1
|
Besio R, Contento BM, Garibaldi N, Filibian M, Sonntag S, Shmerling D, Tonelli F, Biggiogera M, Brini M, Salmaso A, Jovanovic M, Marini JC, Rossi A, Forlino A. CaMKII inhibition due to TRIC-B loss-of-function dysregulates SMAD signaling in osteogenesis imperfecta. Matrix Biol 2023; 120:43-59. [PMID: 37178987 PMCID: PMC11123566 DOI: 10.1016/j.matbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signaling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signaling and to a less extend by a lower TGF-β reservoir. SMAD signaling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-β treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signaling in bone.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marta Filibian
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy; INFN, Istituto Nazionale di Fisica Nucleare-Pavia Unit, Pavia, Italy
| | - Stephan Sonntag
- PolyGene AG, Rümlang, Switzerland; LIMES-Institute, University of Bonn, Bonn , Germany
| | | | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Andrea Salmaso
- Department of Biology, University of Padova, Padova, Italy
| | - Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
2
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
3
|
Liu C, Wang C, Yang J. PCL-nHAC/Mg-Ca alloy composite and preliminary study of its osteogenesis property. J Biomater Appl 2023; 37:1218-1227. [PMID: 36169009 DOI: 10.1177/08853282221130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to their excellent properties, magnesium alloys are widely used in bone tissue engineering. However, considerable work has been conducted to control the degradation rate and improve the cytocompatibility of magnesium alloys. In this study, low-cost production introduced a new bone repair composite (PCL-nHAC/Mg-Ca), which was composed of nano-hydroxylapatite-collagen (nHAC), polycaprolactone (PCL) and Mg-Ca alloy substrate treated by micro- arc oxidation (MAO). The experimental results showed that compared with the Mg-Ca alloy treated by MAO alone, the PCL-nHAC/Mg-Ca composite has a porous structure and a slower degradation rate. Cell experiments showed that the PCL-nHAC/Mg-Ca composite had good biocompatibility and significantly enhanced the proliferation of the MC3T3-E1 cells. The rabbit skull defect model further proved that the PCL-nHAC/Mg-Ca composite could regulate the degradation rate of the Mg-Ca alloy and promote the formation of bone tissue. Histological analyses showed that the PCL-nHAC/Mg-Ca composite had good stability in vivo and could better accelerate bone formation.
Collapse
Affiliation(s)
- Congying Liu
- Department of Prosthodontics, 154516Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chengyue Wang
- Department of Prosthodontics, 154516Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | | |
Collapse
|
4
|
Osteogenic growth peptide enhances osteogenic differentiation of human periodontal ligament stem cells. Heliyon 2022; 8:e09936. [PMID: 35874053 PMCID: PMC9304736 DOI: 10.1016/j.heliyon.2022.e09936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Bone tissue engineering consists of three major components namely cells, scaffolds, and signaling molecules to improve bone regeneration. These integrated principles can be applied in patients suffered from bone resorption diseases, such as osteoporosis and periodontitis. Osteogenic growth peptide (OGP) is a fourteen-amino acid sequence peptide that has the potential to regenerate bone tissues. This study aimed to disseminate the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) with OGP treatment. OGP was elaborated for proliferation, cytotoxicity, osteogenic differentiation effects, and the involvement of osteogenic related signaling pathways in vitro. This study found that OGP at lower concentration shows better effects on cytotoxicity and proliferation. Moreover, OGP at concentration 0.01 nM had the most potential to differentiate hPDLSCs toward osteogenic lineage comparing with higher concentrations of OGP. The phenomenon was mainly involving transforming growth factor-beta (TGF-β), bone morphogenetic protein (BMP), Hedgehog, and Wingless-related (Wnt) pathways. Further, SB-431542 treatment demonstrated the partial involvement of OGP in regulating osteogenic differentiation of hPDLSCs. In conclusion, OGP at low concentration enhances osteogenic differentiation of hPDLSCs by governing TGF-β signaling pathway.
Collapse
|
5
|
Migliorini F, Eschweiler J, Goetze C, Pastor T, Giorgino R, Hildebrand F, Maffulli N. Cell therapies for chondral defects of the talus: a systematic review. J Orthop Surg Res 2022; 17:308. [PMID: 35690865 PMCID: PMC9188715 DOI: 10.1186/s13018-022-03203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background This systematic review investigated the efficacy and safety of surgical procedures augmented with cell therapies for chondral defects of the talus. Methods The present systematic review was conducted according to the 2020 PRISMA guidelines. PubMed, Google scholar, Embase, and Scopus databases were accessed in March 2022. All the clinical trials investigating surgical procedures for talar chondral defects augmented with cell therapies were accessed. The outcomes of interest were to investigate whether surgical procedures augmented with cell therapies promoted improvement in patients reported outcomes measures (PROMs) with a tolerable rate of complications. Results Data from 477 procedures were retrieved. At a mean follow-up of 34.8 ± 9.7 months, the Visual Analogic Scale (VAS) improved of 4.4/10 (P = 0.002) and the American Orthopaedic Foot and Ankle Score (AOFAS) of 31.1/100 (P = 0.0001) points. No improvement was found in Tegner score (P = 0.4). Few articles reported data on complications. At last follow-up, the rate of reoperation and failure were 0.06% and 0.03%, respectively. No graft delamination or hypertrophy was observed. Conclusion The current evidence suggests that cell therapies may be effective and safe to enhance surgical procedures for chondral defects of the talus. These results should be considered within the limitations of the present study. The current literature should be enriched with randomized controlled clinical trials with larger population size and longer follow-up.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Goetze
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Torsten Pastor
- Department of Orthopaedic and Trauma Surgery, Cantonal Hospital, 6000, Lucerne, Switzerland
| | - Riccardo Giorgino
- IRCCS Istituto Ortopedico Galeazzi, University of Milan, 20161, Milan, Italy
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, Italy.,Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, ST4 7QB, Stoke on Trent, England.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, E1 4DG, London, England
| |
Collapse
|
6
|
Migliorini F, Cuozzo F, Cipollaro L, Oliva F, Hildebrand F, Maffulli N. Platelet-rich plasma (PRP) augmentation does not result in more favourable outcomes in arthroscopic meniscal repair: a meta-analysis. J Orthop Traumatol 2022; 23:8. [PMID: 35129728 PMCID: PMC8821738 DOI: 10.1186/s10195-022-00630-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Background The efficacy and safety of platelet-rich plasma (PRP) augmentation for arthroscopic meniscal repair is controversial. This meta-analysis compared arthroscopic meniscal repair performed in isolation or augmented with PRP. Methods The present study was conducted according to PRISMA 2020 guidelines. Pubmed, Web of Science, Google Scholar and Embase were accessed in August 2021. All the clinical trials which compared arthroscopic meniscal repair performed in isolation or augmented with PRP were included. Results Eight hundred thirty-seven patients were included: 38% (318 of 837 patients) were women; the mean age of the patients was 35.6 (range, 20.8–64.3) years; the mean follow-up was 26.2 (range, 6–54) months. Similarity was found in analogue scale (VAS) (P = 0.5) and Lysholm (P = 0.9), and International Knee Documentation Committee (IKDC) scores (P = 0.9). Similarity was found in the rate of failure (P = 0.4) and rate of revision (P = 0.07). Conclusion The current published scientific evidence does not support PRP augmentation for arthroscopic meniscal repair.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy
| | - Lucio Cipollaro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy.,School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, Thornburrow Drive, Stoke on Trent, England.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
7
|
Sadeghifar A, Sheibani M, Joukar S, Dabiri S, Alavi S, Azari O, Vosoghi D, Zeynali Y, Zeynali Y, Shahraki M, Torghabe A, Rostamzadeh F, Nasri A. The Effect of Waterpipe Tobacco Smoking on Bone Healing Following Femoral Fractures in Male Rats. Front Surg 2021; 8:722446. [PMID: 34671637 PMCID: PMC8520932 DOI: 10.3389/fsurg.2021.722446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Given the increasing use of waterpipe tobacco smoking in the world and its unknown effects on bone healing, this study investigated the repairing of femoral bone fractures in rats exposed to waterpipe tobacco smoking (WTS). Main Methods: This study involved 40 male Wistar rats that were divided into two groups, including the femoral fracture (Fx) and the Fx + WTS groups. Each group was divided into two subgroups that were evaluated for bone healing 28 and 42 days after femoral fracture. After fixing the fractured femur, the healing process was evaluated by radiography, pathological indicators, and a measurement of the blood levels of vascular endothelial growth factor (VEGF), parathyroid hormone (PTH), Ca ++, transforming growth factor-beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Additionally, the density of VEGF and CD34 in fracture tissue was investigated by immunohistochemistry. Key Findings: Radiographic findings showed that factors related to the earlier stages of bone healing had higher scores in the Fx + WTS28 and 42 subgroups in comparison to the Fx groups. The density of VEGF and CD34 showed that the angiogenesis processes were different in the bone fracture area and callus tissue in the Fx +WTS subgroups. The serum levels of VEGF, TGF-β, and IGF-1 were significantly lower in the Fx +WTS42 group, and PTH in the Fx +WTS28 group was higher than that in the other groups. Significance: The findings showed the disturbance and delay in the femoral fracture union in rats exposed to hookah smoke. This is partly due to the reduction of molecular stimuli of bone synthesis and the attenuation of quantitative angiogenesis.
Collapse
Affiliation(s)
- Amirreza Sadeghifar
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Sheibani
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Samanehsadat Alavi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Azari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Darioush Vosoghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yas Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasman Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Shahraki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Amirhesam Torghabe
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Han X, Zhu N, Wang Y, Cheng G. 1,25(OH)2D3 inhibits osteogenic differentiation through activating β‑catenin signaling via downregulating bone morphogenetic protein 2. Mol Med Rep 2020; 22:5023-5032. [PMID: 33173996 PMCID: PMC7646955 DOI: 10.3892/mmr.2020.11619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
The present study explored whether bone morphogenetic proteins (BMPs) and Wnt/β-catenin signaling pathways were involved in the 1,25(OH)2D3-induced inhibition of osteogenic differentiation in bone marrow-derived mesenchymal stem cells (BMSCs). To evaluate the osteogenic differentiation of BMSCs, the expression levels of ossification markers, including BMP2, Runt-related transcription factor 2 (Runx2), Msh homeobox 2 (Msx2), osteopontin (OPN) and osteocalcin (OCN), and the activity of alkaline phosphatase (ALP), as well as the calcified area observed by Alizarin red-S staining, were investigated. Chromatin immunoprecipitation (ChIP) assay was used to detect the effect of 1,25(OH)2D3 on the DNA methylation and histone modification of BMP2, while an immunoprecipitation (IP) assay was performed to assess the crosstalk between Smad1 and disheveled-1 (Dvl-1) proteins. It was observed that 1,25(OH)2D3 significantly decreased the expression levels of BMP2, Runx2, Msx2, OPN and OCN, and reduced ALP activity and the calcified area in BMSCs, whereas these effects were rescued by BMP2 overexpression. ChIP assay revealed that BMSCs treated with 1,25(OH)2D3 exhibited a significant increase in H3K9me2 level and a decrease in the acetylation of histone H3 at the same BMP2 promoter region. In addition, 1,25(OH)2D3 treatment promoted the nuclear accumulation of β-catenin by downregulating BMP2. Furthermore, the β-catenin signaling inhibitor XAV-939 weakened the inhibitory effect of 1,25(OH)2D3 on osteogenic differentiation. Additionally, knockdown of β-catenin rescued the attenuation in Dvl-1 and Smad1 interaction caused by 1,25(OH)2D3. Overexpression of Smad1 also reversed the inhibitory effect of 1,25(OH)2D3 on osteogenic differentiation. Taken together, the current study demonstrated that 1,25(OH)2D3 inhibited the differentiation of BMSCs into osteoblast-like cells by inactivating BMP2 and activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Naifeng Zhu
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yihan Wang
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Guangqi Cheng
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
9
|
Ha SH, Choung PH. MSM promotes human periodontal ligament stem cells differentiation to osteoblast and bone regeneration. Biochem Biophys Res Commun 2020; 528:160-167. [PMID: 32466845 DOI: 10.1016/j.bbrc.2020.05.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Periodontal disease is the most common chronic disease of the oral and maxillofacial region, causing alveolar bone loss and ultimate loss of tooth. The purpose of treatment of periodontal disease is to promote the regeneration of periodontal tissue, including alveolar bone, and implantation of fixtures to replace the missing tooth as a result of advanced periodontal disease also requires alveolar bone regeneration. Methylsulfonylmethane (MSM) is a sulfur compound with well-known anti-inflammatory effects but its effects on bone regeneration are unknown. In this study, we investigated the effects of MSM on osteogenic differentiation of human PDLSCs (hPDLSCs) in vitro and in vivo. Our results demonstrate that MSM not only promotes the proliferation but also promotes osteogenic differentiation of hPDLSCs. MSM increased the expression levels of osteogenic specific markers that ALP, OPN, OCN, Runx2, and OSX. Smad2/3 signaling pathway was reinforced by MSM. Runx2, which downstream of Smad pathway, was expressed in accordance. Consistent with in vitro results, in vivo calvarial defect model and transplantation model revealed that MSM induces hPDLSCs to differentiate into osteoblast, which express ALP, OPN and OCN highly and enhance bone formation. These results suggest that MSM promotes osteogenic differentiation and bone formation of hPDLSCs, and Smad2/3 / Runx2 / OSX / OPN may play critical roles in the MSM-induced osteogenic differentiation. Thus, MSM combined with hPDLSCs may be a good candidate for future clinical applications in alveolar bone regeneration and can be used for graft material in reconstructive dentistry.
Collapse
Affiliation(s)
- Sung-Ho Ha
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Shiflett LA, Tiede-Lewis LM, Xie Y, Lu Y, Ray EC, Dallas SL. Collagen Dynamics During the Process of Osteocyte Embedding and Mineralization. Front Cell Dev Biol 2019; 7:178. [PMID: 31620436 PMCID: PMC6759523 DOI: 10.3389/fcell.2019.00178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lora A. Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Eleanor C. Ray
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Sarah L. Dallas,
| |
Collapse
|
11
|
Cigarette Smoke Induces the Risk of Metabolic Bone Diseases: Transforming Growth Factor Beta Signaling Impairment via Dysfunctional Primary Cilia Affects Migration, Proliferation, and Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20122915. [PMID: 31207955 PMCID: PMC6628373 DOI: 10.3390/ijms20122915] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
It is well established that smoking has detrimental effects on bone integrity and is a preventable risk factor for metabolic bone disorders. Following orthopedic surgeries, smokers frequently show delayed fracture healing associated with many complications, which results in prolonged hospital stays. One crucial factor responsible for fracture repair is the recruitment and differentiation of mesenchymal stem cells (MSCs) at early stages, a mechanism mediated by transforming growth factor β (TGF-β). Although it is known that smokers frequently have decreased TGF-β levels, little is known about the actual signaling occurring in these patients. We investigated the effect of cigarette smoke on TGF-β signaling in MSCs to evaluate which step in the pathway is affected by cigarette smoke extract (CSE). Single-cell-derived human mesenchymal stem cell line (SCP-1 cells) were treated with CSE concentrations associated with smoking up to 20 cigarettes a day. TGF-β signaling was analyzed using an adenovirus-based reporter assay system. Primary cilia structure and downstream TGF-β signaling modulators (Smad2, Smad3, and Smad4) were analyzed by Western blot and immunofluorescence staining. CSE exposure significantly reduced TGF-β signaling. Intriguingly, we observed that protein levels of phospho-Smad2/3 (active forms) as well as nuclear translocation of the phospho-Smad3/4 complex decreased after CSE exposure, phenomena that affected signal propagation. CSE exposure reduced the activation of TGF-β modulators under constitutive activation of TGF-β receptor type I (ALK5), evidencing that CSE affects signaling downstream of the ALK5 receptor but not the binding of the cytokine to the receptor itself. CSE-mediated TGF-β signaling impaired MSC migration, proliferation, and differentiation and ultimately affected endochondral ossification. Thus, we conclude that CSE-mediated disruption of TGF-β signaling in MSCs is partially responsible for delayed fracture healing in smokers.
Collapse
|
12
|
Wang K, Le L, Chun BM, Tiede-Lewis LM, Shiflett LA, Prideaux M, Campos RS, Veno PA, Xie Y, Dusevich V, Bonewald LF, Dallas SL. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. J Bone Miner Res 2019; 34:979-995. [PMID: 30882939 PMCID: PMC7350928 DOI: 10.1002/jbmr.3720] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/20/2023]
Abstract
Osteocytes, the most abundant cells in bone, were once thought to be inactive, but are now known to have multifunctional roles in bone, including in mechanotransduction, regulation of osteoblast and osteoclast function and phosphate homeostasis. Because osteocytes are embedded in a mineralized matrix and are challenging to study, there is a need for new tools and cell models to understand their biology. We have generated two clonal osteogenic cell lines, OmGFP66 and OmGFP10, by immortalization of primary bone cells from mice expressing a membrane-targeted GFP driven by the Dmp1-promoter. One of these clones, OmGFP66, has unique properties compared with previous osteogenic and osteocyte cell models and forms 3-dimensional mineralized bone-like structures, containing highly dendritic GFP-positive osteocytes, embedded in clearly defined lacunae. Confocal and electron microscopy showed that structurally and morphologically, these bone-like structures resemble bone in vivo, even mimicking the lacunocanalicular ultrastructure and 3D spacing of in vivo osteocytes. In osteogenic conditions, OmGFP66 cells express alkaline phosphatase (ALP), produce a mineralized type I collagen matrix, and constitutively express the early osteocyte marker, E11/gp38. With differentiation they express osteocyte markers, Dmp1, Phex, Mepe, Fgf23, and the mature osteocyte marker, Sost. They also express RankL, Opg, and Hif1α, and show expected osteocyte responses to PTH, including downregulation of Sost, Dmp1, and Opg and upregulation of RankL and E11/gp38. Live cell imaging revealed the dynamic process by which OmGFP66 bone-like structures form, the motile properties of embedding osteocytes and the integration of osteocyte differentiation with mineralization. The OmGFP10 clone showed an osteocyte gene expression profile similar to OmGFP66, but formed less organized bone nodule-like mineral, similar to other osteogenic cell models. Not only do these cell lines provide useful new tools for mechanistic and dynamic studies of osteocyte differentiation, function, and biomineralization, but OmGFP66 cells have the unique property of modeling osteocytes in their natural bone microenvironment. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lisa Le
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Brad M Chun
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Matthew Prideaux
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Richard S Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA.,Department of Orthopaedic Surgery, Indiana University, Indianapolis, IN, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
13
|
Hepatic Osteodystrophy-Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci 2019; 20:ijms20102555. [PMID: 31137669 PMCID: PMC6566554 DOI: 10.3390/ijms20102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)–osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.
Collapse
|
14
|
Dernek B, Kesiktas FN. Efficacy of combined ozone and platelet-rich-plasma treatment versus platelet-rich-plasma treatment alone in early stage knee osteoarthritis. J Back Musculoskelet Rehabil 2019; 32:305-311. [PMID: 30452396 DOI: 10.3233/bmr-181301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic disease most often occurring in knee joints, leading to pain of varying severity and deterioration in daily living activities. OBJECTIVE To compare efficacy of platelet-rich-plasma (PRP) versus PRP in combination with ozone gas injection in patients with early stage knee OA. METHODS Retrospective data of patients who received PRP alone (n= 45) or combined treatment (PRP + ozone, n= 35) injection was analyzed. Patients were evaluated using the visual analogue scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. RESULTS In both PRP alone and combined treatment groups, post-treatment VAS and WOMAC scores at month 1, month 3, and month 6 showed a significant reduction compared to pre-treatment scores (p< 0.001). Physical function and total WOMAC scores as well as VAS scores at post-treatment month 3 were significantly lower in the combined treatment group compared to the PRP alone group. Moreover, in the combined treatment group, VAS scores on Day 10 and hyper-inflammation at the injection site was significantly lower than the PRP alone group. CONCLUSION In general, similar efficacy was observed between treatment with PRP alone and treatment with PRP in combination with ozone. However, patients receiving ozone treatment are less likely to experience post-injection pain and are more likely to recover faster when compared to patients receiving PRP treatment alone.
Collapse
|
15
|
Kim SY, Kim YK, Kim KS, Lee KB, Lee MH. Enhancement of bone formation on LBL-coated Mg alloy depending on the different concentration of BMP-2. Colloids Surf B Biointerfaces 2019; 173:437-446. [DOI: 10.1016/j.colsurfb.2018.09.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 02/02/2023]
|
16
|
Almehmadi A, Ohyama Y, Kaku M, Alamoudi A, Husein D, Katafuchi M, Mishina Y, Mochida Y. VWC2 Increases Bone Formation Through Inhibiting Activin Signaling. Calcif Tissue Int 2018; 103:663-674. [PMID: 30074079 PMCID: PMC6549224 DOI: 10.1007/s00223-018-0462-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
By a bioinformatics approach, we have identified a novel cysteine knot protein member, VWC2 (von Willebrand factor C domain containing 2) previously known as Brorin. Since Brorin has been proposed to function as a bone morphogenetic protein (BMP) antagonist, we investigated the binding of Brorin/VWC2 to several BMPs; however, none of the BMPs tested were bound to VWC2. Instead, the βA subunit of activin was found as a binding partner among transforming growth factor (TGF)-β superfamily members. Here, we show that Vwc2 gene expression is temporally upregulated early in osteoblast differentiation, VWC2 protein is present in bone matrix, and localized at osteoblasts/osteocytes. Activin A-induced Smad2 phosphorylation was inhibited in the presence of exogenous VWC2 in MC3T3-E1 osteoblast cell line and primary osteoblasts. The effect of VWC2 on ex vivo cranial bone organ cultures treated with activin A was investigated, and bone morphometric parameters decreased by activin A were restored with VWC2. When we further investigated the biological mechanism how VWC2 inhibited the effects of activin A on bone formation, we found that the effects of activin A on osteoblast cell growth, differentiation, and mineralization were reversed by VWC2. Taken together, a novel secretory protein, VWC2 promotes bone formation by inhibiting Activin-Smad2 signaling pathway.
Collapse
Affiliation(s)
- Ahmad Almehmadi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Periodontology and Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Departoment of Maxillofacial Surgery, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dina Husein
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Michitsuna Katafuchi
- Department of Oral Rehabilitation, Section of Fixed Prosthodontics, Fukuoka Dental College, Fukuoka, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Sun Y, Tan J, Yin X, Wu B, Feng B. Regulation of Osteoblast Differentiation by Affinity Peptides of TGF-β1 Identified via Phage Display Technology. ACS Biomater Sci Eng 2018; 4:2552-2562. [PMID: 33435118 DOI: 10.1021/acsbiomaterials.8b00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor β1 (TGF-β1) plays a dual role in bone formation. In addition to promoting early differentiation of osteogenesis, it may also lead to uncontrolled extracellular matrix synthesis, inhibition of bone mineralization in the late stage, and aberrant bone remodeling. In this work, affinity peptides of TGF-β1 (Tβms) were identified from a phage display library to modify the TGF-β1 signal transduction. Tβms with more order and compact structures tended to have a higher affinity to TGF-β1 but maintained a greater immunoreactivity of TGF-β1. Tβms promoted the early osteoblast proliferation and had a negligible effect on the osteoblast differentiation. In synergy with exogenous TGF-β1, Tβms reduced the alkaline phosphatase (ALP) mRNA expression but significantly improved the expression of osteocalcin (OCN), along with impaired phosphorylation of Smad2/3. Moreover, osteoblasts showed an overall increase in ALP activity and Ca deposition than the blank control. These results demonstrated that Tβms could weaken the inhibition of TGF-β1 on osteogenic differentiation in the late stage. Depending on the impact features of Tβms on TGF-β1 response, these peptides may help to modify the implant surfaces to optimize the bone remodeling of interface, and be of interest in design of multidomain peptides.
Collapse
Affiliation(s)
- Yuhua Sun
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing Tan
- School of Life Science, Shanxi Datong University, Datong 037009, China
| | - Xianzhen Yin
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Baohua Wu
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
18
|
Valerio P, Perfeito F, Moura LP, Ribeiro DN, Fernandes SOA, Martins AS, Leite MF. Mandible protraction alters Type I collagen, osteocalcin and osteonectin gene expression in adult mice condyle. ANNALI DI STOMATOLOGIA 2018; 8:95-103. [PMID: 29682221 DOI: 10.11138/ads/2017.8.3.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mandible condyle remodeling is a great challenge on craniofacial growth studies. The great majority of the reports deals with growing period. However, there is a great necessity to clarify the importance of functional stimulation on adult mandible condyle remodeling. By using an adult mouse model, we investigated the influence of mandible forwarding on condyle remodeling and gene expression by bone forming cells. Tomographic and scintigraphic evaluations showed sagittal growth and cell activity enhancement. RT-PCR showed that Type I collagen, osteocalcin and osteonectin expression level can be altered. We showed that functional stimulation is necessary to maintain the regular gene expression by condyle bone forming cells in adult mice. It opens new frame for further investigations aiming new clinical approaches to temporomandibular joint problems treatment, as well as mandible retrusion treatment.
Collapse
Affiliation(s)
- Patricia Valerio
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | - Filipi Perfeito
- School of Pharmacy, Federal University of Minas Gerais, Brazil
| | - Livia P Moura
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | - Deborah N Ribeiro
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | | | - Almir S Martins
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | - Maria F Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| |
Collapse
|
19
|
Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4178021. [PMID: 29736392 PMCID: PMC5875037 DOI: 10.1155/2018/4178021] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023]
Abstract
Objectives The present study aimed to investigate the overall effect of quercetin on mouse bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation in vitro. Materials and Methods BMSCs were treated with different concentrations of quercetin for 6 days. The effects of quercetin on cell proliferation were assessed at predetermined times using Cell Counting Kit-8 (CCK-8) assay. The cells were then treated with quercetin, estrogen, or an estrogen receptor (ER) antagonist (which was also administered in the presence of quercetin or estrogen) for 7 or 21 days. The effects of quercetin on BMSC osteogenic differentiation were analyzed by an alkaline phosphatase (ALP) assay kit, Alizarin Red S staining (ARS), quantitative real-time PCR (qPCR), and western blotting. Results The CCK-8 and ALP assays and ARS staining showed that quercetin significantly enhanced BMSC proliferation, ALP activity, and extracellular matrix production and mineralization, respectively. The qPCR results indicated that quercetin promoted osterix (OSX), runt-related transcription factor 2 (RUNX2), and osteopontin (OPN) transcription in the presence of osteoinduction medium, and the western blotting results indicated that quercetin enhanced bone morphogenetic protein 2 (BMP2), Smad1, Smad4, RUNX2, OSX, and OPN expression and Smad1 phosphorylation. Treatment with the ER inhibitor ICI182780 blocked the effects of quercetin. Conclusions Our data demonstrated that quercetin promotes BMSC proliferation and osteogenic differentiation. Quercetin enhances BMP signaling pathway activation and upregulates the expression of downstream genes, such as OSX, RUNX2, and OPN, via the ER.
Collapse
|
20
|
Datko Williams L, Farley A, Cupelli M, Alapati S, Kennedy MS, Dean D. Effects of substrate stiffness on dental pulp stromal cells in culture. J Biomed Mater Res A 2018; 106:1789-1797. [PMID: 29468814 DOI: 10.1002/jbm.a.36382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
Dental pulp stromal cells (DPSCs) can be differentiated down lineages known to either express bone or dentin specific protein markers. Since the differentiation of cells can be heavily influenced by their environment, it may be possible to influence the osteogenic/odontogenic potential of DPSCs by modulating the mechanical properties of substrate on which they are grown. In this study, human DPSCs were grown with and without hydroxyapatite (HA) microparticles on a range of substrates including fibronectin-coated hydrogels and glass substrates, which represented an elastic moduli range of approximately 3 kPa-50 GPa, over a 21-day period. Alkaline phosphatase activity, osteopontin production, and mineralization were monitored. The presence of HA microparticles increased the relative degree of mineralized matrix produced by the cells relative to those in the same substrate and media condition without the HA microparticles. In addition, cultures with cells grown on stiffer substrates had higher ALP activity and higher degree of mineralization than those grown on softer substrates. This study shows that DPSCs are affected by the mechanical properties of their underlying growth substrate and by the presence of HA microparticles. In addition, relatively stiff substrates (>75 kPa) may be required for significant mineralization of these cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1789-1797, 2018.
Collapse
Affiliation(s)
| | - Amanda Farley
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Matthew Cupelli
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Satish Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Marian S Kennedy
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, 29634
| | - Delphine Dean
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
21
|
Hudnall AM, Arthur JW, Lowery JW. Clinical Relevance and Mechanisms of Antagonism Between the BMP and Activin/TGF-β Signaling Pathways. J Osteopath Med 2017; 116:452-61. [PMID: 27367950 DOI: 10.7556/jaoa.2016.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transforming growth factor β (TGF-β) superfamily is a large group of signaling molecules that participate in embryogenesis, organogenesis, and tissue homeostasis. These molecules are present in all animal genomes. Dysfunction in the regulation or activity of this superfamily's components underlies numerous human diseases and developmental defects. There are 2 distinct arms downstream of the TGF-β superfamily ligands-the bone morphogenetic protein (BMP) and activin/TGF-β signaling pathways-and these 2 responses can oppose one another's effects, most notably in disease states. However, studies have commonly focused on a single arm of the TGF-β superfamily, and the antagonism between these pathways is unknown in most physiologic and pathologic contexts. In this review, the authors summarize the clinically relevant scenarios in which the BMP and activin/TGF-β pathways reportedly oppose one another and identify several molecular mechanisms proposed to mediate this interaction. Particular attention is paid to experimental findings that may be informative to human pathology to highlight potential therapeutic approaches for future investigation.
Collapse
|
22
|
Zhang X, Chen J, Pei X, Wang J, Wan Q, Jiang S, Huang C, Pei X. Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25171-25183. [PMID: 28696091 DOI: 10.1021/acsami.7b07800] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Zhang
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Junyu Chen
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Xiang Pei
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Jian Wang
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Qianbing Wan
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Shaokang Jiang
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Chao Huang
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| | - Xibo Pei
- State
Key Laboratory of Oral Diseases, National Clinical Research
Center for Oral Diseases, §Department of Prosthodontics, West China Hospital of
Stomatology, ⊥Postanesthesia Care Unit, West China Hospital of Stomatology, and ∥College of Chemistry, Sichuan University, Chengdu 610000, P.R. China
| |
Collapse
|
23
|
Açil Y, Möller B, Wiltfang J, Fändrich F, Ungefroren H. Programmable cells of monocytic origin as a source of osteochondroprogenitors: Effect of growth factors on osteogenic differentiation. J Craniomaxillofac Surg 2017; 45:1515-1520. [PMID: 28688862 DOI: 10.1016/j.jcms.2017.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
We have demonstrated previously that peripheral blood monocytes can be converted in vitro to a multipotent stem cell-like cell termed programmable cell of monocytic origin (PCMO) and subsequently into cells with chondrocyte-like phenotype. Here, we investigated whether PCMO could also be differentiated into osteoblast-like cells using growth factors with known osteoinductive potency. Following stimulation with BMP-2, BMP-7, IGF-1 or TGF-β1 for 7 and 14 days, PCMOs were analyzed for mRNA expression of collagen types I and V, alkaline phosphatase, osteocalcin, runt-related transcription factor-2 (Runx2) and Osterix (Osx) by quantitative RT-PCR (qPCR) and the levels of collagen I in culture supernatants by ELISA. The expression of osteoblastic markers was evident, albeit at a different extent in cultures of PCMOs after treatment with the above-mentioned growth factors. Culture supernatants from PCMOs stimulated for 6-10 days with BMP-2, BMP-7, IGF-1 or TGF-β1 contained high levels of collagen type I, together with earlier data indicating synthesis and proper secretion. The findings suggest that PCMOs can transform into cells that are phenotypically similar to osteoblasts and identify these cells as osteochondroprogenitors. The possibility of differentiating PCMOs from peripheral blood in sizable quantities could be a novel way to obtain autologous bone-like substitutes without donor-site morbidity.
Collapse
Affiliation(s)
- Yahya Açil
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Björn Möller
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Jörg Wiltfang
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Fred Fändrich
- Institute for Applied Cell Therapy, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Hendrik Ungefroren
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
24
|
Hang Pham LB, Yoo YR, Park SH, Back SA, Kim SW, Bjørge I, Mano J, Jang JH. Investigating the effect of fibulin-1 on the differentiation of human nasal inferior turbinate-derived mesenchymal stem cells into osteoblasts. J Biomed Mater Res A 2017; 105:2291-2298. [PMID: 28445604 DOI: 10.1002/jbm.a.36095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Many extracellular matrix proteins have positive influences on the adhesion, proliferation, and differentiation of stem cells into specific cell linages. Fibulin-1 (FBLN1), a member of a growing family of extracellular glycoproteins, contributes to the structure of the extracellular matrix. Here, we investigated the effect of FBLN1 on the ability of human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to undergo osteogenic differentiation. After we generated recombinant FBLN1, the characteristics of FBLN1-treated hTMSCs were evaluated using MTT assay, ALP and mineralization activities, and quantitative real-time PCR. FBLN1 significantly enhanced the adhesion activity (p < 0.001) and proliferation of hTMSCs (p < 0.05). The ALP and mineralization activities of cells were dramatically increased (p < 0.01) after 9 and 12 days of FBLN1 treatment, respectively. This indicated the ability of FBLN1 to induce hTMSCs to differentiate into osteoblasts. Furthermore, increasing the mRNA levels of osteogenic marker genes, such as a transcriptional coactivator with a PDZ-binding motif (TAZ), alkaline phosphatase (ALP), collagen type I (Col I), and osteocalcin (OCN), improved bone repair and regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2291-2298, 2017.
Collapse
Affiliation(s)
- Le B Hang Pham
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Yie-Ri Yoo
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sun Hwa Park
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sang A Back
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sung Won Kim
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea.,Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea College of Medicine, Seoul Korea
| | - Isabel Bjørge
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Mano
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| |
Collapse
|
25
|
Abstract
Platelet-rich plasma (PRP) is an autologous blood product with platelet
concentrations above baseline values. The process involves the extraction of
blood from the patient which is then centrifuged to obtain a concentrated
suspension of platelets by plasmapheresis. It then undergoes a two-stage
centrifugation process to separate the solid and liquid components of the
anticoagulated blood. PRP owes its therapeutic use to the growth factors
released by the platelets which are claimed to possess multiple regenerative
properties. In the knee, PRP has been used in patients with articular cartilage
pathology, ligamentous and meniscal injuries. There is a growing body of evidence to support its use in selected
indications and this review looks at the most recent evidence. We also look
at the current UK National Institute of Health & Clinical Excellence
(NICE) guidelines with respect to osteoarthritis and the use of PRP in the
knee.
Cite this article: EFORT Open Rev 2017;2:28–34. DOI:
10.1302/2058-5241.2.160004.
Collapse
Affiliation(s)
- Mohammad Shahid
- St Michael's Hospital, 30 Bond Street, Toronto, M5B1W8, Canada
| | - Rik Kundra
- St Michael's Hospital, 30 Bond Street, Toronto, M5B1W8, Canada
| |
Collapse
|
26
|
Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. J Bone Miner Res 2017; 32:347-359. [PMID: 27649409 PMCID: PMC7894383 DOI: 10.1002/jbmr.2997] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap-/- ) and dominant (Col1a2+/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rene Flores
- Academic and Research Affairs, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
27
|
Donato TAG, Martinez EF, Arana-Chavez VE. Effects of TGF-β1 on mineralization mediated by rat calvaria-derived osteogenic cells. Microsc Res Tech 2016; 79:1139-1146. [PMID: 27557631 DOI: 10.1002/jemt.22768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 11/09/2022]
Abstract
In this study, we have analyzed the viability and cell growth, as well as, the mineralization of extracellular matrix (ECM) by alizarin red and von Kossa staining of calvaria-derived osteogenic cultures, treated with TGF-β1 alone or associated with Dex comparing with acid ascorbic (AA) + β-glicerophosphate (βGP) (positive mineralization control). The expression of the noncollagenous proteins bone sialoprotein (BSP), osteopontin (OPN) and fibronectin (FN) were evaluated by indirect immunofluorescence. In addition, the main ultrastructural morphological findings were assessed by transmission electron microscopy. Osteogenic cells were isolated of calvaria bone from newborn (2-day-old) Wistar rats were treated with TGF-β1 alone or with dexamethasone for 7, 10, and 14 days. As positive mineralization control, the cells were supplemented only with AA+ βGP. As negative control, the cells were cultured with basal medium (α-MEM + 10%FBS + 1%gentamicin). The treatment with TGF-β1, even when combined with Dex, decreased the viability and cell growth when compared with the positive control. Osteoblastic cell cultures were positive to alizarin red and von Kossa stainings after AA + βGP and Dex alone treatments. Positive immunoreaction was found for BSP, OPN and FN in all studied treatments. Otherwise, when the cell cultures were supplemented with TGF-β1 and TGF-β1 + Dex, no mineralization was observed in any of the studied periods. These present findings suggest that TGF-β1, in the studied in vitro doses, inhibits the proliferation and differentiation of osteoblastic cells by impairment of nodule formation.
Collapse
Affiliation(s)
- Tatiani A G Donato
- Department of Biomaterials and Oral Biology, Laboratory of Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Elizabeth F Martinez
- Department of Biomaterials and Oral Biology, Laboratory of Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil.,Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Victor E Arana-Chavez
- Department of Biomaterials and Oral Biology, Laboratory of Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Varanasi VG, Odatsu T, Bishop T, Chang J, Owyoung J, Loomer PM. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. J Biomed Mater Res A 2016; 104:2604-15. [PMID: 27279631 DOI: 10.1002/jbm.a.35795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, 75246
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Timothy Bishop
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Joyce Chang
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Jeremy Owyoung
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Peter M Loomer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, 10010
| |
Collapse
|
29
|
Li X, Lim J, Lu J, Pedego TM, Demer L, Tintut Y. Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification. J Cell Biochem 2016; 116:2354-64. [PMID: 25864564 DOI: 10.1002/jcb.25186] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
Abstract
Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-α) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle α actin, and negative for an endothelial cell marker. TNF-α upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-α significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-α-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-α further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-α induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine, University of California, Los Angeles, California
| | - Jina Lim
- Departments of Pediatrics, University of California, Los Angeles, California
| | - Jinxiu Lu
- Department of Physiology, University of California, Los Angeles, California
| | - Taylor M Pedego
- Department of Medicine, University of California, Los Angeles, California
| | - Linda Demer
- Department of Medicine, University of California, Los Angeles, California.,Department of Physiology, University of California, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
30
|
Wang X, Huang J, Wang K, Neufurth M, Schröder HC, Wang S, Müller WE. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl 3 , as an inducer of hydroxyapatite formation in vitro. Biochem Pharmacol 2016; 102:97-106. [DOI: 10.1016/j.bcp.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 12/30/2022]
|
31
|
Oliveira MC, Arntz OJ, Blaney Davidson EN, van Lent PLEM, Koenders MI, van der Kraan PM, van den Berg WB, Ferreira AVM, van de Loo FAJ. Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. J Nutr Biochem 2015; 30:74-84. [PMID: 27012623 DOI: 10.1016/j.jnutbio.2015.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/07/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023]
Abstract
The claimed beneficial effect of milk on bone is still a matter for debate. Recently extracellular vesicles (EVs) that contain proteins and RNA were discovered in milk, but their effect on bone formation has not yet been determined. We demonstrated previously that bovine milk-derived EVs (BMEVs) have immunoregulatory properties. Our aim was to evaluate the effect of BMEVs on osteogenesis by mice and human mesenchymal stem cells (hMSCs). Oral delivery of two concentrations of BMEVs to female DBA/1J mice during 7weeks did not alter the tibia trabecular bone area; however, the osteocytes number increased. In addition, the highest dose of BMEVs markedly increased the woven bone tissue, which is more brittle. The exposure of hMSCs to BMEVs during 21days resulted in less mineralization but higher cell proliferation. Interestingly BMEVs reduced the collagen production, but enhanced the expression of genes characteristic for immature osteoblasts. A kinetic study showed that BMEVs up-regulated many osteogenic genes within the first 4days. However, the production of type I collagen and expression of its genes (COL1A1 and COL1A2) were markedly reduced at days 21 and 28. At day 28, BMEVs again lead to higher proliferation, but mineralization was significantly increased. This was associated with increased expression of sclerostin, a marker for osteocytes, and reduced osteonectin, which is associated to bone matrix formation. Our study adds BMEVs to the list of milk components that can affect bone formation and may shed new light on the contradictory claims of milk on bone formation.
Collapse
Affiliation(s)
- Marina C Oliveira
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adaliene V M Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
32
|
Jin P, Li M, Xu G, Zhang K, Zheng LI, Zhao J. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Exp Ther Med 2015; 10:828-834. [PMID: 26622401 DOI: 10.3892/etm.2015.2579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/29/2015] [Indexed: 01/21/2023] Open
Abstract
Epidemiological investigations have revealed that the consumption of green tea, which is a rich source of (-)-epigallocatechin-3-gallate (EGCG), is associated with a reduced risk of osteoporosis. A number of in vitro and in vivo studies have also demonstrated that EGCG exerts a significant positive effect on osteogenesis; however, the single effect of EGCG on osteogenic differentiation has been seldom studied. EGCG was hypothesized to function as an enhancer or an inducer. In the present study, the effect of EGCG on the osteogenic differentiation of primary human bone marrow mesenchymal stem cells (hBMSCs), without other additives, was investigated. Three groups of stem cells were analyzed, which included a negative control group (hBMSCs cultured with culture medium only), an experimental group (cells treated with culture medium containing 2.5, 5 and 10 µM EGCG), and a positive control group (cells cultured with osteogenesis-induced culture medium). After 3, 7, 14 and 21 days, cell proliferation, alkaline phosphatase (ALP) activity and the expression of associated osteogenic genes were analyzed. The results revealed that ALP activity and the expression of associated osteogenic genes, with the exception of bone morphogenetic protein 2 (BMP2), were not affected by EGCG treatment alone. These results indicated that EGCG itself had little effect on the osteogenic differentiation of MSCs; however, EGCG was able to enhance osteogenesis in the presence of osteoinductive agents through the upregulation of BMP2 expression. Additionally, EGCG was shown to promote cell growth, demonstrating its safety as a therapeutic agent. Therefore, the present study indicated that treatment with EGCG was dependent on other osteogenic inducers.
Collapse
Affiliation(s)
- Pan Jin
- Department of Orthopedic Surgery, The First Hospital Affiliated to Henan University, Kaifeng, Henan 475001, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Muyan Li
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guojie Xu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kun Zhang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - L I Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
33
|
New Developments in the Use of Biologics and Other Modalities in the Management of Lateral Epicondylitis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:439309. [PMID: 26114106 PMCID: PMC4465648 DOI: 10.1155/2015/439309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Lateral epicondylitis is a common source of elbow pain. Though it is often a self-limited condition, refractory lateral epicondylitis can lead to problems with activities of daily living and sometimes requires sick leave from work. Therefore prompt treatment is essential. Histopathologic studies have suggested that lateral epicondylitis is a tendinopathy, associated with apoptosis and autophagy, rather than a tendonitis associated with inflammation. Although corticosteroids have been used for short-term treatment, recent studies have suggested that they are not helpful and may even be harmful and delay healing in the treatment of lateral epicondylitis. Researchers have recently begun to investigate the use of biologics as potential treatment options for lateral epicondylitis. Autologous blood preparations including platelet rich plasma (PRP) and autologous whole blood injections (ABIs) have been proposed in order to deliver growth factors and other nutrients to the diseased tendon. Stem cell therapies have also been suggested as a method of improving tendon healing. This review discusses the current evidence for the use of PRP, ABI, and stem cell therapies for treatment of lateral epicondylitis. We also review the evidence for nonbiologic treatments including corticosteroids, prolotherapy, botulinum toxin A, and nitric oxide.
Collapse
|
34
|
Qureshi AT, Doyle A, Chen C, Coulon D, Dasa V, Del Piero F, Levi B, Monroe WT, Gimble JM, Hayes DJ. Photoactivated miR-148b-nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomater 2015; 12:166-173. [PMID: 25462528 DOI: 10.1016/j.actbio.2014.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/26/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Inducible systems providing temporal control of differentiation have the potential to improve outcomes in surgical reconstruction and regenerative medicine by precise modulation of wound healing and tissue repair processes. The aim of this study was to demonstrate that nanoformulated microRNA (miRNA) conjugates activated via photo exposure can lead to the induced osteogenic differentiation of human adipose-derived stromal/stem cells (hASCs) in vivo. The conjugate PC-miR-148b-SNP, a mimic of miRNA-148b tethered to silver nanoparticles (SNPs) via a photolabile linker, was used to modulate gene expression for improved closure of a critical size defect drilled on the right parietal bone of male CD-1 nude homozygous mice. The PC-miR-148b-SNP conjugates added to hASCs and loaded to either Matrigel or polycaprolactone (PCL) scaffolds resulted in different levels of healing of the defect. After 4 and 12weeks, 3-D micro-computed tomography reconstructed images indicate statistically significant defect closure from 3.83±1.19% to 5.46±2.01% and 6.54±4.28% to 32.53±8.3% for non-photoactivated and photoactivated conjugates, respectively, in the PCL scaffolds. The results were confirmed with H&E and Masson's Trichrome stains in the transverse sections of photoactivated conjugates. Collagen fiber staining was greatest at 12weeks when it reached approximately the same density and thickness as the native calvarium. This technology provides a platform that can be used with other miRNAs that actively govern the pathways responsible for regenerative and wound healing processes.
Collapse
|
35
|
Associations of polymorphisms in the bone morphogenetic protein-2 gene with risk and prognosis of osteosarcoma in a Chinese population. Tumour Biol 2014; 36:2059-64. [PMID: 25391427 DOI: 10.1007/s13277-014-2813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer in adolescence. Bone morphogenetic protein-2 (BMP-2) plays important roles in the development of bone and cartilage and in inhibiting the tumorigenicity of cancer stem cells in human osteosarcoma cell line. The aim of this study was to examine whether polymorphisms in the BMP2 gene are associated with osteosarcoma risk and prognosis in Chinese population. Five single nucleotide polymorphisms (SNP) in the BMP2 gene were genotyped in a case-control study, including 203 osteosarcoma patients and 406 cancer-free controls. We found that rs3178250 TT genotype was associated with significant increased osteosarcoma risk (age-adjusted odds ratio (OR) = 2.06, 95% confidence intervals (CI) of 1.23-3.45) compared with CC genotype. Subjects carrying the AA genotype of rs1005464 had significant decreased cancer risk (age-adjusted OR = 0.44, 95% CI of 0.23-0.85) compared with those carrying the GG genotype. Haplotype analysis also showed that carriers of the G-T-T-G and A-T-T-G haplotypes (rs235764-rs3178250-rs235768-rs1005464) had significant increased risks of osteosarcoma (age-adjusted OR = 1.85, 95% CI of 1.28-2.66 and age-adjusted OR = 1.51, 95% CI of 1.06-2.16) compared with the G-C-T-A haplotype carriers. Besides, rs1005464 was an independent prognostic factor for osteosarcoma patients (GA vs. GG: age-adjusted hazard radio (HR) = 0.60, 95% CI of 0.36-0.99). Our data suggest that genetic mutations in the BMP2 gene are associated with osteosarcoma risk and prognosis in a Chinese population.
Collapse
|
36
|
Notsu M, Yamaguchi T, Okazaki K, Tanaka KI, Ogawa N, Kanazawa I, Sugimoto T. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology 2014; 155:2402-10. [PMID: 24758301 DOI: 10.1210/en.2013-1818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.
Collapse
Affiliation(s)
- Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou C, Lin Y. Osteogenic differentiation of adipose-derived stem cells promoted by quercetin. Cell Prolif 2014; 47:124-32. [PMID: 24617900 DOI: 10.1111/cpr.12097] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/09/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The present study aimed to investigate overall effect of quercetin on proliferation and osteogenic differentiation of mouse adipose stem cells (mASCs) in vitro. MATERIALS AND METHODS Mouse adipose stem cells were isolated from subcutaneous fat pads and induced into the osteogenic lineage. Effects of quercetin on cell proliferation were assessed using MTT assay. Then they were treated by quercetin for 3, 7 and 11 days in a range of concentrations. Finally, effects of quercetin on osteogenic differentiation of mASCs were analysed by real-time PCR. RESULTS Data of MTT assay showed that quercetin did not enhance mASC proliferation in a dose-dependent or time-dependent manner. Results of qPCR indicated that quercetin promoted expressions of Osx, Runx2, BMP-2, Col-1, OPN and OCN at the mRNA level in the presence of osteo-induction medium. CONCLUSIONS Our data demonstrated that quercetin was not active in terms of enhancing mASCs proliferation; however, it increased osteogenesis of mASCs by up-regulation of genes including Osx, Runx2, BMP-2, Col-1, OPN and OCN.
Collapse
Affiliation(s)
- C Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | | |
Collapse
|
38
|
Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study. Cell Tissue Res 2014; 356:381-90. [PMID: 24682582 DOI: 10.1007/s00441-014-1797-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
Abstract
The proliferation and osteogenic capacity of mesenchymal stem cells (MSCs) needs to be improved for their use in cell-based therapy for osteoporosis. (-)-Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of osteoblasts and osteoclasts. However, no consensus on its role as an osteogenic inducer has been reached, possibly because of the various types of cell lines examined and the range of concentrations of EGCG used. In this study, the osteogenic effects of EGCG are studied in primary human bone-marrow-derived MSCs (hBMSCs) by detecting cell proliferation, alkaline phosphatase (ALP) activity and the expression of relevant osteogenic markers. Our results show that EGCG has a strong stimulatory effect on hBMSCs developing towards the osteogenic lineage, especially at a concentration of 5 μM, as evidenced by an increased ALP activity, the up-regulated expression of osteogenic genes and the formation of bone-like nodules. Further exploration has indicated that EGCG directes osteogenic differentiation via the continuous up-regulation of Runx2. The underlying mechanism might involve EGCG affects on osteogenic differentiation through the modulation of bone morphogenetic protein-2 expression. EGCG has also been found to promote the proliferation of hBMSCs in a dose-dependent manner. This might be associated with its antioxidative effect leading to favorable amounts of reactive oxygen species in the cellular environment. Our study thus indicates that EGCG can be used as a pro-osteogenic agent for the stem-cell-based therapy of osteoporosis.
Collapse
|
39
|
SUZUKI T, HAYAKAWA T, KAWAMOTO T, GOMI K. Bone response of TGF-β2 immobilized titanium in a rat model. Dent Mater J 2014; 33:233-41. [DOI: 10.4012/dmj.2014-006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
|
41
|
Hatakeyama I, Marukawa E, Takahashi Y, Omura K. Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue Eng Part A 2013; 20:874-82. [PMID: 24098948 DOI: 10.1089/ten.tea.2013.0058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence.
Collapse
Affiliation(s)
- Ichiro Hatakeyama
- Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Department of Oral Restitution, Tokyo Medical and Dental University Graduate School , Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Yang D, Okamura H, Nakashima Y, Haneji T. Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem 2013; 288:33530-33541. [PMID: 24106268 DOI: 10.1074/jbc.m113.497040] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of histones including methylation play important roles in cell differentiation. Jumonji domain-containing 3 (Jmjd3) is a histone demethylase, which specifically catalyzes the removal of trimethylation of histone H3 at lysine 27 (H3K27me3). In this study, we examined the expression of Jmjd3 in osteoblasts and its roles in osteoblast differentiation. Jmjd3 expression in the nucleus was induced in response to the stimulation of osteoblast differentiation as well as treatment of bone morphogenetic protein-2 (BMP-2). Either treatment with Noggin, an inhibitor of BMP-2, or silencing of Smad1/5 suppressed Jmjd3 expression during osteoblast differentiation. Silencing of Jmjd3 expression suppressed osteoblast differentiation through the expression of bone-related genes including Runx2, osterix, osteopontin, bone sialoprotein (BSP), and osteocalcin (OCN). Silencing of Jmjd3 decreased the promoter activities of Runx2 and osterix and increased the level of H3K27me3 on the promoter regions of Runx2 and osterix. Introduction of the exogenous Runx2 and osterix partly rescued osteoblast differentiation in the shJmjd3 cells. The present results indicate that Jmjd3 plays important roles in osteoblast differentiation and regulates the expressions of BSP and OCN via transcription factors Runx2 and osterix.
Collapse
Affiliation(s)
- Di Yang
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan; Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Yoshiki Nakashima
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
43
|
Berthet E, Chen C, Butcher K, Schneider RA, Alliston T, Amirtharajah M. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res 2013; 31:1475-83. [PMID: 23653374 PMCID: PMC3960924 DOI: 10.1002/jor.22382] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 04/10/2013] [Indexed: 02/04/2023]
Abstract
TGFβ plays a critical role in tendon formation and healing. While its downstream effector Smad3 has been implicated in the healing process, little is known about the role of Smad3 in normal tendon development or tenocyte gene expression. Using mice deficient in Smad3 (Smad3(-/-) ), we show that Smad3 ablation disrupts tendon architecture and has a dramatic impact on normal gene and protein expression during development as well as in mature tendon. In developing and adult tendon, loss of Smad3 results in reduced protein expression of the matrix components Collagen 1 and Tenascin-C. Additionally, when compared to wild type, tendon from adult Smad3(-/-) mice shows a down regulation of key tendon marker genes. Finally, we have established that Smad3 has the ability to physically interact with the critical transcriptional regulators Scleraxis and Mohawk. Together these results indicate a central role for Smad3 in normal tendon formation and in the maintenance of mature tendon.
Collapse
Affiliation(s)
- Ellora Berthet
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Carol Chen
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco, CA, USA,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mohana Amirtharajah
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
45
|
Woeckel V, van der Eerden B, Schreuders-Koedam M, Eijken M, Van Leeuwen J. 1α,25-dihydroxyvitamin D3stimulates activin A production to fine-tune osteoblast-induced mineralization. J Cell Physiol 2013; 228:2167-74. [DOI: 10.1002/jcp.24388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Affiliation(s)
- V.J. Woeckel
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | | | - M. Schreuders-Koedam
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - M. Eijken
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - J.P.T.M. Van Leeuwen
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
46
|
Ghosh-Choudhury N, Mandal CC, Das F, Ganapathy S, Ahuja S, Ghosh Choudhury G. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis. J Biol Chem 2013; 288:24503-17. [PMID: 23821550 DOI: 10.1074/jbc.m113.455733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal remodeling consists of timely formation and resorption of bone by osteoblasts and osteoclasts in a quantitative manner. Patients with chronic myeloid leukemia receiving inhibitors of c-Abl tyrosine kinase often show reduced bone remodeling due to impaired osteoblast and osteoclast function. BMP-2 plays a significant role in bone generation and resorption by contributing to the formation of mature osteoblasts and osteoclasts. The effects of c-Abl on BMP-2-induced bone remodeling and the underlying mechanisms are not well studied. Using a pharmacological inhibitor and expression of a dominant negative mutant of c-Abl, we show an essential role of this tyrosine kinase in the development of bone nodules containing mature osteoblasts and formation of multinucleated osteoclasts in response to BMP-2. Calvarial osteoblasts prepared from c-Abl null mice showed the absolute requirement of this tyrosine kinase in maturation of osteoblasts and osteoclasts. Activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling by BMP-2 leads to osteoblast differentiation. Remarkably, inhibition of c-Abl significantly suppressed BMP-2-stimulated PI 3-kinase activity and its downstream Akt phosphorylation. Interestingly, c-Abl regulated BMP-2-induced osteoclastogenic CSF-1 expression. More importantly, we identified the requirements of c-Abl in BMP-2 autoregulation and the expressions of alkaline phosphatase and osterix that are necessary for osteoblast differentiation. c-Abl contributed to BMP receptor-specific Smad-dependent transcription of CSF-1, osterix, and BMP-2. Finally, c-Abl associates with BMP receptor IA and regulates phosphorylation of Smad in response to BMP-2. We propose that activation of c-Abl is an important step, which induces into two signaling pathways involving noncanonical PI 3-kinase and canonical Smads to integrate BMP-2-induced osteogenesis.
Collapse
Affiliation(s)
- Nandini Ghosh-Choudhury
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Pozio A, Palmieri A, Girardi A, Cura F, Carinci F. Titanium nanotubes stimulate osteoblast differentiation of stem cells from pulp and adipose tissue. Dent Res J (Isfahan) 2013; 9:S169-74. [PMID: 23814578 PMCID: PMC3692168 DOI: 10.4103/1735-3327.109745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Titanium is the gold standard among materials used for prosthetic devices because of its good mechanical and chemical properties. When exposed to oxygen, titanium becomes an oxide, anatase that is biocompatible and able to induce osseointegration. Materials and Methods: In this study we compared the expression profiling of stem cells cultivated on two types of surface: Pure titanium disk and nanotube titanium disk in order to detect if nanotube titanium instead (NTD) surface stimulates stem cells towards osteoblast differentiation. Results: Stem cells cultivated on nanotube titanium disks showed the upregulation of bone-related genes RUNX2, FOSL1 and SPP1. Conclusions: Results demonstrated that nanotube titanium disk surface is more osteo-induced surface compared to titanium disk, promoting the differentiation of mesenchymal stem cells in osteoblasts.
Collapse
|
48
|
Fu B, Wang H, Wang J, Barouhas I, Liu W, Shuboy A, Bushinsky DA, Zhou D, Favus MJ. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One 2013; 8:e61423. [PMID: 23620751 PMCID: PMC3631216 DOI: 10.1371/journal.pone.0061423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats have increased intestinal Ca absorption, decreased renal tubule Ca reabsorption and low bone mass, all of which are mediated at least in part by elevated tissue levels of the vitamin D receptor (VDR). Both 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and bone morphogenetic protein 2 (BMP2) are critical for normal maintenance of bone metabolism and bone formation, respectively. The complex nature of bone cell regulation suggests a potential interaction of these two important regulators in GHS rats. In the present study, BMP2 expression is suppressed by the VDR-1,25(OH)2D3 complex in Bone Marrow Stromal Cells (BMSCs) from GHS and SD rat and in UMR-106 cell line. We used chromatin immunoprecipitation (ChIP) assays to identify VDR binding to only one of several potential binding sites within the BMP2 promoter regions. This negative region also mediates suppressor reporter gene activity. The molecular mechanisms underlying the down-regulation of BMP2 by 1,25(OH)2D3 were studied in vitro in BMSCs and UMR-106 cells using the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) and the histone deacetylase inhibitor trichostatin A (TSA). Both DAC and TSA activate BMP2 expression in combination with 1,25(OH)2D3. Bisulfite DNA pyrosequencing reveals 1,25(OH)2D3 to completely hypermethylate a single CpG site in the same BMP2 promoter region identified by the ChIP and reporter gene assays. ChIP assays also show that 1,25(OH)2D3 can increase the repressive histone mark H3K9me2 and reduce the acetylation of histone H3 at the same BMP2 promoter region. Taken together, our results indicate that 1,25(OH)2D3 binding to VDR down-regulates BMP2 gene expression in BMSCs and osteoblast-like UMR-106 cells by binding to the BMP2 promoter region. The mechanism of this 1,25(OH)2D3-induced transcriptional repression of BMP2 involves DNA methylation and histone modification. The study provides novel evidence that 1,25(OH)2D3 represses bone formation through down-regulating BMP2 expression both in vivo and in vitro.
Collapse
Affiliation(s)
- Baisheng Fu
- Department of Orthopedic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Hongwei Wang
- Section of Endocrinology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - Jinhua Wang
- Section of Endocrinology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - Ivana Barouhas
- Section of Endocrinology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - Wanqing Liu
- Department of Medicinal Chemistry & Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Adam Shuboy
- Section of Endocrinology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - David A. Bushinsky
- Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Dongsheng Zhou
- Department of Orthopedic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
- * E-mail: (DZ); (MJF)
| | - Murray J. Favus
- Section of Endocrinology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (DZ); (MJF)
| |
Collapse
|
49
|
Sollazzo V, Lucchese A, Palmieri A, Carnevali G, Iaccarino C, Zollino I, Della Valle M, Pezzetti F, Brunelli G, Carinci F. Calcium sulfate stimulates pulp stem cells towards osteoblasts differentiation. Int J Immunopathol Pharmacol 2013; 24:51-7. [PMID: 21781446 DOI: 10.1177/03946320110240s210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Calcium sulfate (CaS) is a highly biocompatible material and enhances bone formation in vivo. However, how CaS alters osteoblast activity to promote bone formation is poorly understood. To study how CaS can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were compared in normal osteoblasts and dental pulp stem cells, using real time Reverse Transcription-Polymerase Chain Reaction. Gene differentially expressed between the two cells type were the trascriptional factor RUNX2, osteopontin (SPP1), COL1A1 (collagen type 1α1) and alkaline phosphatase (ALPL). The obtained results demonstrated that CaS strongly influences the behavior of DPSCs in vitro enhancing proliferation, differentiation and deposition of matrix.
Collapse
Affiliation(s)
- V Sollazzo
- Orthopedic Clinic, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramazanoglu M, Lutz R, Rusche P, Trabzon L, Kose GT, Prechtl C, Schlegel KA. Bone response to biomimetic implants delivering BMP-2 and VEGF: an immunohistochemical study. J Craniomaxillofac Surg 2013; 41:826-35. [PMID: 23434516 DOI: 10.1016/j.jcms.2013.01.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/18/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022] Open
Abstract
This animal study evaluated bone healing around titanium implant surfaces biomimetically coated with bone morphogenic protein-2 (BMP-2) and/or vascular endothelial growth factor (VEGF) by examining bone matrix proteins and mineralisation. Five different implant surfaces were established: acid-etched surface (AE), biomimetic calcium phosphate surface (CAP), BMP-2 loaded CAP surface, VEGF loaded CAP surface and dual BMP-2 + VEGF loaded CAP surface. The implants were inserted into calvariae of adult domestic pigs. For the comparison of osteoconductive capacity of each surface, bone mineral density and expression of bone matrix proteins (collagen I, BMP-2/4, osteocalcin and osteopontin) inside defined chambers around the implant were assessed using light microscopy and microradiography and immunohistochemical analysis at 1, 2 and 4 weeks. In the both groups delivering BMP-2, the bone mineral density was significantly enhanced after 2 weeks and the highest value was measured for the group BMP + VEGF. In the group VEGF, collagen I and BMP-2/4 expressions were significantly up-regulated at the first and second weeks. The percentage of BMP-2/4 positive cells in the group BMP + VEGF was significantly enhanced compared with the groups AE and CAP at the second week. Although the highest osteocalcin and osteopontin expression values were observed for the group BMP + VEGF after 2 weeks, no statistically significant difference in osteocalcin and osteopontin expressions was found between all groups at any time. It was concluded that combined delivery of BMP-2 and VEGF favoured bone mineralisation and expression of important bone matrix proteins that might explain synergistic interaction between both growth factors.
Collapse
Affiliation(s)
- Mustafa Ramazanoglu
- Department of Oral Surgery, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey.
| | | | | | | | | | | | | |
Collapse
|