüller-Weidekamm
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab 2016; 101:4125-4134. [PMID: 27552543 DOI: 10.1210/jc.2016-2365] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Established bone turnover markers do not reflect fracture risk in idiopathic male and premenopausal osteoporosis and the role of microRNAs (miRNAs) in these patients is currently unclear. miRNAs are a class of small non-coding RNAs that regulate gene expression and bone tissue homeostasis. They are considered a new class of endocrine regulators with promising potential as biomarkers. OBJECTIVE Evaluation of circulating miRNA signatures in male and female subjects with idiopathic and postmenopausal osteoporotic low-traumatic fractures. DESIGN, SETTING, AND PATIENTS This was a case-control study of cross-sectional design of 36 patients with prevalent low-traumatic fractures and 39 control subjects Main Outcome Measures: One hundred eighty-seven miRNAs were quantified in serum by qPCR, compared between groups and correlated with established bone turnover markers. RESULTS Significant differences in serum levels of circulating miRNAs were identified in all three subgroups (46 in premenopausal, 52 in postmenopausal, 55 in male). A set of 19 miRNAs was consistently regulated in all three subgroups. Eight miRNAs [miR-152-3p, miR-30e-5p, miR-140-5p, miR-324-3p, miR-19b-3p, miR-335-5p, miR-19a-3p, miR-550a-3p] were excellent discriminators of patients with low-traumatic fractures, regardless of age and sex, with area under the curve values > 0.9. The 11 remaining miRNAs showed area under the curve values between 0.81 and 0.89. Correlation analysis identified significant correlations between miR-29b-3p and P1NP, and miR-365-5p and iPTH, TRAP5b, P1NP and Osteocalcin, as well as BMDL1-L4 and miR-19b-3p, miR-324-3p, miR-532-5p, and miR-93-5p. CONCLUSIONS Specific serum miRNA profiles are strongly related to bone pathologies. Therefore miRNAs might be directly linked to bone tissue homeostasis. In particular, miR-29b-3p has previously been reported as regulator of osteogenic differentiation and could serve as a novel marker of bone turnover in osteoporotic patients as a member of a miRNA signature.
Collapse
Affiliation(s)
- Roland Kocijan
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Christian Muschitz
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Elisabeth Geiger
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Susanna Skalicky
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Andreas Baierl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Rainer Dormann
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Fabian Plachel
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Xaver Feichtinger
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Patrick Heimel
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Astrid Fahrleitner-Pammer
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Johannes Grillari
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Heinz Redl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Heinrich Resch
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Matthias Hackl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| |
Collapse
|
16
|
Janić J, Mijović Ž, Mihailović D, Živković N, Rajković J, Najman S. OPTICAL DENSITY OF CORTICAL BONE MATRIX IS DIMINISHED IN EXPERIMENTALLY INDUCED OSTEOPOROSIS. ACTA MEDICA MEDIANAE 2016. [DOI: 10.5633/amm.2016.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Molecular mechanisms of osteoporotic hip fractures in elderly women. Exp Gerontol 2015; 73:49-58. [PMID: 26608808 DOI: 10.1016/j.exger.2015.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/24/2022]
Abstract
A common manifestation of age-related bone loss and resultant osteoporosis are fractures of the hip. Age-related osteoporosis is thought to be determined by a number of intrinsic factors including genetics, hormonal changes, changes in levels of oxidative stress, or an inflammatory status associated with the aging process. The aim of this study was to investigate gene expression and bone architecture in bone samples derived from elderly osteoporotic women with hip fractures (OP) in comparison to bone samples from age matched women with osteoarthritis of the hip (OA). Femoral heads and adjacent neck tissue were collected from 10 women with low-trauma hip fractures (mean age 83±6) and consecutive surgical hip replacement. Ten bone samples from patients undergoing hip replacement due to osteoarthritis (mean age 80±5) served as controls. One half of each bone sample was subjected to gene expression analysis. The second half of each bone sample was analyzed by microcomputed tomography. From each half, samples from four different regions, the central and subcortical region of the femoral head and neck, were analyzed. We could show a significantly decreased expression of the osteoblast related genes RUNX2, Osterix, Sclerostin, WNT10B, and Osteocalcin, a significantly increased ratio of RANKL to Osteoprotegerin, and a significantly increased expression of the enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase GPX3, and of the inflammatory cytokine IL6 in bone samples from hip fracture patients compared to controls. Major microstructural changes in OP bone were seen in the neck and were characterized by a significant decrease of bone volume, trabecular number, and connectivity density and a significant increase of trabecular separation. In conclusion, our data give evidence for a decreased expression of osteoblast related genes and increased expression of osteoclast related genes. Furthermore, increased expression of SOD2 and GPX3 suggest increased antioxidative activity in bone samples from elderly osteoporotic women with hip fractures.
Collapse
|
18
|
Muschitz C, Kocijan R, Pahr D, Patsch JM, Amrein K, Misof BM, Kaider A, Resch H, Pietschmann P. Ibandronate increases sclerostin levels and bone strength in male patients with idiopathic osteoporosis. Calcif Tissue Int 2015; 96:477-89. [PMID: 25911186 DOI: 10.1007/s00223-015-0003-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/11/2015] [Indexed: 01/24/2023]
Abstract
The pathomechanism of male idiopathic osteoporosis (MIO) differs from postmenopausal osteoporosis with regard to alterations in osteoblast activity. We evaluated intravenous ibandronate (IBN) in 25 MIO patients with fragility fractures in a prospective, monocentric, single-arm, and open-label study for 24 months. The impact and changes of sclerostin (Scl), Dickkopf-1 (DKK-1), CTX, and PINP were examined. Additionally, volumetric cortical, trabecular and areal bone mineral density (BMD), trabecular bone score (TBS), and finite element analyses (FEA) were evaluated. Compared to baseline, median Scl levels were increased after 1 month (Δ 121%, p < 0.0001) and remained elevated for 12 months. DKK-1 decreased (p < 0.001) to a lesser extent until month 9 with values comparable to baseline at study endpoint. Early changes (baseline-month 1) of Scl negatively correlated with early changes of DKK-1 (-0.72), CTX (-0.82), and PINP (-0.55; p < 0.005 for all). The overall changes over the 24 months study period of Scl negatively correlated with decreased CTX (-0.32) and DKK-1 levels (-0.57, p < 0.0001 for both); CTX and PINP changes positively correlated at each time point (p < 0.001). Volumetric hip BMD increased by 12 and 18%, respectively (p < 0.0001 for both). Cross-sectional moment of inertia and section modulus for total hip significantly improved (p < 0.05 for all). Areal BMD at total hip, spine, and TBS increased. FEA displayed an increase in bone strength both in the hip (17%) and vertebrae (13%, all p < 0.0001) at anatomical sites susceptible for fragility fracture. IBN increases Scl and improves cortical and trabecular bone strength with early and ongoing vigorous suppression of bone resorption.
Collapse
Affiliation(s)
- Christian Muschitz
- Medical Department II, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Association of bone loss with the upregulation of survival-related genes and concomitant downregulation of Mammalian target of rapamycin and osteoblast differentiation-related genes in the peripheral blood of late postmenopausal osteoporotic women. J Osteoporos 2015; 2015:802694. [PMID: 25759764 PMCID: PMC4338391 DOI: 10.1155/2015/802694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
We aimed to identify bone related markers in the peripheral blood of osteoporotic (OP) patients that pointed toward molecular mechanisms underlying late postmenopausal bone loss. Whole blood from 22 late postmenopausal OP patients and 26 healthy subjects was examined. Bone mineral density (BMD) was measured by DXA. Protein levels of p70-S6K, p21, MMP-9, TGFβ1, and caspase-3 were quantified by ELISA. Gene expression was measured using real-time RT-PCR. OP registered by low BMD indices in late postmenopausal patients was associated with a significant upregulation of autophagy protein ULK1, cyclin-dependent kinase inhibitor p21, and metalloproteinase MMP-9 gene expression in the blood compared to the healthy controls and in a significant downregulation of mTOR (mammalian target of rapamycin), RUNX2, and ALPL gene expression, while expression of cathepsin K, caspase-3, transforming growth factor (TGF) β1, interleukin- (IL-) 1β, and tumor necrosis factor α (TNFα) was not significantly affected. We also observed a positive correlation between TGFβ1 and RUNX2 expression and BMD at femoral sites in these patients. Therefore, bone loss in late postmenopausal OP patients is associated with a significant upregulation of survival-related genes (ULK1 and p21) and MMP-9, as well as the downregulation of mTOR and osteoblast differentiation-related genes (RUNX2 and ALPL) in the peripheral blood compared to the healthy controls.
Collapse
|
20
|
Senck S, Plank B, Kastner J, Ramadani F, Trieb K, Hofstaetter SG. [Visualization of local cortical defects in Charcot foot using microcomputed tomography]. DER ORTHOPADE 2014; 44:8-13. [PMID: 25476840 DOI: 10.1007/s00132-014-3053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the pathogenesis of diabetic neuropathic osteoarthropathy (Charcot's foot) fractures cause chronic destruction of soft tissue and bone structure. To improve an early diagnosis of Charcot foot, modern diagnostic imaging is mainly based on magnetic resonance imaging (MRI), for example in relation to the detection of cortical bone fractures. OBJECTIVES In this study we investigated the cortical microstructure in cases of Charcot foot with respect to fractures and porosity in order to visualize local cortical defects. This may substantiate recent efforts in a reclassification based on MRI. MATERIAL AND METHODS Using microcomputed tomography (microCT) we investigated bone parameters, such as cortical thickness and porosity in order to quantify the local metatarsal microstructure in cases of Charcot foot. RESULTS All bone samples showed a high degree of cortical porosity including pores that perforated the cortical bone. The data suggest that areas with reduced cortical thickness coincide with large cortical pores that may serve as initial points for fractures. Whether the detected microfractures are physiological or artefacts of preparation could not be determined. CONCLUSION By means of microCT we were able to visualize and quantify the extent of cortical porosity for the first time in high resolution. The data suggest that both cortical fractures and cortical porosity play an important role in the pathogenesis in cases of Charcot foot.
Collapse
Affiliation(s)
- S Senck
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600, Wels, Österreich,
| | | | | | | | | | | |
Collapse
|
21
|
Föger-Samwald U, Patsch JM, Schamall D, Alaghebandan A, Deutschmann J, Salem S, Mousavi M, Pietschmann P. Molecular evidence of osteoblast dysfunction in elderly men with osteoporotic hip fractures. Exp Gerontol 2014; 57:114-21. [PMID: 24862290 DOI: 10.1016/j.exger.2014.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Osteoporosis is extremely frequent in post-menopausal women; nevertheless, osteoporosis in men is also a severe and frequently occurring but often underestimated disease. Increasing evidence links bone loss in male idiopathic osteoporosis and age related osteoporosis to osteoblast dysfunction rather than increased osteoclast activity as seen in postmenopausal osteoporosis. The aim of this study was to investigate gene expression of osteoblast related genes and of bone architecture in bone samples derived from elderly osteoporotic men with hip fractures (OP) in comparison to bone samples from age matched men with osteoarthritis of the hip (OA). Femoral heads and adjacent neck tissue were collected from 12 men with low-trauma hip fractures and consecutive surgical hip replacement. Bone samples of age matched patients undergoing hip replacement due to osteoarthritis served as controls. One half of the bone samples was subjected to RNA extraction, reverse transcription, and real-time polymerase chain reactions. The second half of the bone samples was analyzed by static histomorphometry. From each half samples from four different regions, the central and subcortical region of the femoral head and neck, were analyzed. OP patients displayed a significantly decreased RUNX2, Osterix and SOST expression compared to OA patients. Major microstructural changes in OP bone were seen in the subcortical region of the neck and were characterized by a significant decrease of bone volume, and a significant increase of trabecular separation. In conclusion, decreased local gene expression of RUNX2 and Osterix in men with hip fractures strongly supports the concept of osteoblast dysfunction in male osteoporosis. Major microstructural changes in the trabecular structure associated with osteoporotic hip fractures in men are localized in the subcortical region of the femoral neck.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Janina M Patsch
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; Department of Radiodiagnostics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Doris Schamall
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Afarin Alaghebandan
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Julia Deutschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Sylvia Salem
- Department of Orthopaedics, St. Vincent Hospital Vienna, Stumpergasse 13, A-1060 Vienna, Austria.
| | - Mehdi Mousavi
- Department of Trauma Surgery, Danube Hospital, Langobardenstrasse 122, A-1220 Vienna, Austria.
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
22
|
Fujita K, Roforth MM, Atkinson EJ, Peterson JM, Drake MT, McCready LK, Farr JN, Monroe DG, Khosla S. Isolation and characterization of human osteoblasts from needle biopsies without in vitro culture. Osteoporos Int 2014; 25:887-95. [PMID: 24114401 PMCID: PMC4216562 DOI: 10.1007/s00198-013-2529-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
SUMMARY We isolate and characterize osteoblasts from humans without in vitro culture. These techniques should be broadly applicable to studying the pathogenesis of osteoporosis and other bone disorders. INTRODUCTION There is currently no data regarding the expression of specific genes or pathways in human osteoblasts that have not been subjected to extensive in vitro culture. Thus, we developed methods to rapidly isolate progressively enriched osteoblast populations from humans and characterized these cells. METHODS Needle bone biopsies of the posterior iliac crest were subjected to sequential collagenase digests. The cells from the second digest were stained with an alkaline phosphatase (AP) antibody, and the AP+ cells were isolated using magnetic cell sorting. RESULTS Relative to AP- cells, the AP+ cells contained virtually all of the mineralizing cells and were enriched for key osteoblast marker genes. The AP+ cells were further purified by depletion of cells expressing CD45, CD34, or CD31 (AP+/CD45/34/31- cells), which represented a highly enriched human osteoblast population devoid of hematopoietic/endothelial cells. These cells expressed osteoblast marker genes but very low to undetectable levels of SOST. We next used high-throughput RNA sequencing to compare the transcriptome of the AP+/CD45/34/31- cells to human fibroblasts and identified genes and pathways expressed only in human osteoblasts in vivo, but not in fibroblasts, including 448 genes unique to human osteoblasts. CONCLUSIONS We provide a detailed characterization of highly enriched human osteoblast populations without in vitro culture. These techniques should be broadly applicable to studying the pathogenesis of osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- K. Fujita
- College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - M. M. Roforth
- College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - M. T. Drake
- College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - J. N. Farr
- College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - D. G. Monroe
- College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - S. Khosla
- College of Medicine, Mayo Clinic, Rochester, MN, USA
- Endocrine Research Unit and Kogod Center on Aging, Mayo Clinic, Guggenheim 7–11, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Misof BM, Patsch JM, Roschger P, Muschitz C, Gamsjaeger S, Paschalis EP, Prokop E, Klaushofer K, Pietschmann P, Resch H. Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res 2014; 29:440-9. [PMID: 23832525 DOI: 10.1002/jbmr.2035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
The spectrum of therapeutic options and the amount of clinical trials for male osteoporosis (mOP) is lower than those for postmenopausal osteoporosis. Therefore, we examined the effects of 24 months of ibandronate (IBN) treatment (3 mg/3 mL intravenously every 3 months) on bone material quality in 19 subjects with mOP within an open-label, single-center, prospective phase III study (Eudract number 2006-006692-20). Patients (median age [25th, 75th percentiles] 53.0 [44.5; 57.0] years) were included if they had low bone mineral density (BMD) and/or at least one low trauma fracture and no secondary cause of osteoporosis. The primary endpoint was to evaluate IBN effects on cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) based on quantitative backscattered electron imaging (qBEI) of paired transiliacal bone biopsies (baseline, 24 months). Secondary endpoints included changes in areal bone mineral density (BMD by dual-energy X-ray absorptiometry [DXA]) and serum markers of bone turnover including type I collagen peptides CrossLaps (CTX), procollagen type 1 amino-terminal propeptide (P1NP), and osteocalcin (OC). At baseline, cancellous bone matrix mineralization from mOP was lower than published reference data (mean degree of mineralization Cn.CaMean -1.8%, p < 0.01). IBN treatment increased calcium concentrations versus baseline (Cn.CaMean +2.4%, Ct.CaMean, +3.0% both p < 0.01), and reduced heterogeneity of mineralization (Cn.CaWidth -14%, p = 0.044; Ct.CaWidth, -16%, p = 0.001), leading to cancellous BMDD within normal range. IBN treatment was associated with a decrease in porosity of mineralized cortical tissue (-25%, p = 0.01); increases in BMD at the lumbar spine, the femoral neck, and the total hip (+3.3%, +1.9%, and +5.6%, respectively, p ≤ 0.01); and reductions in CTX (-37.5%), P1NP (-44.4%), and OC (-36.3%, all p < 0.01). Our BMDD findings are in line with the reduction of bone turnover markers and the increase in BMD by IBN in our patients and suggest that the latter mainly reflects the increase in matrix mineralization and the reduction of cortical porosity in this cohort with mOP.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Over the last decade, the increasingly significant problem of osteoporosis in men has begun to receive much more attention than in the past. In particular, recent observations from large scale population studies in males led to an advance in the understanding of morphologic basis of growth, maintenance and loss of bone in men, as well as new insights about the pathophysiology and treatment of this disorder. While fracture risk consistently increases after age 65 in men (with up to 50 % of cases due to secondary etiologies), osteoporosis and fractures may also occur in young or middle aged males in the absence of an identifiable etiology. For this category (so called idiopathic osteoporosis), there are still major gaps in knowledge, particularly concerning the etiology and the clinical management. This article provides a summary of recent developments in the acquisition and maintenance of bone strength in men, as well as new insights about the pathogenesis, diagnosis, and treatment of idiopathic osteoporosis.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci, 53100, Siena, Italy,
| | | |
Collapse
|
25
|
Giner M, Montoya MJ, Vázquez MA, Miranda C, Pérez-Cano R. Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord 2013; 14:41. [PMID: 23351916 PMCID: PMC3584899 DOI: 10.1186/1471-2474-14-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
Background Osteoporosis is a metabolic disorder characterized by a reduction in bone mass and deterioration in the microarchitectural structure of the bone, leading to a higher risk for spontaneous and fragility fractures. The main aim was to study the differences between human bone from osteoporotic and osteoarthritic patients about gene expression (osteogenesis and apoptosis), bone mineral density, microstructural and biomechanic parameters. Methods We analyzed data from 12 subjects: 6 with osteoporotic hip fracture (OP) and 6 with hip osteoarthritis (OA), as the control group. All subjects underwent medical history, analytical determinations, densitometry, histomorphometric and biochemical study. The expression of 86 genes of osteogenesis and 86 genes of apoptosis was studied in pool of bone samples from patients with OP and OA by PCR array. Results We observed that most of the genes of apoptosis and osteogenesis show a decrease in gene expression in the osteoporotic group in comparison with the osteoarthritic group. The histomorphometric study shows a lower bone quality in the group of patients with hip fractures compared to the osteoarthritic group. Conclusions The bone tissue of osteoporotic fracture patients is more fragile than the bone of OA patients. Our results showed an osteoporotic bone with a lower capacities for differentiation and osteoblastic activity as well as a lower rate of apoptosis than osteoarthritic bone. These results are related with structural and biochemical parameters.
Collapse
Affiliation(s)
- Mercè Giner
- Bone Metabolism Unit, Internal Medicine, Virgen Macarena University Hospital, Avda, Dr, Fedriani s/n, 41009, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
26
|
Ostertag A, Collet C, Chappard C, Fernandez S, Vicaut E, Cohen-Solal M, de Vernejoul MC. A case-control study of fractures in men with idiopathic osteoporosis: fractures are associated with older age and low cortical bone density. Bone 2013; 52:48-55. [PMID: 23010106 DOI: 10.1016/j.bone.2012.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/05/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To determine biochemical, radiological and micro-architectural bone factors related to fragility fractures in idiopathic male osteoporosis (IMO) patients. IMO is a rare disorder characterized by low areal bone mineral density (aBMD) (Z-score<-2) occurring in men after excluding secondary causes of low BMD. METHODS We conducted a case-control study in 31 patients with fragility fracture (IMO F+) that had occurred after the age of 40 years and 37 without fracture (IMO F-). We first compared IMO group to 40 age-matched disease-free men. We measured aBMD and bone micro-architectural indices at distal radius and tibia sites with a HR-pQCT scan (XtremeCT) using standard and extended cortical analysis. Urine and blood samples were collected in order to determine the levels of bone-turnover markers and the potential determinant of bone fragility. Models of analysis of covariance, including age, height and weight as adjustment factors, were used to compare the groups. RESULTS Compared to their controls, IMO patients showed marked disturbance of their micro-architectural parameters at tibia and radius affecting both trabecular and cortical parameters. IMO F+ subjects were significantly older than IMO F- subjects (58 ± 8 vs. 53 ± 9 yrs, p=0.01). BMD Z-score at the total-hip was significantly lower in IMO F+ (-1.3 ± 0.5 vs. -0.9 ± 0.8 g/cm(2), p=0.01). After adjustment, trabecular micro-architectural parameters, biochemical markers and hormonal parameters were not different in the 2 groups. At distal tibia, cortical v-BMD was significantly lower in IMO F+ patients (799 ± 73 vs. 858 ± 60 mg/cm(3), p=0.03), while cortical thickness was not different. CONCLUSION Our results show that patients with IMO display a marked disturbance of trabecular and cortical bone micro-architecture, and that age and low cortical density are determinants of the fracture occurrence.
Collapse
Affiliation(s)
- Agnès Ostertag
- INSERM U606 and Univ Paris Diderot, Sorbonne Paris Cité, Bone and Joint Laboratory, 75010 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Herrera A, Lobo-Escolar A, Mateo J, Gil J, Ibarz E, Gracia L. Male osteoporosis: A review. World J Orthop 2012; 3:223-34. [PMID: 23362466 PMCID: PMC3557324 DOI: 10.5312/wjo.v3.i12.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis in men is a heterogeneous disease that has received little attention. However, one third of worldwide hip fractures occur in the male population. This problem is more prevalent in people over 70 years of age. The etiology can be idiopathic or secondary to hypogonadism, vitamin D deficiency and inadequate calcium intake, hormonal treatments for prostate cancer, use of toxic and every disease or drug use that alters bone metabolism.Risk factors such as a previous history of fragility fracture should be assessed for the diagnosis. However, risk factors in men are very heterogeneous. There are significant differences in the pharmacological treatment of osteoporosis between men and women fundamentally due to the level of evidence in published trials supporting each treatment. New treatments will offer new therapeutic prospects. The goal of this work is a revision of the present status knowledge about male osteoporosis.
Collapse
|
28
|
Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K. Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 2012; 27:2551-61. [PMID: 22777919 PMCID: PMC3502637 DOI: 10.1002/jbmr.1699] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content, and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman microspectroscopy and Fourier transform infrared microspectroscopy (FTIRM) techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n = 45), or idiopathic low BMD (Z-score ≤ -2.0 at spine and/or hip) but no fractures (ILBMD, n = 19), and healthy controls (CONTROL, n = 38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both the average degree of mineralization of cancellous bone [Cn.Ca(Mean) ] and mode calcium concentration [Cn.Ca(Peak) ] are 1.4% lower) and in ILBMD (both are 1.6% lower, p < 0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for cancellous mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman microspectroscopy and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls. In particular, the altered collagen properties at sites of active bone formation support the hypothesis that affected women have osteoblast dysfunction that may play a role in bone fragility.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risk (AUVA) Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mödder UI, Roforth MM, Nicks KM, Peterson JM, McCready LK, Monroe DG, Khosla S. Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection. Bone 2012; 50:804-10. [PMID: 22226689 PMCID: PMC3278574 DOI: 10.1016/j.bone.2011.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/17/2011] [Indexed: 01/14/2023]
Abstract
Studies on the pathogenesis of osteoporosis and other metabolic bone diseases would be greatly facilitated by the development of approaches to assess changes in gene expression in osteoblast/osteoprogenitor populations in vivo without the potentially confounding effects of in vitro culture and expansion of the cells. While positive selection to identify a progenitor population in human marrow can be used to select for cells capable of osteoblast differentiation, each of the markers that have been used to identify marrow mesenchymal populations (alkaline phosphatase [AP], Stro-1, CD29, CD49a, CD73, CD90, CD105, CD166, CD44, CD146 and CD271) may be expressed on distinct subsets of marrow mesenchymal cells. Thus, positive selection with one or more of these markers could exclude a possibly relevant cell population that may undergo important changes in various clinical conditions. In the present report, we describe the isolation and characterization of human osteoprogenitor cells obtained by depletion of bone marrow cells of all hematopoietic lineage/hematopoietic stem cells and endothelial/endothelial precursor cells (lin-/CD34/CD31-). The yield of lin-/CD34/CD31- cells from ~10 mL of bone marrow (~80 million mononuclear cells) was ~80,000 cells (0.1% of mononuclear cells). While not selected on the basis of expression for the mesenchymal marker, Stro-1, 68% of these cells were Stro-1+. Using linear whole transcriptome amplification followed by quantitative polymerase chain reaction (QPCR) analysis, we also demonstrated that, compared to lin- cells (which are already depleted of hematopoietic cells), lin-/CD34/31- cells expressed markedly lower mRNA levels for the endothelial/hematopoietic markers, CD34, CD31, CD45, and CD133. Lin-/CD34/31- cells were also enriched for the expression of mesenchymal/osteoblastic markers, with a further increase in runx2, osterix, and AP mRNA expression following in vitro culture under osteogenic conditions. Importantly, lin-/CD34/31- cells contained virtually all of the mineralizing cells in human marrow: while these cells displayed robust calcium deposition in vitro, lin-/CD34/31+ cells demonstrated little or no mineralization when cultured under identical osteogenic conditions. Lin-/CD34/31- cells thus represent a human bone marrow population highly enriched for mesenchymal/osteoblast progenitor cells that can be analyzed without in vitro culture in various metabolic bone disorders, including osteoporosis and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sundeep Khosla
- Corresponding author: Sundeep Khosla, M.D., Endocrine Research Unit, Guggenheim 7-11, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Phone: (507) 255-6663, Fax: (507) 293-3853,
| |
Collapse
|
30
|
Delgado-Calle J, Arozamena J, García-Renedo R, García-Ibarbia C, Pascual-Carra MA, González-Macías J, Riancho JA. Osteocyte deficiency in hip fractures. Calcif Tissue Int 2011; 89:327-34. [PMID: 21874545 DOI: 10.1007/s00223-011-9522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/11/2022]
Abstract
Osteocytes play a central role in the regulation of bone remodeling. The aim of this study was to explore osteocyte function, and particularly the expression of SOST, a Wnt inhibitor, in patients with hip fractures. Serum sclerostin levels were measured by ELISA. The expression of several osteocytic genes was studied by quantitative PCR in trabecular samples of the femoral head of patients with hip fractures, hip osteoarthritis and control subjects. The presence of sclerostin protein and activated caspase 3 was revealed by immunostaining. There were no significant differences in serum sclerostin between the three groups. Patients with fractures have fewer lacunae occupied by osteocytes (60 ± 5% vs. 64 ± 6% in control subjects, P = 0.014) and higher numbers of osteocytes expressing activated caspase 3, a marker of apoptosis. The proportion of sclerostin-positive lacunae was lower in patients with fractures than in control subjects (34 ± 11% vs. 69 ± 10%, P = 2 × 10(-8)). The proportion of sclerostin-positive osteocytes was also lower in patients. RNA transcripts of SOST, FGF23 and PHEX were also less abundant in fractures than in control bones (P = 0.002, 5 × 10(-6), and 0.04, respectively). On the contrary, in patients with osteoarthritis, there was a decreased expression of SOST and FGF23, without differences in PHEX transcripts or osteocyte numbers. Osteocyte activity is altered in patients with hip fractures, with increased osteocyte apoptosis and reduced osteocyte numbers, as well as decreased transcription of osteocytic genes. Therefore, these results suggest that an osteocyte deficiency may play a role in the propensity to hip fractures.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U.M. Valdecilla, IFIMAV, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Patsch JM, Deutschmann J, Pietschmann P. Gender aspects of osteoporosis and bone strength. Wien Med Wochenschr 2011; 161:117-23. [PMID: 21461801 DOI: 10.1007/s10354-011-0891-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/16/2011] [Indexed: 12/01/2022]
Abstract
Although postmenopausal and elderly women are more frequently affected by osteoporosis, men are not protected from the disease. Age-related osteoporosis involves several gender-specific clinical aspects such as disease onset time and different dynamics of bone loss. Men benefit from larger bones and a time-delay of age-related changes in bone density and quality. Moreover, secondary osteoporosis is more common in males than in females. High-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI) represent novel research tools for a noninvasive quantification of bone microstructure which is of interest for musculoskeletal gender studies. For optimal design of such studies, researchers should be aware of technical pitfalls and site-specificity of bone microstructure.
Collapse
Affiliation(s)
- Janina M Patsch
- Department of Radiology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|