1
|
Zhang N, Wang L, Ye X. Pdk3's role in RANKL-induced osteoclast differentiation: insights from a bone marrow macrophage model. PeerJ 2024; 12:e18222. [PMID: 39399421 PMCID: PMC11470767 DOI: 10.7717/peerj.18222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background Osteoporosis (OP) is a chronic disease characterized by decreased bone mass, loss of skeletal structural integrity and increased susceptibility to fracture. Available studies have shown that the pyruvate dehydrogenase kinase (PDK) family is associated with osteoclastogenesis and bone loss, but the specific role of Pdk3 in bone pathology has not been systematically investigated. Methods A cell OP model was established in receptor activator for nuclear factor-κB Ligand (RANKL)-induced bone marrow macrophages (BMMs). Hereafter, the expression levels of Pdk3 and osteoclastogenesis feature genes including nuclear factor of activated T cells 1 (Nfatc1), Cathepsin K (Ctsk), osteoclast associated Ig-like receptor (Oscar) in BMMs-derived osteoclasts were examined based on real-time quantitative PCR and western blotting methods. Further, the phosphorylation of ERK, P65 and JAK/STAT and their correlation was Pdk3 was gauged. In particular, changes in the activity of these signaling pathways were observed by silencing experiments of the Pdk3 gene (using small interfering RNA). Finally, the effects of Pdk3 gene silencing on signaling pathway activity, osteoclastogenesis, and related inflammatory and apoptotic indicators were observed by transfection with PDK3-specific siRNA. Results Following RANKL exposure, the levels of Pdk3 and osteoclastogenesis feature genes were all elevated, and a positive correlation between Pdk3 and osteoclastogenesis feature genes was seen. Meanwhile, ERK, P65 and JAK/STAT phosphorylation was increased by RANKL, and Pdk3 was confirmed to be positively correlated with the phosphorylation of ERK, P65 and JAK/STAT. Additionally, in RANKL-exposed osteoclasts, Pdk3 knockdown diminished the phosphorylation of ERK, P65 and JAK/STAT, reduced the expressions of osteoclastogenesis feature genes. Importantly, knockdown of Pdk3 also reduced the expression of inflammatory cytokines and resulted in elevated levels of Bax and Casp3 expression, as well as downregulation of Bcl2 expression. Conclusion This study reveals for the first time the role of Pdk3 in RANKL-induced osteoclastogenesis and OP. These findings provide a foundation for future studies on the role of Pdk3 in other bone diseases and provide new ideas for the development of OP therapeutics targeting Pdk3.
Collapse
Affiliation(s)
- Nan Zhang
- College of Physical Education, Anhui Normal University, Wuhu, China
| | - Lingting Wang
- Spinal Surgery, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, China
| | - Xuxin Ye
- Office of Hospital Admission and Discharge, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, China
| |
Collapse
|
2
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Xian Y, Gao Y, Su Y, Su Y, Lian H, Feng X, Liu Z, Zhao J, Xu J, Liu Q, Song F. Cichoric acid targets RANKL to inhibit osteoclastogenesis and prevent ovariectomy-induced bone loss. Phytother Res 2024; 38:1971-1989. [PMID: 38358727 DOI: 10.1002/ptr.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND AIM Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yijie Gao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yiji Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoliang Feng
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Zhijuan Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Li F, Liu X, Li M, Wu S, Le Y, Tan J, Zhu C, Wan Q. Inhibition of PKM2 suppresses osteoclastogenesis and alleviates bone loss in mouse periodontitis. Int Immunopharmacol 2024; 129:111658. [PMID: 38359663 DOI: 10.1016/j.intimp.2024.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Chronic periodontitis triggers an increase in osteoclastogenesis, with glycolysis playing a crucial role in this process. Pyruvate kinase M2 (PKM2) is a critical enzyme involved in glycolysis and pyruvate metabolism. Yet, the precise function of PKM2 in osteoclasts and their formation remains unclear and requires further investigation. METHODS Bioinformatics was used to investigate critical biological processes in osteoclastogenesis. In vitro, osteoclastogenesis was analyzed using tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining, quantitative real‑time PCR (RT-qPCR), and Western blotting. Small interfering RNA (siRNA) of PKM2 and Shikonin, a specific inhibitor of PKM2, were used to verify the role of PKM2 in osteoclastogenesis. The mouse model of periodontitis was used to assess the effect of shikonin on bone loss. Analyses included micro computed tomography, immunohistochemistry, flow cytometry, TRAP staining and HE staining. RESULTS Bioinformatic analysis revealed a significant impact of glycolysis and pyruvate metabolism on osteoclastogenesis. Inhibition of PKM2 leads to a significant reduction in osteoclastogenesis. In vitro, co-culture of the heat-killed Porphyromonas gingivalis significantly promoted osteoclastogenesis, concomitant with an increased PKM2 expression in osteoclasts. Shikonin weakened the promoting effect of porphyromonas gingivalis on osteoclastogenesis. In vivo experiments demonstrated that inhibition of PKM2 by shikonin alleviated bone loss induced by periodontitis, suppressed excessive osteoclastogenesis in alveolar bone, and reduced tissue inflammation to some extent. CONCLUSION PKM2 inhibition by shikonin, a specific inhibitor of this enzyme, attenuated osteoclastogenesis and bone resorption in periodontitis. Shikonin appears to be a promising therapeutic agent for treating periodontitis.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Xinyuan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Mingjuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Shuxuan Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Yushi Le
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Jingjing Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Chongjie Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Qilong Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Zhang C, Li Q, Ye Z, Wang X, Zhao H, Wang Y, Zheng X. Mechanism of Circ_HECW2 regulating osteoblast apoptosis in osteoporosis by attenuating the maturation of miR-1224-5p. J Orthop Surg Res 2024; 19:40. [PMID: 38183099 PMCID: PMC10770914 DOI: 10.1186/s13018-023-04494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) poses a significant clinical challenge with escalating morbidity. This study explores Circ_HECW2 expression in OP patients and its regulatory role in lipopolysaccharide (LPS)-induced osteoblast apoptosis. METHODS Circ_HECW2 expression in OP patient serum and healthy controls was quantified using RT-qPCR. Diagnostic value of Circ_HECW2 for OP was assessed via ROC curve. Pearson's correlation model examined associations between indicators. Human osteoblasts HFOB1.19, treated with LPS, were analyzed for Circ_HECW2, pre-miR-1224, miR-1224-5p, and PDK2 mRNA levels. TUNEL assay determined cell apoptosis and Western blot assessed cleaved-caspase-3 protein levels. RNase R resistance assay and actinomycin D assay confirmed Circ_HECW2's cyclic structure. RNA pull-down and dual-luciferase reporter assay verified binding relationships between Circ_HECW2 and miR-1224 and between miR-1224-5p and PDK2. RESULTS Circ_HECW2 exhibited elevated expression in OP patients with diagnostic significance and a negative correlation with lumbar T-score. LPS co-culture increased Circ_HECW2 expression in HFOB1.19 cells, significantly elevating apoptosis index and cleaved-caspase-3. Circ_HECW2 downregulation inhibited HFOB1.19 apoptosis, reduced pre-miR-1224 expression, and elevated mature miR-1224-5p. Circ_HECW2 bound to pre-miR-1224, and inhibiting miR-1224-5p reversed the effect of Circ_HECW2 downregulation on osteoblast apoptosis. miR-1224-5p targeted PDK2 transcription. CONCLUSION Circ_HECW2, highly expressed in OP, holds diagnostic significance and reflects disease severity. Circ_HECW2 reduces mature miR-1224-5p by binding to pre-miR-1224, upregulating PDK2, and facilitating LPS-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Qiangqiang Li
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Zhongduo Ye
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xiong Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Hui Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xingxing Zheng
- Department of Ophthalmology, The Second Hospital of Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
6
|
Li C, Liu C, Zhang J, Lu Y, Jiang B, Xiong H, Li C. Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases. Front Immunol 2023; 14:1296687. [PMID: 38193078 PMCID: PMC10773690 DOI: 10.3389/fimmu.2023.1296687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophages are highly heterogeneous and plastic, and have two main polarized phenotypes that are determined by their microenvironment, namely pro- and anti-inflammatory macrophages. Activation of pro-inflammatory macrophages is closely associated with metabolic reprogramming, especially that of aerobic glycolysis. Mitochondrial pyruvate dehydrogenase kinase (PDK) negatively regulates pyruvate dehydrogenase complex activity through reversible phosphorylation and further links glycolysis to the tricarboxylic acid cycle and ATP production. PDK is commonly associated with the metabolism and polarization of macrophages in metabolic and inflammatory diseases. This review examines the relationship between PDK and macrophage metabolism and discusses the mechanisms by which PDK regulates macrophage polarization, migration, and inflammatory cytokine secretion in metabolic and inflammatory diseases. Elucidating the relationships between the metabolism and polarization of macrophages under physiological and pathological conditions, as well as the regulatory pathways involved, may provide valuable insights into the etiology and treatment of macrophage-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chenyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chuanbin Liu
- Department of Pediatric Dentistry, Jining Stomatological Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanyu Lu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Bingtong Jiang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
7
|
Ledesma-Colunga MG, Passin V, Lademann F, Hofbauer LC, Rauner M. Novel Insights into Osteoclast Energy Metabolism. Curr Osteoporos Rep 2023; 21:660-669. [PMID: 37816910 PMCID: PMC10724336 DOI: 10.1007/s11914-023-00825-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
PURPOSE OF REVIEW Osteoclasts are crucial for the dynamic remodeling of bone as they resorb old and damaged bone, making space for new bone. Metabolic reprogramming in these cells not only supports phenotypic changes, but also provides the necessary energy for their highly energy-consuming activity, bone resorption. In this review, we highlight recent developments in our understanding of the metabolic adaptations that influence osteoclast behavior and the overall remodeling of bone tissue. RECENT FINDINGS Osteoclasts undergo metabolic reprogramming to meet the energy demands during their transition from precursor cells to fully mature bone-resorbing osteoclasts. Recent research has made considerable progress in pinpointing crucial metabolic adaptations and checkpoint proteins in this process. Notably, glucose metabolism, mitochondrial biogenesis, and oxidative respiration were identified as essential pathways involved in osteoclast differentiation, cytoskeletal organization, and resorptive activity. Furthermore, the interaction between these pathways and amino acid and lipid metabolism adds to the complexity of the process. These interconnected processes can function as diverse fuel sources or have independent regulatory effects, significantly influencing osteoclast function. Energy metabolism in osteoclasts involves various substrates and pathways to meet the energetic requirements of osteoclasts throughout their maturation stages. This understanding of osteoclast biology may provide valuable insights for modulating osteoclast activity during the pathogenesis of bone-related disorders and may pave the way for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Vanessa Passin
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Ge Q, Yang S, Qian Y, Chen J, Yuan W, Li S, Wang P, Li R, Zhang L, Chen G, Kan H, Rajagopalan S, Sun Q, Zheng HF, Jin H, Liu C. Ambient PM2.5 Exposure and Bone Homeostasis: Analysis of UK Biobank Data and Experimental Studies in Mice and in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107002. [PMID: 37792558 PMCID: PMC10549986 DOI: 10.1289/ehp11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Previous evidence has identified exposure to fine ambient particulate matter (PM 2.5 ) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM 2.5 and bone homeostasis. OBJECTIVE We sought to examine the relationship between long-term PM 2.5 exposure and bone health and explore its potential mechanism. METHODS This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM 2.5 (i.e., annual average PM 2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n = 37,440 ) and femur neck and lumbar spine BMD (n = 29,766 )], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM 2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM 2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS We observed that long-term exposure to PM 2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM 2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF- α ) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM 2.5 -stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF- α / Traf 6 / c -Fos pathway, which could be partially rescued by TNF- α inhibition. DISCUSSION Our prospective observational evidence suggested that long-term exposure to PM 2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM 2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sijia Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qian
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Guobo Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haidong Kan
- College of Public Health, Fudan University, Shanghai, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Hou-Feng Zheng
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| |
Collapse
|
9
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
10
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Xie D, Xu Y, Zhang Y, Cai W, Lan X, Yan H. Pyruvate dehydrogenase kinase 1–dependent metabolic reprogramming: A promising target for postmenopausal osteoporosis treatment. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
12
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
14
|
Lee H, Jeon JH, Lee YJ, Kim MJ, Kwon WH, Chanda D, Thoudam T, Pagire HS, Pagire SH, Ahn JH, Harris RA, Kim ES, Lee IK. Inhibition of Pyruvate Dehydrogenase Kinase 4 in CD4 + T Cells Ameliorates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2022; 15:439-461. [PMID: 36229019 PMCID: PMC9791136 DOI: 10.1016/j.jcmgh.2022.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Despite recent evidence supporting the metabolic plasticity of CD4+ T cells, it is uncertain whether the metabolic checkpoint pyruvate dehydrogenase kinase (PDK) in T cells plays a role in the pathogenesis of colitis. METHODS To investigate the role of PDK4 in colitis, we used dextran sulfate sodium (DSS)-induced colitis and T-cell transfer colitis models based on mice with constitutive knockout (KO) or CD4+ T-cell-specific KO of PDK4 (Pdk4fl/flCD4Cre). The effect of PDK4 deletion on T-cell activation was also studied in vitro. Furthermore, we examined the effects of a pharmacologic inhibitor of PDK4 on colitis. RESULTS Expression of PDK4 increased during colitis development in a DSS-induced colitis model. Phosphorylated PDHE1α, a substrate of PDK4, accumulated in CD4+ T cells in the lamina propria of patients with inflammatory bowel disease. Both constitutive KO and CD4+ T-cell-specific deletion of PDK4 delayed DSS-induced colitis. Adoptive transfer of PDK4-deficient CD4+ T cells attenuated murine colitis, and PDK4 deficiency resulted in decreased activation of CD4+ T cells and attenuated aerobic glycolysis. Mechanistically, there were fewer endoplasmic reticulum-mitochondria contact sites, which are responsible for interorganelle calcium transfer, in PDK4-deficient CD4+ T cells. Consistent with this, GM-10395, a novel inhibitor of PDK4, suppressed T-cell activation by reducing endoplasmic reticulum-mitochondria calcium transfer, thereby ameliorating murine colitis. CONCLUSIONS PDK4 deletion from CD4+ T cells mitigates colitis by metabolic and calcium signaling modulation, suggesting PDK4 as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Jeong Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Hee Kwon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,Correspondence Address correspondence to: Eun Soo Kim, MD, PhD, Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944. fax: +82-53-200-5879.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,In-Kyu Lee, MD, PhD, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944.
| |
Collapse
|
15
|
Microbiological Quality and Organoleptic Property of Meat and Fish Preserved with Oil from Dacryodes Edulis Seed. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The bioactive compounds contributing to aroma and natural antimicrobial potential of oil from Dacryodes edulis seed can be harnessed in food industries as food preservatives. This study therefore, reveals the preservative effect and organoleptic property of meat and fish preserved with oil from D. edulis seed. Proximate and mineral analysis of oil were carried out using standard methods. Preservative quality of oil on fish and meat was investigated at 4°C and 37°C. Organoleptic property of preserved fish and meat was determined using trained panellists. Fat, protein, carbohydrates, crude fibre, ash and moisture content of oil from D. edulis seed are 55.7%, 18.7%, 10.8%, 7.1%, 4.6% and 3.1%, respectively. Potassium (106.5 µg/g) and phosphorous (102.5 µg/g) have the relatively highest values compared (p<0.05) to other minerals like zinc, iron, calcium, magnesium, and sodium. Better preservative property of oil was observed on fried fish and meat kept at 4°C with no microbial growth. The highest microbial load (3.95 × 106 cfu/g) occurred in fresh chicken coated with oil from D. edulis seed after 7 days of preservation. Fish and meat fried with oil from D. edulis seed were well accepted (9.00) than those fried with groundnut oil (3.50). Oil from D. edulis seed is an edible oil that can be utilized as alternative vegetable oil with natural preservatives and embedded nutrients.
Collapse
|
16
|
Xu H, Jia Y, Li J, Huang X, Jiang L, Xiang T, Xie Y, Yang X, Liu T, Xiang Z, Sheng J. Niloticin inhibits osteoclastogenesis by blocking RANKL-RANK interaction and suppressing the AKT, MAPK, and NF-κB signaling pathways. Biomed Pharmacother 2022; 149:112902. [PMID: 35364377 DOI: 10.1016/j.biopha.2022.112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Dysregulation of osteoclasts or excessive osteoclastogenesis significantly -contributes to the occurrence and development of osteolytic diseases, including osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. The protein-protein interaction between the receptor activator of nuclear factor (NF)-κB (RANK) and its ligand (RANKL) mediates the differentiation and activation of osteoclasts, making it a key therapeutic target for osteoclastogenesis inhibition. However, very few natural compounds exerting anti-osteoclastogenesis activity by inhibiting the RANKL-RANK interaction have been found. Niloticin is a natural tetracyclic triterpenoid compound with anti-viral, antioxidative, and mosquitocidal activities. However, its role in osteoclastogenesis remains unknown. The present study found that niloticin directly binds to RANK with an equilibrium dissociation constant of 5.8 μM, blocking RANKL-RANK interaction, thereby inhibiting RANKL-induced AKT, MAPK (p38, JNK, and ERK1/2), and NF-κB (IKKα/β, IκBα, and p65) pathways activation, and reducing the expression of key osteoclast differentiation-related regulatory factors (NFATc1, c-Fos, TRAP, c-Src, β3-Integrin, and cathepsin K) in osteoclast precursors, ultimately negatively regulating osteoclastogenesis. These findings suggest that niloticin could serve as a novel osteoclastogenesis inhibitor and might have beneficial effects on bone health.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuankan Jia
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanhao Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaomei Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
17
|
Yi X, Wu P, Liu J, He S, Gong Y, Xiong J, Xu X, Li W. Candidate kinases for adipogenesis and osteoblastogenesis from human bone marrow mesenchymal stem cells. Mol Omics 2021; 17:790-795. [PMID: 34318850 DOI: 10.1039/d1mo00160d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors. Despite the recognition of the importance of protein phosphorylation in adipo-osteoblastocyte biology, relatively little is known about the specific kinases for adipo-osteoblastogenesis. Here, we constructed the comprehensive gene transcriptional landscapes of kinases at 3, 5, and 7 days during adipo-osteoblastogenesis from human bone marrow mesenchymal stem cells (hMSCs). We identified forty-four and eight significant DEGs (differentially expressed genes) separately for adipo-osteoblastogenesis. Five significant DEGs, namely CAMK2A, NEK10, PAK3, PRKG2, and PTK2B, were simultaneously shared by adipo-osteoblastogenic anecdotes. Using a lentivirus system, we confirmed that PTK2B (non-receptor protein tyrosine kinase 2 beta) simultaneously inhibited adipo-osteoblastogenesis through RNAi assays, and PRKG2 (protein kinase cGMP-dependent 2) facilitated adipogenesis and weakened osteoblastogenesis. The only certainty was that the identified candidate significant DEGs encoding kinases responsible for protein phosphorylation, especially PTK2B and PRKG2, were the potential molecular switches of cell fate determination for hMSCs. This study would provide novel study targets for hMSC differentiation and potential clues for the therapy of the adipo-osteoblastogenic balance-derived disorders.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| |
Collapse
|
18
|
Donat A, Knapstein PR, Jiang S, Baranowsky A, Ballhause TM, Frosch KH, Keller J. Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. Int J Mol Sci 2021; 22:ijms22084120. [PMID: 33923498 PMCID: PMC8073638 DOI: 10.3390/ijms22084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Bone tissue in vertebrates is essential to performing movements, to protecting internal organs and to regulating calcium homeostasis. Moreover, bone has also been suggested to contribute to whole-body physiology as an endocrine organ, affecting male fertility; brain development and cognition; and glucose metabolism. A main determinant of bone quality is the constant remodeling carried out by osteoblasts and osteoclasts, a process consuming vast amounts of energy. In turn, clinical conditions associated with impaired glucose metabolism, including type I and type II diabetes and anorexia nervosa, are associated with impaired bone turnover. As osteoblasts are required for collagen synthesis and matrix mineralization, they represent one of the most important targets for pharmacological augmentation of bone mass. To fulfill their function, osteoblasts primarily utilize glucose through aerobic glycolysis, a process which is regulated by various molecular switches and generates adenosine triphosphate rapidly. In this regard, researchers have been investigating the complex processes of energy utilization in osteoblasts in recent years, not only to improve bone turnover in metabolic disease, but also to identify novel treatment options for primary bone diseases. This review focuses on the metabolism of glucose in osteoblasts in physiological and pathophysiological conditions.
Collapse
|
19
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|