1
|
Gokul PR, Jarvis C, Kaasab G, Armitage S, Mughal MZ, Hughes D, Ramakrishnan R. Base of Skull & Spinal Canal Narrowing in an Adolescent with Autosomal Recessive Hypophosphatemic Rickets Type 2. Calcif Tissue Int 2025; 116:20. [PMID: 39751914 DOI: 10.1007/s00223-024-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 01/04/2025]
Abstract
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity. Inactivating ENPP1 variants are associated with both Generalised Arterial Calcification of Infancy (GACI) and ARHR2, even within the same family. Both conditions share a deficiency of ENPP1, displaying clinical variability without a clear genotype-phenotype correlation. Whilst pathogenic ENPP1 variants are known to be associated with various phenotypes, including vascular calcification, hearing loss, ossification of the posterior longitudinal ligament (OPLL), and pseudoxanthoma elasticum (PXE), skull changes have not been reported to our knowledge. We present herein a case of a 10-year-old girl with ARHR2, due to compound heterozygous pathogenic ENPP1 variants, who was found to have papilledema on a routine eye test. Neuroimaging revealed enlarged lateral ventricles, compression of the spinal cord at the foramen magnum with Chiari 1 malformation and a retroverted odontoid peg. She underwent two endoscopic third ventriculostomy procedures to manage the hydrocephalus and a further foramen magnum decompression procedure to alleviate her headaches and neck pain concerns. Individuals with ARHR2 may experience alterations at the base of the skull, potentially leading to base of skull narrowing, chronic hydrocephalus, and Chiari malformation.
Collapse
Affiliation(s)
- P R Gokul
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
| | - C Jarvis
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - G Kaasab
- Department of Paediatric Radiology, Alder Hey Children's Hospital, Liverpool, UK
| | - S Armitage
- Department of Biochemistry, Alder Hey Children's Hospital, Liverpool, UK
| | - M Z Mughal
- Department of Paediatric Endocrinology, Al Jalila Children's Hospital, Dubai, UAE
| | - D Hughes
- Department of Histopathology, Sheffield Teaching Hospital, Sheffield, UK
| | - R Ramakrishnan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| |
Collapse
|
2
|
Jacobs IJ, Obiri-Yeboah D, Stabach PR, Braddock DT, Li Q. Novel treatment for PXE: Recombinant ENPP1 enzyme therapy. Mol Ther 2024; 32:3815-3820. [PMID: 39342427 PMCID: PMC11573614 DOI: 10.1016/j.ymthe.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic multisystem ectopic calcification disorder caused by inactivating mutations in the ABCC6 gene encoding ABCC6, a hepatic efflux transporter. ABCC6-mediated ATP secretion by the liver is the main source of a potent endogenous calcification inhibitor, plasma inorganic pyrophosphate (PPi); the deficiency of plasma PPi underpins PXE. Recent studies demonstrated that INZ-701, a recombinant human ENPP1 that generates PPi and is now in clinical trials, restored plasma PPi levels and prevented ectopic calcification in the muzzle skin of Abcc6-/-mice. This study examined the pharmacokinetics, pharmacodynamics, and potency of a new ENPP1-Fc isoform, BL-1118, in Abcc6-/- mice. When Abcc6-/- mice received a single subcutaneous injection of BL-1118 at 0.25, 0.5, or 1 mg/kg, they had dose-dependent elevations in plasma ENPP1 enzyme activity and PPi levels, with an enzyme half-life of approximately 100 h. When Abcc6-/- mice were injected weekly from 5 to 15 weeks of age, BL-1118 dose-dependently increased steady-state plasma ENPP1 activity and PPi levels and significantly reduced ectopic calcification in the muzzle skin and kidneys. These results suggest that BL-1118 is a promising second generation enzyme therapy for PXE, the first generation of which is currently in clinical testing.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dora Obiri-Yeboah
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ansh AJ, Stabach PR, Ciccone C, Cao W, De La Cruz EM, Sabbagh Y, Carpenter TO, Ferreira CR, Braddock DT. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024; 186:117136. [PMID: 38806089 PMCID: PMC11227391 DOI: 10.1016/j.bone.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.
Collapse
Affiliation(s)
- Anenya Jai Ansh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla Ciccone
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St., Suite 400, Boston, MA 02201, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Edouard T, Linglart A. Autosomal recessive hypophosphatemic rickets type 2 due to ENPP1 deficiency (ARHR2). Arch Pediatr 2024; 31:4S27-4S32. [PMID: 39343470 DOI: 10.1016/s0929-693x(24)00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2; MIM #613312) is a very rare disorder caused by biallelic loss-of-function mutations in the ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) gene. ENPP1 deficiency encompasses a spectrum of phenotypes that includes, in addition to ARHR2, generalized arterial calcification of infancy (GACI), ossification of the posterior longitudinal ligament (OPLL), and pseudoxanthoma elasticum. ARHR2 can be found in GACI survivors, but it may also be the first manifestation of ENPP1 deficiency. Although the precise mechanisms are not fully elucidated, patients with GACI and ARHR2 have elevated serum FGF23 levels, leading to renal phosphate wasting and hypophosphatemia. As a result, the clinical and radiological phenotype of ARHR2 patients is very similar to that of patients affected with other forms of hypophosphatemic rickets, such as X-linked hypophosphatemia. Patients show signs of rickets (abnormal mineralization of growth plates in children) and osteomalacia (abnormal bone mineralization in children and adults) of varying severity. Clinical manifestations specific to ENPP1 loss-of-function mutations and common to GACI, such as ectopic calcifications (valvular, arterial, or periarticular), deafness, OPLL, and PXE, may also be found. Genetic confirmation of the disease is important so as to ensure that patients receive the appropriate treatment or have the opportunity to participate in clinical trials to evaluate the safety and efficacy of novel and promising recombinant enzyme therapies.
Collapse
Affiliation(s)
- Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, ERN BOND, Children's Hospital, Toulouse University Hospital; RESTORE, INSERM U1301, Paul Sabatier University; Toulouse, France.
| | - Agnès Linglart
- AP-HP, Paris Saclay University, INSERM; Centre de Référence des Maladies Rares du Calcium et du Phosphore, Service d'Endocrinologie et diabète de l'enfant, Filières Santé Maladies Rares OSCAR, ERN endoRARE et BOND, Hôpital Bicêtre Paris-Saclay; U1185 physiologie et physiopathologie endocrinienne; Le Kremlin Bicêtre, France
| |
Collapse
|
5
|
Liu M, Liu Z, Huang F, Chen H, Yang Z, Zhu Z. A high-calcium environment induced ectopic calcification of renal interstitial fibroblasts via TFPI-2-DCHS1-ALP/ENPP1 axis to participate in Randall's plaque formation. Urolithiasis 2024; 52:122. [PMID: 39196305 DOI: 10.1007/s00240-024-01622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Randall's plaques (RP) serve as anchoring sites for calcium oxalate (CaOx) stones, but the underlying mechanism remains unclear. Renal interstitium with a high-calcium environment is identified as pathogenesis of RP formation where the role of human renal interstitial fibroblasts (hRIFs) was highlighted. Our study aims to elucidate the potential mechanism by which a high-calcium environment drives ectopic calcification of hRIFs to participate in RP formation. Alizarin Red staining demonstrated calcium nodules in hRIFs treated with high-calcium medium. Utilizing transcriptome sequencing, tissue factor pathway inhibitor-2 (TFPI-2) was found to be upregulated in high-calcium-induced hRIFs and RP tissues, and TFPI-2 promoted high-calcium-induced calcification of hRIFs. Subsequently, the downstream regulator of TFPI2 was screened by transcriptome sequencing analysis of hRIFs with TFPI-2 knockdown or overexpressed. Dachsous Cadherin Related 1 (DCHS1) knockdown was identified to suppress the calcification of hRIFs enhanced by TFPI-2. Further investigation revealed that TFPI-2/DCHS1 axis promoted high-calcium-induced calcification of hRIFs via disturbing the balance of ENPP1/ALP activities, but without effect on the canonical osteogenic markers, such as osteopontin (OPN), osteogenic factors runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2). In summary, our study mimicked the high-calcium environment observed in CaOx stone patients with hypercalciuria, and discovered that the high-calcium drove ectopic calcification of hRIFs via a novel TFPI-2-DCHS1-ALP/ENPP1 pathway rather than adaption of osteogenic phenotypes to participate in RP formation.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, 556000, Guizhou, China
| | - Fang Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhongqing Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Ida T, Kanzaki H, Shimoyama M, Tohyama S, Ishikawa M, Katsumata Y, Arai C, Wada S, Manase S, Tomonari H. Activation of Nuclear Factor Erythroid 2-Related Factor 2 Transcriptionally Upregulates Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 Expression and Inhibits Ectopic Calcification in Mice. Antioxidants (Basel) 2024; 13:896. [PMID: 39199142 PMCID: PMC11351754 DOI: 10.3390/antiox13080896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Calcification plays a key role in biological processes, and breakdown of the regulatory mechanism results in a pathological state such as ectopic calcification. We hypothesized that ENPP1, the enzyme that produces the calcification inhibitor pyrophosphate, is transcriptionally regulated by Nrf2, and that Nrf2 activation augments ENPP1 expression to inhibit ectopic calcification. Cell culture experiments were performed using mouse osteoblastic cell line MC3T3-E1. Nrf2 was activated by 5-aminolevulinic acid and sodium ferrous citrate. Nrf2 overexpression was induced by the transient transfection of an Nrf2 expression plasmid. ENPP1 expression was monitored by real-time RT-PCR. Because the promoter region of ENPP1 contains several Nrf2-binding sites, chromatin immunoprecipitation using an anti-Nrf2 antibody followed by real-time PCR (ChIP-qPCR) was performed. The relationship between Nrf2 activation and osteoblastic differentiation was examined by alkaline phosphatase (ALP) and Alizarin red staining. We used mice with a hypomorphic mutation in ENPP1 (ttw mice) to analyze whether Nrf2 activation inhibits ectopic calcification. Nrf2 and Nrf2 overexpression augmented ENPP1 expression and inhibited osteoblastic differentiation, as indicated by ALP expression and calcium deposits. ChIP-qPCR showed that some putative Nrf2-binding sites in the ENPP1 promoter region were bound by Nrf2. Nrf2 activation inhibited ectopic calcification in mice. ENPP1 gene expression was transcriptionally regulated by Nrf2, and Nrf2 activation augmented ENPP1 expression, leading to the attenuation of osteoblastic differentiation and ectopic calcification in vitro and in vivo. Nrf2 activation has a therapeutic potential for preventing ectopic calcification.
Collapse
Affiliation(s)
- Tomomi Ida
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Miho Shimoyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Syunnosuke Tohyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Misao Ishikawa
- Department of Anatomy, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan;
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Chihiro Arai
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Satoshi Wada
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Kanazawa 920-1192, Ishikawa, Japan;
| | - Shugo Manase
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Kanagawa, Japan; (T.I.); (S.T.); (H.T.)
| |
Collapse
|
7
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
8
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Ferreira CR, Carpenter TO, Braddock DT. ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency. ANNUAL REVIEW OF PATHOLOGY 2024; 19:507-540. [PMID: 37871131 PMCID: PMC11062289 DOI: 10.1146/annurev-pathmechdis-051222-121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas O Carpenter
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
10
|
Mori R, Mae M, Yamanaka H, Kato S, Masuyama R. Locomotor function of skeletal muscle is regulated by vitamin D via adenosine triphosphate metabolism. Nutrition 2023; 115:112117. [PMID: 37531790 DOI: 10.1016/j.nut.2023.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES During musculoskeletal development, the vitamin D endocrine system is crucial, because vitamin D-dependent calcium absorption is a major regulator of bone growth. Because exercise regimens depend on bone mass, the direct action of active vitamin D (1,25-dihydroxyvitamin D3 [1,25(OH)2D3]) on musculoskeletal performance should be determined. METHODS To evaluate the effect of 1,25(OH)2D3 on muscle tissue, the vitamin D receptor (Vdr) gene was genetically inactivated in mouse skeletal muscle and the role of 1,25(OH)2D3-VDR signaling on locomotor function was assessed. The direct action of 1,25(OH)2D3 on muscle development was determined using cultured C2C12 cells with myogenic differentiation. RESULTS The lack of Vdr activity in skeletal muscle decreased spontaneous locomotor activity, suggesting that the skeletal muscle performance depended on 1,25(OH)2D3-VDR signaling. Bone phenotypes, reduced femoral bone mineral density, and accelerated osteoclast bone resorption were confirmed in mice lacking skeletal muscle Vdr activity. In vitro study revealed that the treatment with 1,25(OH)2D3 decreased the cellular adenosine triphosphate (ATP)-to-adenosine monophosphate ratio without reducing ATP production. Remarkably, protein expressions of connexin 43, an ATP releaser to extracellular space, and ATP metabolizing enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 were increased responding to 1,25(OH)2D3 treatment. Furthermore, the concentration of pyrophosphate in the culture medium, which inhibits tissue calcification, was increased with 1,25(OH)2D3 treatment. In the presence of 1,25(OH)2D3-VDR signaling, calcium accumulation was suppressed in both muscle samples isolated from mice and in cultured C2C12 cells. CONCLUSIONS This study dissected the physiological functions of 1,25(OH)2D3-VDR signaling in muscle and revealed that regulation of ATP dynamics is involved in sustaining locomotor function.
Collapse
Affiliation(s)
- Risako Mori
- Graduate School of Gastronomy Management, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Megumi Mae
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoki Yamanaka
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, Nagano, Japan
| | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, Iwaki, Fukushima, Japan; Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Ritsuko Masuyama
- Graduate School of Gastronomy Management, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
11
|
Liu J, Song X, Zhang D, Jiang Y, Ma M, Qiu Z, Xia W, Chen Y. Case report: Multiple arterial stenoses induced by autosomal-recessive hypophosphatemic rickets type 2 associated with mutation of ENPP1: a case study. Front Cardiovasc Med 2023; 10:1126445. [PMID: 37153460 PMCID: PMC10155832 DOI: 10.3389/fcvm.2023.1126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1)-related multiple arterial stenoses is a rare clinical syndrome in which global arterial calcification begins in infancy, with a high probability of early mortality, and hypophosphatemic rickets develops later in childhood. The vascular status of an ENPP1-mutated patient when they enter the rickets phase has not been thoroughly explored. In this study, we presented a case of an adolescent with an ENPP1 mutation who complained of uncontrolled hypertension. Systematic radiography showed renal, carotid, cranial, and aortic stenoses as well as random calcification foci on arterial walls. The patient was incorrectly diagnosed with Takayasu's arteritis, and cortisol therapy had little effect on reducing the vascular stenosis. As a result, phosphate replacement, calcitriol substitution, and antihypertensive medication were prescribed, and the patient was discharged for further examination. This research presented the vascular alterations of an ENPP1-mutanted patient, and while there is less calcification, intimal thickening may be the primary cause of arterial stenosis.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xitao Song
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Daming Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Correspondence: Yuexin Chen
| |
Collapse
|
12
|
Abstract
Hypophosphatemic rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. The most common causes are genetic (such as X-linked hypophosphatemia), and these typically will result in lifelong hypophosphatemia and osteomalacia. Knowledge of phosphate metabolism, including the effects of fibroblast growth factor 23 (FGF23) (an osteocyte produced hormone that downregulates renal phosphate reabsorption and 1,25-dihydroxyvitamin-D (1,25(OH)2D) production), is critical to determining the underlying genetic or acquired causes of hypophosphatemia and to facilitate appropriate treatment. Serum phosphorus should be measured in any child or adult with musculoskeletal complaints suggesting rickets or osteomalacia. Clinical evaluation incudes thorough history, physical examination, laboratory investigations, genetic analysis (especially in the absence of a guiding family history), and imaging to establish etiology and to monitor severity and treatment course. The treatment depends on the underlying cause, but often includes active forms of vitamin D combined with phosphate salts, or anti-FGF23 antibody treatment (burosumab) for X-linked hypophosphatemia. The purpose of this article is to explore the approach to evaluating hypophosphatemic rickets and its treatment options.
Collapse
Affiliation(s)
- Sarah A Ackah
- Department of Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erik A Imel
- Department of Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Mercurio SA, Chunn LM, Khursigara G, Nester C, Wray K, Botschen U, Kiel MJ, Rutsch F, Ferreira CR. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Hum Mutat 2022; 43:1673-1705. [PMID: 36150100 DOI: 10.1002/humu.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.
Collapse
Affiliation(s)
- Stephanie A Mercurio
- Department of Data Science, Curation Division, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Lauren M Chunn
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Gus Khursigara
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Catherine Nester
- Department of Physician and Patient Strategies, Inozyme Pharma, Boston, Massachusetts, USA
| | - Kathleen Wray
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Ulrike Botschen
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Mark J Kiel
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Frank Rutsch
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|
15
|
Zimmerman K, Li X, von Kroge S, Stabach P, Lester ER, Chu EY, Srivastava S, Somerman MJ, Tommasini SM, Busse B, Schinke T, Carpenter TO, Oheim R, Braddock DT. Catalysis-Independent ENPP1 Protein Signaling Regulates Mammalian Bone Mass. J Bone Miner Res 2022; 37:1733-1749. [PMID: 35773783 PMCID: PMC9709593 DOI: 10.1002/jbmr.4640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Biallelic ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency induces vascular/soft tissue calcifications in generalized arterial calcification of infancy (GACI), and low bone mass with phosphate-wasting rickets in GACI survivors (autosomal hypophosphatemic rickets type-2). ENPP1 haploinsufficiency induces early-onset osteoporosis and mild phosphate wasting in adults. Both conditions demonstrate the unusual combination of reduced accrual of skeletal mineral, yet excess and progressive heterotopic mineralization. ENPP1 is the only enzyme that generates extracellular pyrophosphate (PPi), a potent inhibitor of both bone and heterotopic mineralization. Life-threatening vascular calcification in ENPP1 deficiency is due to decreased plasma PPi; however, the mechanism by which osteopenia results is not apparent from an understanding of the enzyme's catalytic activity. To probe for catalysis-independent ENPP1 pathways regulating bone, we developed a murine model uncoupling ENPP1 protein signaling from ENPP1 catalysis, Enpp1T238A mice. In contrast to Enpp1asj mice, which lack ENPP1, Enpp1T238A mice have normal trabecular bone microarchitecture and favorable biomechanical properties. However, both models demonstrate low plasma Pi and PPi, increased fibroblast growth factor 23 (FGF23), and by 23 weeks, osteomalacia demonstrating equivalent phosphate wasting in both models. Reflecting findings in whole bone, calvarial cell cultures from Enpp1asj mice demonstrated markedly decreased calcification, elevated transcription of Sfrp1, and decreased nuclear β-catenin signaling compared to wild-type (WT) and Enpp1T238A cultures. Finally, the decreased calcification and nuclear β-catenin signaling observed in Enpp1asj cultures was restored to WT levels by knockout of Sfrp1. Collectively, our findings demonstrate that catalysis-independent ENPP1 signaling pathways regulate bone mass via the expression of soluble Wnt inhibitors such as secreted frizzled-related protein 1 (SFRP1), whereas catalysis dependent pathways regulate phosphate homeostasis through the regulation of plasma FGF23. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Xiaochen Li
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Paul Stabach
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Emily Y. Chu
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, Maryland, 21202
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Martha J. Somerman
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M. Tommasini
- Department of Orthopædics and Rehabilitation, Yale University School of Medicine, New Haven Connecticut, 06510
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Thomas O. Carpenter
- Department of Pediatrics at Yale University School of Medicine, New Haven Connecticut, 06510
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut, 06510
| |
Collapse
|
16
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
17
|
Kato H, Ansh AJ, Lester ER, Kinoshita Y, Hidaka N, Hoshino Y, Koga M, Taniguchi Y, Uchida T, Yamaguchi H, Niida Y, Nakazato M, Nangaku M, Makita N, Takamura T, Saito T, Braddock DT, Ito N. Identification of ENPP1 Haploinsufficiency in Patients With Diffuse Idiopathic Skeletal Hyperostosis and Early-Onset Osteoporosis. J Bone Miner Res 2022; 37:1125-1135. [PMID: 35340077 PMCID: PMC9177665 DOI: 10.1002/jbmr.4550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Anenya J. Ansh
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Taisuke Uchida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Yamaguchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Taku Saito
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Ferreira CR, Ansh AJ, Nester C, O’Brien C, Stabach PR, Murtada SI, Lester ER, Khursigara G, Molloy L, Carpenter TO, Braddock DT. Musculoskeletal Comorbidities and Quality of Life in ENPP1-Deficient Adults and the Response of Enthesopathy to Enzyme Replacement Therapy in Murine Models. J Bone Miner Res 2022; 37:494-504. [PMID: 34882836 PMCID: PMC9667476 DOI: 10.1002/jbmr.4487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency leads to cardiovascular calcification in infancy, fibroblast growth factor 23 (FGF23)-mediated hypophosphatemic rickets in childhood, and osteomalacia in adulthood. Excessive enthesis mineralization and cervical spine fusion have been previously reported in patients with biallelic ENPP1 deficiency, but their effect on quality of life is unknown. We describe additional musculoskeletal complications in patients with ENPP1 deficiency, namely osteoarthritis and interosseous membrane ossification, and for the first time evaluate health-related quality of life (HRQoL) in patients with this disease, both subjectively via narrative report, and objectively via the Brief Pain Inventory-Short Form, and a Patient Reported Outcome Measurement Information System Physical Function (PROMIS PF) short form. Residual pain, similar in magnitude to that identified in adult patients with X-linked hypophosphatemia, was experienced by the majority of patients despite use of analgesic medications. Impairment in physical function varied from mild to severe. To assess murine ENPP1 deficiency for the presence of enthesopathy, and for the potential response to enzyme replacement therapy, we maintained Enpp1asj/asj mice on regular chow for 23 weeks and treated cohorts with either vehicle or a long-acting form of recombinant ENPP1. Enpp1asj/asj mice treated with vehicle exhibited robust calcification throughout their Achilles tendons, whereas two-thirds of those treated with ENPP1 enzyme replacement exhibited complete or partial suppression of the Achilles tendon calcification. Our combined results document that musculoskeletal complications are a significant source of morbidity in biallelic ENPP1 deficiency, a phenotype which is closely recapitulated in Enpp1asj/asj mice. Finally, we show that a long-acting form of recombinant ENPP1 prevents the development of enthesis calcification at the relatively modest dose of 0.3 mg/kg per week, suggesting that suppression of enthesopathy may be attainable upon dose escalation. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anenya Jai Ansh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Thomas O. Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
19
|
Choe Y, Shin CH, Lee YA, Kim MJ, Lee YJ. Case Report and Review of Literature: Autosomal Recessive Hypophosphatemic Rickets Type 2 Caused by a Pathogenic Variant in ENPP1 Gene. Front Endocrinol (Lausanne) 2022; 13:911672. [PMID: 35966073 PMCID: PMC9374118 DOI: 10.3389/fendo.2022.911672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is a rare form of hereditary rickets, which is characterized by defective bone mineralization and renal phosphate wasting due to a loss-of-function variant in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene. Although pathogenic variant of ENPP1 has been known to manifest other phenotypes including arterial calcification, hearing loss, ossification of posterior longitudinal ligament, or pseudoxanthoma elasticum, there have been few reports including systematic examination in individuals diagnosed with ARHR2 to date. Herein, we report a case of ARHR2 with a bi-allelic pathogenic variant of ENPP1, in which the patient presented with gait abnormalities with severe genu varum at 26 months of age. Targeted gene panel sequencing was performed to investigate the genetic cause of rickets, and a homozygous nonsense variant in ENPP1, c.783C>G (p.Tyr261*), was identified. The patient was treated with oral phosphate and active vitamin D supplements and underwent corrective osteotomy for varus deformity. His phenotype was limited to rickets. A periodic systematic evaluation is needed to identify any comorbidities in ARHR2 patients since ENPP1 variants may present phenotypes other than rickets and symptoms may evolve or change over time.
Collapse
Affiliation(s)
- Yunsoo Choe
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea
- *Correspondence: Yun Jeong Lee,
| |
Collapse
|
20
|
Höppner J, Kornak U, Sinningen K, Rutsch F, Oheim R, Grasemann C. Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) due to ENPP1-deficiency. Bone 2021; 153:116111. [PMID: 34252603 DOI: 10.1016/j.bone.2021.116111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
Awareness for hypophosphatemic rickets has increased in the last years, based on the availability of specific medical treatments. Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is a rare form of hypophosphatemic rickets, which is known to develop in survivors of generalized arterial calcification of infancy (GACI). Both disorders are based on a deficiency of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and present with a high clinical variability and a lack of a phenotype-genotype association. ARHR2 is characterized by phosphate wasting due to elevated fibroblast growth factor 23 (FGF23) levels and might represent a response of the organism to minimize ectopic calcification in individuals with ENPP1-deficiency. This report reviews the recent clinical and preclinical data on this ultra-rare disease in childhood.
Collapse
Affiliation(s)
- Jakob Höppner
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Germany; Department of Pediatrics, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Uwe Kornak
- Institute for Human Genetics, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Kathrin Sinningen
- Department of Pediatrics, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Grasemann
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Germany; Department of Pediatrics, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
21
|
Stern R, Levi DS, Gales B, Rutsch F, Salusky IB. Correspondence on "Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI)" by Ferreira et al. Genet Med 2021; 23:2006-2007. [PMID: 34127825 DOI: 10.1038/s41436-021-01228-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rachel Stern
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel S Levi
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Barbara Gales
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|