1
|
Takeuchi Y. Cardiovascular safety of osteoanabolic agents. J Bone Miner Metab 2025:10.1007/s00774-025-01580-4. [PMID: 39825110 DOI: 10.1007/s00774-025-01580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
PURPOSE Several osteoanabolic agents have been developed to build new bone more efficiently than anti-resorptive drugs. Among them, romosozumab, an anti-sclerostin antibody, is a potent pharmacological tool to prevent fractures in osteoporosis patients. The efficacy of romosozumab in preventing osteoporotic fractures is robust. However, there remains a concern about increased cardiovascular (CV) adverse events related to romosozumab. Available data have been reviewed to address this concern. METHODS Published articles on romosozumab of which pivotal randomized controlled trials (RCTs), meta-analyses of RCTs, pharmacovigilance investigations, and retrospective observational clinical studies using real-world data were collected through PubMed and other available tools. RESULTS Meta-analyses of RCTs of romosozumab compared to placebo and other anti-osteoporosis drugs have left room for controversy in the CV safety of romosozumab. Investigations of the real-world data also provide no conclusive evidence in this issue. CONCLUSION We need more robust evidence to establish an appropriate and reasonable guide to prescribe romosozumab in our clinical practice.
Collapse
Affiliation(s)
- Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| |
Collapse
|
2
|
Masuda S, Fukasawa T, Matsuda S, Yoshida S, Kawakami K. Comparative effectiveness and cardiovascular safety of romosozumab versus teriparatide in patients with osteoporosis: a population-based cohort study. Osteoporos Int 2024; 35:2165-2174. [PMID: 39320414 DOI: 10.1007/s00198-024-07255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
This study compared the effectiveness and cardiovascular safety of romosozumab and teriparatide. The main finding was that there were no significant differences between the two drugs in fracture prevention and risk of major adverse cardiac events. This suggests that romosozumab and teriparatide are comparable options for treating osteoporosis. PURPOSE This study aimed to determine the preventive effects of romosozumab versus teriparatide on fractures and the risk of cardiovascular events in patients initiating these drugs. METHODS We conducted an active comparator, a new user cohort design, with confounding controlled by inverse probability of treatment weighting using a Japanese administrative claims database (March 2019 to October 2022). This cohort study included 49,104 patients aged 50 years or older who initiated romosozumab (n = 16,125) or teriparatide (n = 32,979) for osteoporosis. The study exposure was the initiation of romosozumab or teriparatide. Effectiveness outcomes were nonvertebral fracture and hip fracture. The safety outcome was major adverse cardiac events (MACE). Follow-up period was 365 days. RESULTS The weighted incidence rate difference (IRD) for nonvertebral fracture between romosozumab versus teriparatide was -0.08 (95% confidence interval [CI], -0.34 to 0.17) events per 100 person-years (weighted hazard ratio [HR], 0.95 [95% CI, 0.81 to 1.12]); weighted IRD for hip fracture was 0.00 (95% CI, -0.16 to 0.16) events per 100 person-years (weighted HR, 0.99 [95% CI, 0.76 to 1.29]); and weighted IRD for MACE was -0.06 (95% CI, -0.20 to 0.09) events per 100 person-years (weighted HR, 0.90 [95% CI, 0.68 to 1.19]). CONCLUSION In patients with osteoporosis, there was no significant difference in the prevention of nonvertebral fracture and hip fracture between romosozumab and teriparatide. In addition, the risk of MACE was comparable between the two drugs.
Collapse
Affiliation(s)
- Soichiro Masuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Toshiki Fukasawa
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
- Department of Digital Health and Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satomi Yoshida
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Meryn A, Edsfeldt A, Sun J, Persson A, Gonçalves I, Shami A. Human sclerostin gene expression is associated with asymptomatic carotid atherosclerosis and plaque stability features. J Mol Cell Cardiol 2024; 197:59-60. [PMID: 39461713 DOI: 10.1016/j.yjmcc.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Anna Meryn
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Malmö, Skåne University Hospital, Sweden; Wallenberg Centre for Molecular Medicine, Sweden
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Ana Persson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Malmö, Skåne University Hospital, Sweden
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
4
|
Alcalde-Herraiz M, Xie J, Newby D, Prats C, Gill D, Gordillo-Marañón M, Prieto-Alhambra D, Català M, Prats-Uribe A. Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes. Nat Commun 2024; 15:9832. [PMID: 39537602 PMCID: PMC11561231 DOI: 10.1038/s41467-024-53623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Sclerostin inhibitors protect against osteoporotic fractures, but their cardiovascular safety remains unclear. We conducted a cis-Mendelian randomisation analysis to estimate the causal effect of sclerostin levels on cardiovascular risk factors. We meta-analysed three GWAS of sclerostin levels including 49,568 Europeans and selected 2 SNPs to be used as instruments. We included heel bone mineral density and hip fracture risk as positive control outcomes. Public GWAS and UK Biobank patient-level data were used for the study outcomes, which include cardiovascular events, risk factors, and biomarkers. Lower sclerostin levels were associated with higher bone mineral density and 85% reduction in hip fracture risk. However, genetically predicted lower sclerostin levels led to 25-85% excess coronary artery disease risk, 40% to 60% increased risk of type 2 diabetes, and worse cardiovascular biomarkers values, including higher triglycerides, and decreased HDL cholesterol levels. Results also suggest a potential (but borderline) association with increased risk of myocardial infarction. Our study provides genetic evidence of a causal relationship between reduced levels of sclerostin and improved bone health and fracture protection, but increased risk of cardiovascular events and risk factors.
Collapse
Affiliation(s)
- Marta Alcalde-Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, Spain
| | - JunQing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Danielle Newby
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Clara Prats
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, Spain
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Hospital, Imperial College London, London, UK
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Netherlands
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| | - Martí Català
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Albert Prats-Uribe
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Mäkinen VN, Sølling AS, McClung M, Langdahl BL. Romosozumab for the treatment of osteoporosis - a systematic review. J Endocrinol Invest 2024:10.1007/s40618-024-02469-1. [PMID: 39487940 DOI: 10.1007/s40618-024-02469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Romosozumab, a new treatment of osteoporosis, is a monoclonal antibody that targets sclerostin and thereby exhibits a dual mechanism of action by stimulating bone formation and inhibiting bone resorption. This systematic review aims to assess the clinical efficacy and safety of romosozumab for treatment of primary and secondary osteoporosis. METHODS A comprehensive literature search was conducted in October 2023 across multiple databases including Embase, PubMed and Cochrane Library. Randomized controlled trials (RCTs) and observational studies evaluating the impact of romosozumab on BMD, bone turnover markers (BTM), fracture outcomes, and its safety profile were included. Data extraction and quality assessment were performed independently by two reviewers in accordance with PRISMA guidelines. RESULTS A total of 36 articles met the inclusion criteria. Romosozumab significantly increased BMD at the lumbar spine, total hip, and femoral neck compared to placebo and active comparators in patients with primary osteoporosis. Sequential therapy with romosozumab followed by antiresorptives maintained or further increased BMD and reduced fracture risk. Romosozumab was generally well tolerated, however, an imbalance in cardiovascular adverse event was observed in one large clinical trial. Observational studies supported these findings. Specific subgroups of patients with secondary osteoporosis were assessed, demonstrating overall positive outcomes with romosozumab treatment. CONCLUSION Romosozumab effectively increases BMD and reduces fracture risk, particularly when used as initial therapy in high fracture-risk patients. Sequential therapy with subsequent antiresorptive treatment optimizes long-term benefits. While generally well-tolerated, its cardiovascular safety profile requires further long-term studies to ensure its safety in clinical practice. Additional studies are needed to confirm efficacy and safety in patients with secondary osteoporosis.
Collapse
Affiliation(s)
- V-N Mäkinen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - A S Sølling
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
| | - B L Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Vilaca T, Eastell R. Efficacy of Osteoporosis Medications in Patients with Type 2 Diabetes. Curr Osteoporos Rep 2024; 22:1-10. [PMID: 38093031 PMCID: PMC10912145 DOI: 10.1007/s11914-023-00833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 03/05/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of the review is to summarise the current scientific evidence on the efficacy of osteoporosis medications in patients with type 2 diabetes. RECENT FINDINGS Type 2 diabetes (T2D) is a growing global epidemic. The highest prevalence is observed in the elderly, the same population affected by osteoporosis. Despite normal or even increased bone mineral density and low bone turnover, T2D is associated with an increased risk of fractures in most skeletal sites. These findings raised concerns over the efficacy of anti-osteoporosis drugs in this population. There is no randomised controlled trial designed specifically for people with T2D. However, observational studies and post-hoc analyses of randomised controlled trials have provided valuable insights into the effects of various anti-osteoporosis treatments in this population. Overall, most anti-osteoporosis drugs seem to have similar efficacy and safety profiles for people with and without type 2 diabetes. However, continued research and long-term safety data are needed to optimise treatment strategies and improve bone health outcomes in this population. The current evidence suggests that most anti-osteoporosis drugs exhibit comparable efficacy in people with and without T2D.
Collapse
Affiliation(s)
- Tatiane Vilaca
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre - Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| | - Richard Eastell
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The role of wnt signalling in atherogenesis raises the possibility that the wnt inhibitor, sclerostin, provides a natural defence to this process, and that anti-sclerostin antibodies might increase the risk of atherosclerosis and associated conditions such as CVD. This article aims to triangulate evidence concerning possible adverse effects of sclerostin inhibition on CVD risk. RECENT FINDINGS Randomised controlled trials of treatment with the anti-sclerostin antibody, romosozumab, have yielded conflicting evidence with respect to possible adverse effects of sclerostin inhibition on CVD risk. To further examine the causal relationship between sclerostin inhibition and CVD risk, three Mendelian randomisation (MR) studies have examined effects of sclerostin lowering on CVD outcomes, using common genetic variants in the SOST gene which produces sclerostin, to mimic effects of a randomised trial. Concordant findings were seen in two studies, comprising an effect of sclerostin lowering on increased risk of MI and type II diabetes mellitus. One study also suggested that sclerostin lowering increases coronary artery calcification. Triangulation of evidence from different sources provides some suggestion that sclerostin lowering increases MI risk, supporting the need for CVD risk assessment when considering treatment with romosozumab.
Collapse
Affiliation(s)
- Jonathan H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Zheng J, Wheeler E, Pietzner M, Andlauer TFM, Yau MS, Hartley AE, Brumpton BM, Rasheed H, Kemp JP, Frysz M, Robinson J, Reppe S, Prijatelj V, Gautvik KM, Falk L, Maerz W, Gergei I, Peyser PA, Kavousi M, de Vries PS, Miller CL, Bos M, van der Laan SW, Malhotra R, Herrmann M, Scharnagl H, Kleber M, Dedoussis G, Zeggini E, Nethander M, Ohlsson C, Lorentzon M, Wareham N, Langenberg C, Holmes MV, Davey Smith G, Tobias JH. Lowering of Circulating Sclerostin May Increase Risk of Atherosclerosis and Its Risk Factors: Evidence From a Genome-Wide Association Meta-Analysis Followed by Mendelian Randomization. Arthritis Rheumatol 2023; 75:1781-1792. [PMID: 37096546 PMCID: PMC10586470 DOI: 10.1002/art.42538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors. METHODS A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors. RESULTS We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (β = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects. CONCLUSION This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of BristolBristolUK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Till F. M. Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Michelle S. Yau
- Marcus Institute for Aging Research, Hebrew SeniorLifeHarvard Medical SchoolBostonMassachusetts
| | | | - Ben Michael Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, and HUNT Research Centre, Department of Public Health and Nursing, NTNUNorwegian University of Science and TechnologyLevangerNorway
| | - Humaira Rasheed
- MRC IEU, Bristol Medical School, University of Bristol, Bristol, UK, and HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway, and Division of Medicine and Laboratory Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - John P. Kemp
- MRC IEU, Bristol Medical School, University of Bristol, Bristol, UK, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia, and The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Monika Frysz
- MRC IEU, Bristol Medical School, University of Bristol, and Musculoskeletal Research UnitUniversity of BristolBristolUK
| | - Jamie Robinson
- MRC IEU, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sjur Reppe
- Unger‐Vetlesen Institute, Lovisenberg Diaconal Hospital and Department of Plastic and Reconstructive Surgery, Oslo University Hospital and Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Vid Prijatelj
- Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands
| | | | - Louise Falk
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria, and SYNLAB Academy, SYNLAB Holding Deutschland GmbH and Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Ingrid Gergei
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, and Therapeutic Area Cardiovascular MedicineBoehringer Ingelheim International GmbHIngelheimGermany
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn Arbor
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public HealthThe University of Texas Health Science Center at Houston
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health SciencesUniversity of VirginiaCharlottesville
| | - Maxime Bos
- Department of Epidemiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division of Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Rajeev Malhotra
- Cardiology Division, Department of MedicineMassachusetts General HospitalBoston
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Marcus Kleber
- SYNLAB Academy, SYNLAB Holding Deutschland GmbHMannheimGermany
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, and Technical University of Munich (TUM) and Klinikum Rechts der IsarTUM School of MedicineMunichGermany
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Bioinformatics and Data Centre, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden, and Mary McKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Nick Wareham
- MRC Epidemiology Unit, Institute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Michael V. Holmes
- MRC IEU, Bristol Medical School, University of Bristol, and Medical Research Council Population Health Research Unit, University of Oxford, and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of Oxford, and National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University HospitalOxfordUK
| | | | - Jonathan H. Tobias
- MRC IEU, Bristol Medical School, University of Bristol, and Musculoskeletal Research UnitUniversity of BristolBristolUK
| |
Collapse
|
9
|
Movérare-Skrtic S, Voelkl J, Nilsson KH, Nethander M, Luong TTD, Alesutan I, Li L, Wu J, Horkeby K, Lagerquist MK, Koskela A, Tuukkanen J, Tobias JH, Lerner UH, Henning P, Ohlsson C. B4GALNT3 regulates glycosylation of sclerostin and bone mass. EBioMedicine 2023; 91:104546. [PMID: 37023531 PMCID: PMC10102813 DOI: 10.1016/j.ebiom.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING Found in acknowledgements.
Collapse
Affiliation(s)
- Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trang Thi Doan Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Lei Li
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Castañeda S, Gómez-Alonso C, Graña J, Guañabens N, Muñoz-Torres M, Peris P, Naves M, Álvaro-Gracia JM. Position of the Spanish Society of Rheumatology (SER) and the Spanish Society for Bone Research and Mineral Metabolism (SEIOMM) on romosozumab. REUMATOLOGIA CLINICA 2022; 18:383-386. [PMID: 35504824 DOI: 10.1016/j.reumae.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Santos Castañeda
- Servicio de Reumatología, Hospital de La Princesa, IIS-Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Gómez-Alonso
- UGC de Metabolismo Óseo, Hospital Universitario Central de Asturias, ISPA, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Jenaro Graña
- Servicio de Reumatología, CHU A Coruña, A Coruña, Spain
| | - Núria Guañabens
- Servicio de Reumatología, Hospital Clínic, IDIBAPs, Universidad de Barcelona, Barcelona, Spain.
| | - Manuel Muñoz-Torres
- Departamento de Medicina, Universidad de Granada, UGC Endocrinología y Nutrición Hospital Universitario Clínico San Cecilio, IBS, Granada, Spain
| | - Pilar Peris
- Servicio de Reumatología, Hospital Clínic, IDIBAPs, Universidad de Barcelona, Barcelona, Spain
| | - Manuel Naves
- UGC de Metabolismo Óseo, Hospital Universitario Central de Asturias, ISPA, REDinREN del ISCIII, Oviedo, Asturias, Spain
| | | |
Collapse
|
11
|
Abstract
Sclerostin is most recognized for its role in controlling bone formation but is also expressed in the heart, aorta, coronary, and peripheral arteries. This review summarizes research on sclerostin's role in cardiovascular disease. Rodent studies have found sclerostin to be expressed at sites of arterial calcification. In contrast, aortic sclerostin was reported to be downregulated in a mouse model of abdominal aortic aneurysm, and transgenic upregulation or administration of sclerostin was found to prevent abdominal aortic aneurysm and atherosclerosis formation. Sclerostin deficiency was reported to stimulate cardiac rupture in one rodent model. In humans, 7 of 11 studies reported a significant association between high serum sclerostin and high carotid intima media thickness. Ten of 15 studies reported a significant association between high serum sclerostin and severe arterial calcification. Twelve of 14 studies reported a significant association between high serum sclerostin and high arterial stiffness or atherosclerosis severity. Four of 9 studies reported a significant association between high serum sclerostin and high risk of cardiovascular events. A meta-analysis of randomized controlled trials suggested that administration of the sclerostin blocking antibody romosozumab did not significantly increase the risk of major adverse cardiovascular events (risk ratio, 1.14 [95% CI, 0.83-1.57]; P=0.54) or cardiovascular death (risk ratio, 0.92 [95% CI, 0.53-1.59]; P=0.71). Human genetic studies reported variants predisposing to low arterial sclerostin expression were associated with a high risk of cardiovascular events. Overall, past research suggests a cardiovascular protective role of sclerostin but findings have been inconsistent, possibly due to variations in study design, the unique populations and models studied, and the heterogeneous methods used.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.G., S.T.), James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine J.G.' S.T.), James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.G., S.T.), James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine J.G.' S.T.), James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Queensland, Australia (J.G.)
| |
Collapse
|
12
|
Mace ML, Gravesen E, Nordholm A, Egstrand S, Morevati M, Olgaard K, Lewin E. The calcified vasculature in chronic kidney disease secretes factors that inhibit bone mineralization. JBMR Plus 2022; 6:e10610. [PMID: 35434452 PMCID: PMC9009125 DOI: 10.1002/jbm4.10610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Anders Nordholm
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| | - Soeren Egstrand
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| | | | | | - Ewa Lewin
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| |
Collapse
|
13
|
Frysz M, Gergei I, Scharnagl H, Smith GD, Zheng J, Lawlor DA, Herrmann M, Maerz W, Tobias JH. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors. J Bone Miner Res 2022; 37:273-284. [PMID: 34738659 PMCID: PMC9377011 DOI: 10.1002/jbmr.4467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Romosozumab is a newly available treatment for osteoporosis acting by sclerostin inhibition. Its cardiovascular safety has been questioned after finding excess cardiovascular disease (CVD)-related events in a pivotal phase 3 trial. Previous studies of relationships between circulating sclerostin levels and CVD and associated risk factors have yielded conflicting findings, likely reflecting small numbers and selected patient groups. We aimed to characterize relationships between sclerostin and CVD and related risk factors in more detail by examining these in two large cohorts, Ludwigshafen Risk and Cardiovascular Health study (LURIC; 34% female, mean age 63.0 years) and Avon Longitudinal Study of Parents and Children study (ALSPAC) mothers (mean age 48.1 years). Together these provided 5069 participants with complete data. Relationships between sclerostin and CVD risk factors were meta-analyzed, adjusted for age, sex (LURIC), body mass index, smoking, social deprivation, and ethnicity (ALSPAC). Higher sclerostin levels were associated with higher risk of diabetes mellitus (DM) (odds ratio [OR] = 1.25; 95% confidence interval [CI] 1.12, 1.37), risk of elevated fasting glucose (OR 1.15; CI 1.04, 1.26), and triglyceride levels (β 0.03; CI 0.00, 0.06). Conversely, higher sclerostin was associated with lower estimated glomerular filtration rate (eGFR) (β -0.20; CI -0.38, -0.02), HDL cholesterol (β -0.05; CI -0.10, -0.01), and apolipoprotein A-I (β -0.05; CI -0.08, -0.02) (difference in mean SD per SD increase in sclerostin, with 95% CI). In LURIC, higher sclerostin was associated with an increased risk of death from cardiac disease during follow-up (hazard ratio [HR] = 1.13; 1.03, 1.23) and with severity of coronary artery disease on angiogram as reflected by Friesinger score (0.05; 0.01, 0.09). Associations with cardiac mortality and coronary artery severity were partially attenuated after adjustment for risk factors potentially related to sclerostin, namely LDL and HDL cholesterol, log triglycerides, DM, hypertension, eGFR, and apolipoprotein A-I. Contrary to trial evidence suggesting sclerostin inhibition leads to an increased risk of CVD, sclerostin levels appear to be positively associated with coronary artery disease severity and mortality, partly explained by a relationship between higher sclerostin levels and major CVD risk factors. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Monika Frysz
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Ingrid Gergei
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Therapeutic Area Cardiovascular Medicine, Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Winfried Maerz
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - Jon H Tobias
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Cejka D. Cardiovascular Safety of Anti-Sclerostin Therapy in Chronic Kidney Disease. Metabolites 2021; 11:770. [PMID: 34822428 PMCID: PMC8624769 DOI: 10.3390/metabo11110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The significance of sclerostin for bone and cardiovascular health in patients with chronic kidney disease (CKD) is complex and incompletely understood. Experimental evidence suggests that anti-sclerostin therapy shows diminished efficacy on bone in the setting of CKD. Limited clinical evidence suggests that the osteoanabolic and anti-resorptive activity is attenuated, but hypocalcemia is more prevalent in patients with advanced CKD (eGFR < 30 mL/min) treated with anti-sclerostin (romosozumab) therapy as compared to patients without kidney disease. Furthermore, sclerostin is prominently expressed in uremic arteries. Whether the inhibition of sclerostin has adverse effects on cardiovascular health in CKD is currently unknown. This review summarizes the current understanding of the physiology and pathophysiology of sclerostin in CKD, with a focus on the cardiovascular safety of anti-sclerostin therapy in patients with or without CKD.
Collapse
Affiliation(s)
- Daniel Cejka
- Department of Medicine III: Nephrology, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz-Elisabethinen Hospital, Fadingerstraße 1, 4020 Linz, Austria
| |
Collapse
|
15
|
Takeuchi Y. Romosozumab and cardiovascular safety in Japan. Osteoporos Sarcopenia 2021; 7:89-91. [PMID: 34632110 PMCID: PMC8486612 DOI: 10.1016/j.afos.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 11/02/2022] Open
Abstract
Romosozumab is a potent pharmacological tool to prevent fractures in osteoporosis patients, and its mechanism of action is distinct from any other drugs. The efficacy of romosozumab to prevent osteoporotic fractures is remarkable. However, there remains a concern of increased cardiovascular adverse events. Further relevant investigations are essential to understand whether romosozumab is actually involved in the development of cardiovascular events or not. We need more robust evidence to establish an appropriate and reasonable guide to prescribe romosozumab in our clinical practice.
Collapse
Affiliation(s)
- Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center, Tokyo, Japan
- Okinaka Memorial Medical Institute, Tokyo, Japan
| |
Collapse
|