1
|
Jing N, Hou YC, Zhang JC, Xu G, Lei M, Tang X, Chen W, Ni H, Zhang F. Cracking the code: Understanding ESWT's role in bone fracture healing. J Orthop Translat 2025; 50:403-412. [PMID: 40171104 PMCID: PMC11960537 DOI: 10.1016/j.jot.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 04/03/2025] Open
Abstract
Bone non-union has always been a research hotspot in the field of orthopedics. Non-unions are often accompanied by symptoms such as pain, deformity, and dysfunction, which can significantly affect patients' quality of life and cause related socioeconomic problems. Clinically, there are various treatments available for non-unions, and the main treatment methods are divided into surgical and non-surgical treatments. At present, surgery is the most widely used treatment for bone non-unions and has a high healing rate. However, even after surgery, some patients still face the problem of bone non-union. Furthermore, a small number of patients have surgical contraindications and could not tolerate surgery. Therefore, alternative treatments are needed to improve outcomes for patients with bone fractures. Extracorporeal shock wave therapy (ESWT) is a non-invasive treatment method with similar efficacy and better safety compared with surgery. Nevertheless, the exact mechanism for ESWT to treat patients with bone non-union are still not well understood. This article reviews the mechanisms of ESWT in promoting bone fracture healing by regulating osteoblasts and osteoclasts, providing a theoretical foundation for the clinical application of ESWT. The Translational Potential of this Article: This review provides a comprehensive overview of the mechanisms underlying ESWT on promoting bone fracture healing by regulating osteoblasts and osteoclasts. The information provided in this article can offer a novel non-invasive method for clinicians to treat bone non-union.
Collapse
Affiliation(s)
- Nan Jing
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Yi-chen Hou
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Jia-chang Zhang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Hongbin Ni
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, 210008, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| |
Collapse
|
2
|
Li H, Xu WX, Tan JC, Hong YM, He J, Zhao BP, Zhou JA, Zheng YM, Lei M, Zheng XQ, Ding J, Liu NN, Gao JJ, Zhang CQ, Wang H. Single-cell multi-omics identify novel regulators required for osteoclastogenesis during aging. iScience 2024; 27:110734. [PMID: 39280596 PMCID: PMC11401210 DOI: 10.1016/j.isci.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Age-related osteoporosis manifests as a complex pathology that disrupts bone homeostasis and elevates fracture risk, yet the mechanisms facilitating age-related shifts in bone marrow macrophages/osteoclasts (BMMs/OCs) lineage are not fully understood. To decipher these mechanisms, we conducted an investigation into the determinants controlling BMMs/OCs differentiation. We performed single-cell multi-omics profiling on bone marrow samples from mice of different ages (1, 6, and 20 months) to gain a holistic understanding of cellular changes across time. Our analysis revealed that aging significantly instigates OC differentiation. Importantly, we identified Cebpd as a vital gene for osteoclastogenesis and bone resorption during the aging process. Counterbalancing the effects of Cebpd, we found Irf8, Sox4, and Klf4 to play crucial roles. By thoroughly examining the cellular dynamics underpinning bone aging, our study unveils novel insights into the mechanisms of age-related osteoporosis and presents potential therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben-Peng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhu G, Chen W, Tang CY, McVicar A, Edwards D, Wang J, McConnell M, Yang S, Li Y, Chang Z, Li YP. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci 2022; 18:5522-5538. [PMID: 36147479 PMCID: PMC9461675 DOI: 10.7150/ijbs.72211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Cathepsins play a role in regulation of cell function through their presence in the cell nucleus. However, the role of Cathepsin K (Ctsk) as an epigenetic regulator in osteoclasts remains unknown. Our data demonstrated that Ctsk-/-Mmp9-/- mice have a striking phenotype with a 5-fold increase in bone volume compared with WT. RNA-seq analysis of Ctsk-/- , Mmp9-/- and Ctsk-/-/Mmp9-/- osteoclasts revealed their distinct functions in gene expression regulation, including reduced Cebpa expression, increased Nfatc1 expression, and in signaling pathways activity regulation. Western blots and qPCR data validated these changes. ATAC-seq profiling of Ctsk-/- , Mmp9-/-, and Ctsk-/-/Mmp9-/- osteoclasts indicated the changes resulted from reduced chromatin openness in the promoter region of Cebpa and increased chromatin openness in Nfatc1 promoter in Ctsk-/-/Mmp9-/- osteoclasts compared to that in osteoclasts of WT, Ctsk/- and Mmp9-/- . We found co-localization of Ctsk with c-Fos and cleavage of H3K27me3 in wild-type osteoclasts. Remarkably, cleavage of H3K27me3 was blocked in osteoclasts of Ctsk-/- and Ctsk-/-/Mmp9-/- mice, suggesting that Ctsk may epigenetically regulate distinctive groups of genes' expression by regulating proteolysis of H3K27me3. Ctsk-/-/Mmp9-/- double knockout dramatically protects against ovariectomy induced bone loss. We found that Ctsk may function as an essential epigenetic regulator in modulating levels of H3K27me3 in osteoclast activation and maintaining bone homeostasis. Our study revealed complementary and unique functions of Ctsk as epigenetic regulators for maintaining osteoclast activation and bone homeostasis by orchestrating multiple signaling pathways and targeting both Ctsk and Mmp9 is a novel therapeutic approach for osteolytic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Guochun Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Diep Edwards
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Jinwen Wang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| |
Collapse
|
4
|
Yang YS, Xie J, Chaugule S, Wang D, Kim JM, Kim J, Tai PW, Seo SK, Gravallese E, Gao G, Shim JH. Bone-Targeting AAV-Mediated Gene Silencing in Osteoclasts for Osteoporosis Therapy. Mol Ther Methods Clin Dev 2020; 17:922-935. [PMID: 32405514 PMCID: PMC7210389 DOI: 10.1016/j.omtm.2020.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Improper activity of bone-resorbing osteoclasts results in low bone density and deterioration of bone structure, which increase the risk of fractures. Anti-resorptive therapies targeting osteoclasts have proven effective in preserving bone mass, but these therapeutic agents lead to defective new bone formation and numerous potential side effects. In this study, we demonstrate that recombinant adeno-associated virus, serotype 9 (rAAV9) can deliver to osteoclasts an artificial microRNA (amiR) that silences expression of key osteoclast regulators, RANK (receptor activator for nuclear factor κB) and cathepsin K (rAAV9.amiR-rank, rAAV9.amiR-ctsk), to prevent bone loss in osteoporosis. As rAAV9 is highly effective for the transduction of osteoclasts, systemic administration of rAAV9 carrying amiR-rank or amiR-ctsk results in a significant increase of bone mass in mice. Furthermore, the bone-targeting peptide motif (Asp)14 or (AspSerSer)6 was grafted onto the AAV9-VP2 capsid protein, resulting in significant reduction of transgene expression in non-bone peripheral organs. Finally, systemic delivery of bone-targeting rAAV9.amiR-ctsk counteracts bone loss and improves bone mechanical properties in mouse models of postmenopausal and senile osteoporosis. Collectively, inhibition of osteoclast-mediated bone resorption via bone-targeting rAAV9-mediated silencing of ctsk is a promising gene therapy that can preserve bone formation and mitigate osteoporosis, while limiting adverse off-target effects.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jung-Min Kim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - JiHea Kim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seok-kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ellen Gravallese
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Wang Y, Chen W, Hao L, McVicar A, Wu J, Gao N, Liu Y, Li YP. C1 Silencing Attenuates Inflammation and Alveolar Bone Resorption in Endodontic Disease. J Endod 2019; 45:898-906. [PMID: 31104818 DOI: 10.1016/j.joen.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/23/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Endodontic disease, 1 of the most prevalent chronic infectious diseases worldwide, occurs when the dental pulp becomes infected and inflamed, leading to bone destruction around the tooth root, severe pain, and tooth loss. Although many studies have tried to develop therapies to alleviate the bone erosion and inflammation associated with endodontic disease, there is an urgent need for an effective treatment. METHODS In this study, we used a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown to target both periapical bone resorption and inflammation in the mouse model of endodontic disease. RESULTS The results showed that Atp6v1c1 knockdown is simultaneously capable of reducing bone resorption by 70% through impaired osteoclast activation, inhibiting inflammation by decreasing T-cell infiltration in the periapical lesion by 75%, and protecting the periodontal ligament from destruction caused by inflammation. Notably, AAV-mediated gene therapy of Atp6v1c1 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interleukin 1α, interleukin 17, interleukin 12, and interleukin 6 levels in periapical tissues caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that Atp6v1c1 knockdown reduced osteoclast-specific functional genes (ie, Ctsk) in periapical tissues. CONCLUSIONS Our results showed that AAV-mediated Atp6v1c1 knockdown in periapical tissues slowed endodontic disease progression, prevented bone erosion, and alleviated inflammation in the periapical tissues and periodontal ligament potentially through regulation of toll-like receptor signaling, indicating that targeting Atp6v1c1 may facilitate the design of novel therapeutic approaches to reduce inflammation and bone erosion in endodontic disease.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liang Hao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abigail McVicar
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ning Gao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuehua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
6
|
Abstract
The group of sclerosing bone dysplasia's is a clinically and genetically heterogeneous group of rare bone disorders which, according to the latest Nosology and classification of genetic skeletal disorders (2015), can be subdivided in three subgroups; the neonatal osteosclerotic dysplasias, the osteopetroses and related disorders and the other sclerosing bone disorders. Here, we give an overview of the most important radiographic and clinical symptoms, the underlying genetic defect and potential treatment options of the different sclerosing dysplasias included in these subgroups.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
9
|
Jules J, Chen W, Feng X, Li YP. C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY 538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 2018; 293:1480-1492. [PMID: 29122885 PMCID: PMC5787821 DOI: 10.1074/jbc.m116.736009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANK has a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogated OC gene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun 2017; 8:13700. [PMID: 28102206 PMCID: PMC5253683 DOI: 10.1038/ncomms13700] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Many positive signalling pathways of osteoclastogenesis have been characterized, but negative signalling pathways are less well studied. Here we show by microarray and RNAi that guanine nucleotide-binding protein subunit α13 (Gα13) is a negative regulator of osteoclastogenesis. Osteoclast-lineage-specific Gna13 conditional knockout mice have a severe osteoporosis phenotype. Gna13-deficiency triggers a drastic increase in both osteoclast number and activity (hyper-activation), mechanistically through decreased RhoA activity and enhanced Akt/GSK3β/NFATc1 signalling. Consistently, Akt inhibition or RhoA activation rescues hyper-activation of Gna13-deficient osteoclasts, and RhoA inhibition mimics the osteoclast hyperactivation resulting from Gna13-deficiency. Notably, Gα13 gain-of-function inhibits Akt activation and osteoclastogenesis, and protects mice from pathological bone loss in disease models. Collectively, we reveal that Gα13 is a master endogenous negative switch for osteoclastogenesis through regulation of the RhoA/Akt/GSK3β/NFATc1 signalling pathway, and that manipulating Gα13 activity might be a therapeutic strategy for bone diseases.
Collapse
|
11
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
12
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1126] [Impact Index Per Article: 125.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
13
|
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291:16390-403. [PMID: 27129246 DOI: 10.1074/jbc.m115.674598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBPα) can appoint mouse bone marrow (MBM) cells to the osteoclast (OC) lineage for osteoclastogenesis. However, whether C/EBPα is also involved in OC differentiation and activity is unknown. Here we demonstrated that C/EBPα overexpression in MBM cells can promote OC differentiation and strongly induce the expression of the OC genes encoding the nuclear factor of activated T-cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with receptor activator of NF-κB ligand-evoked OC lineage priming. Furthermore, while investigating the specific stage of OC differentiation that is regulated by C/EBPα, our gene overexpression studies revealed that, although C/EBPα plays a stronger role in the early stage of OC differentiation, it is also involved in the later stage. Accordingly, C/EBPα knockdown drastically inhibits osteoclastogenesis and markedly abrogates the expression of NFATc1, Cstk, and TRAP during OC differentiation. Consistently, C/EBPα silencing revealed that, although lack of C/EBPα affects all stages of OC differentiation, it has more impact on the early stage. Importantly, we showed that ectopic expression of rat C/EBPα restores osteoclastogenesis in C/EBPα-depleted MBM cells. Furthermore, our subsequent functional assays showed that C/EBPα exhibits a dispensable role on actin ring formation by mature OCs but is critically involved in bone resorption by stimulating extracellular acidification and regulating cell survival. We revealed that C/EBPα is important for receptor activator of NF-κB ligand-induced Akt activation, which is crucial for OC survival. Collectively, these results indicate that C/EBPα functions throughout osteoclastogenesis as well as in OC function. This study provides additional understanding of the roles of C/EBPα in OC biology.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
14
|
Li S, Hao L, Wang L, Lu Y, Li Q, Zhu Z, Shao JZ, Chen W. Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 2015; 10:e0134903. [PMID: 26274612 PMCID: PMC4537256 DOI: 10.1371/journal.pone.0134903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Qian Li
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jian-Zhong Shao
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhu Z, Chen W, Hao L, Zhu G, Lu Y, Li S, Wang L, Li YP. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J Clin Periodontol 2015; 42:599-608. [PMID: 25952706 DOI: 10.1111/jcpe.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis induced by oral pathogens leads to severe periodontal tissue damage and osteoclast-mediated bone resorption caused by inflammation. On the basis of the importance of Ac45 in osteoclast formation and function, we performed this study to evaluate the therapeutic potential of periodontitis by local adeno-associated virus (AAV)-mediated Ac45 gene knockdown. MATERIAL AND METHODS We used AAV-mediated short hairpin RNAi knockdown of Ac45 gene expression (AAV-sh-Ac45) to inhibit bone erosion and gingival inflammation simultaneously in a well-established periodontitis mouse model induced by Porphyromonas gingivalis W50. Histological studies were performed to evaluate the bone protection of AAV-sh-Ac45. Immunochemistry, ELISA and qRT-PCR were performed to reveal the role of Ac45 knockdown on inflammation, immune response and expression of cytokine. RESULTS We found that Ac45 knockdown impaired osteoclast-mediated extracellular acidification and bone resorption in vitro and in vivo. Furthermore, local administration of AAV-sh-Ac45 protected mice from bone erosion by >85% and attenuated inflammation and decreased infiltration of T cells, dendritic cells and macrophages in the periodontal lesion. Notably, the expression of pro-inflammatory cytokines was also reduced. CONCLUSIONS Local AAV-sh-Ac45 gene therapy efficiently protects against periodontal tissue damage and bone erosion through both inhibition of osteoclast function and attenuating inflammation, and may represent a powerful new treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Zheng Zhu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sheng Li
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Simkin J, Sammarco MC, Dawson LA, Tucker C, Taylor LJ, Van Meter K, Muneoka K. Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration. ACTA ACUST UNITED AC 2015; 2:106-19. [PMID: 27499872 PMCID: PMC4895321 DOI: 10.1002/reg2.34] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Mammalian digit regeneration progresses through consistent stages: histolysis, inflammation, epidermal closure, blastema formation, and finally redifferentiation. What we do not yet know is how each stage can affect others. Questions of stage timing, tissue interactions, and microenvironmental states are becoming increasingly important as we look toward solutions for whole limb regeneration. This study focuses on the timing of epidermal closure which, in mammals, is delayed compared to more regenerative animals like the axolotl. We use a standard wound closure device, Dermabond (2-octyl cyanoacrylate), to induce earlier epidermal closure, and we evaluate the effect of fast epidermal closure on histolysis, blastema formation, and redifferentiation. We find that fast epidermal closure is reliant upon a hypoxic microenvironment. Additionally, early epidermal closure eliminates the histolysis stage and results in a regenerate that more closely replicates the amputated structure. We show that tools like Dermabond and oxygen are able to independently influence the various stages of regeneration enabling us to uncouple histolysis, wound closure, and other regenerative events. With this study, we start to understand how each stage of mammalian digit regeneration is controlled.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Biology University of Kentucky Lexington Kentucky 40506 USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas 77843 USA
| | - Catherine Tucker
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Louis J Taylor
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Keith Van Meter
- Department of Medicine Louisiana State University Health Sciences Center New Orleans Louisiana 70112 USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
17
|
Deficiency of cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role. FEBS Lett 2015; 589:1331-1339. [PMID: 25896020 DOI: 10.1016/j.febslet.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Using rheumatoid arthritis (RA) and periodontitis mouse models, we demonstrate that RA and periodontitis share many pathological features, such as deregulated cytokine production, increased immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast activity and bone erosion. We reveal that genetic deletion of cathepsin K (Ctsk) caused a radical reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages, dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role.
Collapse
|
18
|
|
19
|
Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:435-48. [PMID: 23807838 PMCID: PMC3686324 DOI: 10.2147/dddt.s31504] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/12/2022]
Abstract
Postmenopausal osteoporosis is the most common bone disease, associated with low bone mineral
density (BMD) and pathological fractures which lead to significant morbidity. It is defined
clinically by a BMD of 2.5 standard deviations or more below the young female adult mean (T-score
=−2.5). Osteoporosis was a huge global problem both socially and economically
– in the UK alone, in 2011 £6 million per day was spent on treatment and social care
of the 230,000 osteoporotic fracture patients – and therefore viable preventative and
therapeutic approaches are key to managing this problem within the aging population of today. One of
the main issues surrounding the potential of osteoporosis management is diagnosing patients at risk
before they develop a fracture. We discuss the current and future possibilities for identifying
susceptible patients, from fracture risk assessment to shape modeling and in relation to the high
heritability of osteoporosis now that a plethora of genes have been associated with low BMD and
osteoporotic fracture. This review highlights the current therapeutics in clinical use (including
bisphosphonates, anti-RANKL [receptor activator of NF-κB ligand],
intermittent low dose parathyroid hormone, and strontium ranelate) and some of those in development
(anti-sclerostin antibodies and cathepsin K inhibitors). By highlighting the intimate relationship
between the activities of bone forming (osteoblasts) and bone-resorbing (osteoclasts) cells, we
include an overview and comparison of the molecular mechanisms exploited in each therapy.
Collapse
Affiliation(s)
- Subhajit Das
- Musculoskeletal Research Programme, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
20
|
Abstract
Despite recent insights gained from the effects of targeted deletion of the Finkel-Biskis-Jinkins osteosarcoma oncogene (c-fos), Spleen focus-forming virus (SFFV) proviral integration 1 (PU.1), microphthalmia-associated transcription factor, NF-κB, and nuclear factor of activated cells cytoplasmic 1 (NFATc1) transcription factor genes, the mechanism underlying transcription factors specifying osteoclast (OC) lineage commitment from monocyte/macrophage remains unclear. To characterize the mechanism by which transcription factors regulate OC lineage commitment, we mapped the critical cis-regulatory element in the promoter of cathepsin K (Ctsk), which is expressed specifically in OCs, and found that CCAAT/enhancer binding protein α (C/EBPα) is the critical cis-regulatory element binding protein. Our results indicate that C/EBPα is highly expressed in pre- OCs and OCs. The combined presence of macrophage colony-stimulating factor and receptor activator of NF-κB ligand significantly induces high C/EBPα expression. Furthermore, C/EBPα(-/-) newborn mice exhibited impaired osteoclastogenesis, and a severe osteopetrotic phenotype, but unaffected monocyte/macrophage development. Impaired osteoclastogenesis of C/EBPα(-/-) mouse bone marrow cells can be rescued by c-fos overexpression. Ectopic expression of C/EBPα in mouse bone marrow cells and monocyte/macrophage cells, in the absence of receptor activator of NF-κB ligand, induces expression of receptor activator of NF-κB, c-fos, Nfatc1, and Ctsk, and it reprograms monocyte/macrophage cells to OC-like cells. Our results demonstrate that C/EBPα directly up-regulates c-fos expression. C/EBPα(+/-) mice exhibit an increase in bone density compared with C/EBPα(+/+) controls. These discoveries establish C/EBPα as the key transcriptional regulator of OC lineage commitment, providing a unique therapeutic target for diseases of excessive bone resorption, such as osteoporosis and arthritis.
Collapse
|
21
|
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine; Division of Endocrinology and Metabolism Seoul Metropolitan Government Borame Medical Center, Seoul, Korea
| |
Collapse
|
22
|
Osimani S, Husson I, Passemard S, Elmaleh M, Perrin L, Quelin C, Marey I, Delalande O, Filocamo M, Verloes A. Craniosynostosis: A rare complication of pycnodysostosis. Eur J Med Genet 2010; 53:89-92. [DOI: 10.1016/j.ejmg.2009.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
23
|
Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19:1-46. [PMID: 19191755 DOI: 10.1615/critreveukargeneexpr.v19.i1.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.
Collapse
Affiliation(s)
- Carrie S Soltanoff
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Ainola M, Valleala H, Nykänen P, Risteli J, Hanemaaijer R, Konttinen YT. Erosive arthritis in a patient with pycnodysostosis: an experiment of nature. ACTA ACUST UNITED AC 2009; 58:3394-401. [PMID: 18975331 DOI: 10.1002/art.23996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The excellent poster painter Henri de Toulouse-Lautrec is the most famous patient with cathepsin K-deficient pycnodysostosis. Cathepsin K is believed to play a major role in osteoclast-driven bone resorption. In this study we explored the role of cathepsin K in bone resorption in a patient with a cathepsin K mutation causing pycnodysostosis in whom psoriatic arthritis also developed. We hypothesized that the patient would develop only inflammatory synovitis but would not develop bone erosions or other osteolytic changes. METHODS Monocytes from the patient with pycnodysostosis and normal control monocytes were isolated and stimulated to fuse and form multinuclear osteoclast-like cells, which were identified by evaluating messenger RNA expression of osteoclast markers. The ability to resorb bone was assessed by determining the extent of pit formation and levels of collagen degradation products generated by cathepsin K (C-terminal crosslinking telopeptide of type I collagen [CTX]) and matrix metalloproteinases (pyridinoline crosslinked C-terminal telopeptide of type I collagen). These experiments were also done in normal control cells after incubation with the cathepsin K inhibitor E64 during bone resorption. RESULTS In contrast to our a priori hypothesis, the patient developed a mutilating disease with extensive bony erosions associated with lysis of some of the distal phalanges of her hands and feet. After stimulation of monocytes from this patient, the cells formed multinuclear tartrate-resistant acid phosphatase-positive and calcitonin receptor-positive multikaryons, which, however, totally lacked cathepsin K. These multinuclear cells were able to resorb bone but, in contrast to normal control osteoclasts, did not produce CTX. The resorption pattern was abnormal in that, unlike normal control osteoclasts, both osteoclasts from the patient and E64-inhibited osteoclasts did not leave extensive osteoclast trails, but were relatively sessile. CONCLUSION In this "experiment of nature" we observed that cathepsin K is not necessary for bone degradation. These findings may be pertinent to our understanding of the functions of cathepsin K inhibitors, which are currently being developed as drugs to treat metabolic bone diseases.
Collapse
Affiliation(s)
- Mari Ainola
- Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Guo J, Bot I, de Nooijer R, Hoffman SJ, Stroup GB, Biessen EAL, Benson GM, Groot PHE, Van Eck M, Van Berkel TJC. Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density lipoprotein receptor deficient mice. Cardiovasc Res 2008; 81:278-85. [PMID: 19015136 DOI: 10.1093/cvr/cvn311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cathepsin K (CatK), an established drug target for osteoporosis, has been reported to be upregulated in atherosclerotic lesions. Due to its proteolytic activity, CatK may influence the atherosclerotic lesion composition and stability. In this study, we investigated the potential role of leucocyte CatK in atherosclerotic plaque remodelling. METHODS AND RESULTS To assess the biological role of leucocyte CatK, we used the technique of bone marrow transplantation to selectively disrupt CatK in the haematopoietic system. Total bone marrow progenitor cells from CatK(+/+), CatK(+/-), and CatK(-/-) mice were transplanted into X-ray irradiated low-density lipoprotein receptor knockout (LDLr(-/-)) mice. The selective silencing of leucocyte CatK resulted in phenotypic changes in bone formation with an increased total bone mineral density in the CatK(-/-) chimeras and an effect of gene dosage. The absence of leucocyte CatK resulted in dramatically decreased collagen and increased macrophage content of the atherosclerotic lesions while lesion size was not affected. The atherosclerotic lesions also demonstrated less elastic lamina fragmentation and a significant increase in the apoptotic and necrotic area in plaques of mice transplanted with CatK(-/-) bone marrow. CONCLUSION Leucocyte CatK is an important determinant of atherosclerotic plaque composition, vulnerability, and bone remodelling, rendering CatK an attractive target for pharmaceutical modulation in atherosclerosis and osteoporosis.
Collapse
Affiliation(s)
- Jian Guo
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research , Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tada S, Tsutsumi K, Ishihara H, Suzuki K, Gohda K, Teno N. Species differences between human and rat in the substrate specificity of cathepsin K. J Biochem 2008; 144:499-506. [PMID: 18664521 DOI: 10.1093/jb/mvn093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K is known to play an important role in bone resorption, and it has the P2 specificity for proline. Rat cathepsin K has 88% identity with the human enzyme. However, it has been reported that its enzymatic activity for a Cbz-Leu-Arg-MCA substrate is lower than that of human cathepsin K, and that the rat enzyme is not well inhibited by human cathepsin K inhibitors. For this study, we prepared recombinant enzyme to investigate the substrate specificity of rat cathepsin K. Cleavage experiments using the fragment of type I collagen and peptidic libraries demonstrated that rat cathepsin K preferentially hydrolyses the substrates at the P2 Hyp position. Comparison of the S2 site between rat and human cathepsin K sequences indicated that two S2 residues at Ser134 and Val160 in rat are varied to Ala and Leu, respectively, in the human enzyme. Cleavage experiments using two single mutants, S134A and V160L, and one double mutant, S134A/V160L, of rat cathepsin K showed that all the rat mutants lost the P2 Hyp specificity. The information obtained from our comparative studies on rat and human cathepsin K should make a significant impact on developing specific inhibitors of human cathepsin K since rat is usually used as test species.
Collapse
Affiliation(s)
- Sachiyo Tada
- Novartis Institutes for BioMedical Research, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Yang S, Chen W, Stashenko P, Li YP. Specificity of RGS10A as a key component in the RANKL signaling mechanism for osteoclast differentiation. J Cell Sci 2008; 120:3362-71. [PMID: 17881498 PMCID: PMC3587975 DOI: 10.1242/jcs.008300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Significant progress has been made in studies of the mechanisms by which RANKL induces terminal osteoclast differentiation. However, many crucial details in the RANKL-evoked signaling pathway for osteoclast differentiation remain to be defined. We characterized genes specifically expressed in osteoclasts by differential screening of a human osteoclastoma cDNA library, and found that the regulator of G-protein signaling 10A (RGS10A), but not the RGS10B isoform, was specifically expressed in human osteoclasts. The expression of RGS10A is also induced by RANKL in osteoclast precursors and is prominently expressed in mouse osteoclast-like cells. RGS10A silencing by RNA interference blocked intracellular [Ca2+]i oscillations, the expression of NFAT2, and osteoclast terminal differentiation in both bone marrow cells and osteoclast precursor cell lines. Reintroduction of RGS10A rescued the impaired osteoclast differentiation. RGS10A silencing also resulted in premature osteoclast apoptosis. RGS10A silencing affected the RANKL-[Ca2+]i oscillation-NFAT2 signaling pathway but not other RANKL-induced responses. Our data demonstrate that target components of RGS10A are distinct from those of RGS12 in the RANKL signaling mechanism. Our results thus show the specificity of RGS10A as a key component in the RANKL-evoked signaling pathway for osteoclast differentiation, which may present a promising target for therapeutic intervention.
Collapse
|
28
|
Schurigt U, Hummel KM, Petrow PK, Gajda M, Stöckigt R, Middel P, Zwerina J, Janik T, Bernhardt R, Schüler S, Scharnweber D, Beckmann F, Saftig P, Kollias G, Schett G, Wiederanders B, Bräuer R. Cathepsin K deficiency partially inhibits, but does not prevent, bone destruction in human tumor necrosis factor-transgenic mice. ACTA ACUST UNITED AC 2008; 58:422-34. [PMID: 18240253 DOI: 10.1002/art.23224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cathepsin K is believed to have an eminent role in the pathologic resorption of bone. However, several studies have shown that other proteinases also participate in this process. In order to clarify the contribution of cathepsin K to the destruction of arthritic bone, we applied the human tumor necrosis factor (hTNF)-transgenic mouse model, in which severe polyarthritis characterized by strong osteoclast-mediated bone destruction develops spontaneously. METHODS Arthritis was evaluated in hTNF-transgenic mice that were either wild-type for cathepsin K (CK(+/+)), heterozygous for cathepsin K (CK(+/-)), or deficient in cathepsin K (CK(-/-)). Arthritic knee joints were prepared for standard histologic assessment aimed at establishing a semiquantitative score for joint destruction and quantification of the area of bone erosion. Additionally, microfocal computed tomography was performed to visualize bone destruction in mice with the different CK genotypes. CK(+/+) and CK(-/-) osteoclasts were generated in vitro, and their proteinase expression profiles were compared by complementary DNA array analysis, real-time polymerase chain reaction, and activity assays. RESULTS Although the area of bone erosion was significantly reduced in hTNF-transgenic CK(-/-) mice, the absence of cathepsin K did not completely protect against inflammatory bone lesions. Several matrix metalloproteinases (MMPs) and cathepsins were expressed by in vitro-generated CK(-/-) osteoclasts, without marked differences from CK(+/+) osteoclasts. MMP activity was detected in CK(-/-) osteoclasts, and MMP-14 was localized by immunohistochemistry in inflammatory bone erosions in hTNF-transgenic CK(-/-) mice, suggesting MMPs as potential contributors to bone destruction. Additionally, we detected a reduction in osteoclast formation in cathepsin K-deficient mice, both in vitro and in vivo. CONCLUSION The results of our experiments raise doubts about a crucial role of cathepsin K in arthritic bone destruction.
Collapse
|
29
|
Teno N, Irie O, Miyake T, Gohda K, Horiuchi M, Tada S, Nonomura K, Kometani M, Iwasaki G, Betschart C. New chemotypes for cathepsin K inhibitors. Bioorg Med Chem Lett 2008; 18:2599-603. [DOI: 10.1016/j.bmcl.2008.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/10/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
30
|
Kim KW, Park JS, Kim KS, Jin UH, Kim JK, Suh SJ, Kim CH. Inhibition of Ulmus davidiana Planch (Ulmaceae) on bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts. Phytother Res 2008; 22:511-7. [PMID: 18338784 DOI: 10.1002/ptr.2366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ulmus davidiana Planch (Ulmaceae) (UD) has long been known to be antiinflammatory in traditional Korean medicine. This experiment investigated the effects of UD on bone resorption using bone cell culture. Different concentrations of crude extract of UD were added to mouse bone cell culture. The mitochondrial activity of the bone cells after exposure of UD was determined by colorimetric 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT). It was demonstrated that UD has potential effects on bone cell culture without cytotoxicity. The most effective concentration of UD in bone cells was 100 microg/mL. Cathepsin K (Cat K) is the major cysteine protease expressed in osteoclasts and is thought to play a key role in matrix degradation during bone resorption. When mouse long bone cells including osteoclasts and osteoblasts were treated with UD, UD prevented the osteoclast-mediated intracellular processing of Cat K, suggesting that UD may disrupt the intracellular transport of pro Cat K. Since secreted proenzymes have the potential to reenter the cell via the mannose-6-phosphate (M6P) receptor, to prevent this possibility, UD was tested in the absence or presence of M6P. Inhibition of Cat K processing by UD was observed in a dose-dependent manner. Furthermore, the addition of M6P resulted in enhanced potency of UD. UD dose-dependently inhibited in vitro bone resorption with a potency similar to that observed for inhibition of Cat K processing.
Collapse
Affiliation(s)
- Kyung-Woon Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, SungKyunKwan University, 300 Chunchun-Dong, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Lecaille F, Brömme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2007; 90:208-26. [PMID: 17935853 DOI: 10.1016/j.biochi.2007.08.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/02/2023]
Abstract
Cysteine cathepsins (11 in humans) are mostly located in the acidic compartments of cells. They have been known for decades to be involved in intracellular protein degradation as housekeeping proteases. However, the discovery of new cathepsins, including cathepsins K, V and F, has provided strong evidence that they also participate in specific biological events. This review focuses on the current knowledge of cathepsin K, the major bone cysteine protease, which is a drug target of clinical interest. Nevertheless, we will not discuss recent developments in cathepsin K inhibitor design since they have been extensively detailed elsewhere. We will cover features of cathepsin K structure, cellular and tissue distribution, substrate specificity, and regulation (pH, propeptide, glycosaminoglycans, oxidants), and its putative roles in physiological or pathophysiological processes. Finally, we will review the kinetic data of its inhibition by natural endogenous inhibitors (stefin B, cystatin C, H- and L-kininogens).
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, U618, Protéases et Vectorisation Pulmonaires, Equipe Protéases et Pathologies Pulmonaires, Faculté de Médecine, Université François Rabelais, 10 Boulevard Tonnellé, F-37032 Tours Cedex, France.
| | | | | |
Collapse
|
32
|
Yang S, Li YP. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev 2007; 21:1803-16. [PMID: 17626792 PMCID: PMC1920174 DOI: 10.1101/gad.1544107] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased osteoclastic resorption leads to many bone diseases, including osteoporosis and rheumatoid arthritis. While rapid progress has been made in characterizing osteoclast differentiation signaling pathways, how receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) evokes essential [Ca2+]i oscillation signaling remains unknown. Here, we characterized RANKL-induced signaling proteins and found regulator of G-protein signaling 10 (RGS10) is predominantly expressed in osteoclasts. We generated RGS10-deficient (RGS10-/-) mice that exhibited severe osteopetrosis and impaired osteoclast differentiation. Our data demonstrated that ectopic expression of RGS10 dramatically increased the sensitivity of osteoclast differentiation to RANKL signaling; the deficiency of RGS10 resulted in the absence of [Ca2+]i oscillations and loss of NFATc1; ectopic NFATc1 expression rescues impaired osteoclast differentiation from deletion of RGS10; phosphatidylinositol 3,4,5-trisphosphate (PIP3) is essential to PLCgamma activation; and RGS10 competitively interacts with Ca2+/calmodulin and PIP3 in a [Ca2+]i-dependent manner to mediate PLCgamma activation and [Ca2+]i oscillations. Our results revealed a mechanism through which RGS10 specifically regulates the RANKL-evoked RGS10/calmodulin-[Ca2+]i oscillation-calcineurin-NFATc1 signaling pathway in osteoclast differentiation using an in vivo model. RGS10 provides a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
- Corresponding author.E-MAIL ; FAX (617) 262-4021
| |
Collapse
|
33
|
Suh SJ, Yun WS, Kim KS, Jin UH, Kim JK, Kim MS, Kwon DY, Kim CH. Stimulative effects of Ulmus davidiana Planch (Ulmaceae) on osteoblastic MC3T3-E1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:480-5. [PMID: 17030479 DOI: 10.1016/j.jep.2006.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 07/31/2006] [Accepted: 08/22/2006] [Indexed: 05/12/2023]
Abstract
Ulmus davidiana Planch (Ulmaceae) has long been known to have anti-inflammatory and protective effects on damaged tissue, inflammation and bone among other functions. To treat rheumatoid arthritis (RA), a herbal medicine, Ulmus davidiana Planch (Ulmaceae) extract (UD) is being used in traditional oriental medicine. The effect of UD on the proliferation and osteoblastic differentiation in non-transformed osteoblastic cells (MC3T3-E1) was studied. UD dose-dependently increased DNA synthesis (significant at 5-20 microg/ml). UD increased alkaline phosphatase (ALP) activity and prolyl hydroxylase activity of MC3T3-E1 cells (5-20 microg/ml). Antiestrogen tamoxifen eliminated the stimulation of proliferation and ALP activity of MC3T3-E1, which was induced by UD. UD at concentrations ranged from 30 to 100 microg/ml inhibited prostaglandin E2 production in MC3T3-E1. These results indicate that UD directly stimulates cell proliferation and differentiation of osteoblasts. These results also suggest and UD is effective for bone anti-resorptive action in bone cells.
Collapse
Affiliation(s)
- Seok-Jong Suh
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Suwon City, Kyunggi-Do 440-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen W, Yang S, Abe Y, Li M, Wang Y, Shao J, Li E, Li YP. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet 2007; 16:410-23. [PMID: 17210673 PMCID: PMC3578583 DOI: 10.1093/hmg/ddl474] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pycnodysostosis is a genetic bone disease featuring the unique bone homeostasis disorders of osteolysis and osteopetrosis in the same organism. The pathomechanism for pycnodysostosis has been largely unknown due to the unavailability of a pycnodysostosis mouse model with all the traits of the disease. We generated cathepsin K(-/-) mouse strains in the 129/Sv and C57BL/6J backgrounds and found that, only in the 129/Sv background, cathepsin K(-/-) mice exhibit many characteristics of the human pycnodysostosis-like phenotype. Our data indicated that 129/Sv cathepsin K(-/-) osteoclasts (OCs) lacked normal apoptosis and senescence and exhibited over-growth both in vitro and in vivo. These abnormalities resulted in an unusually high OC number, which is consistent with a recent case study of human pycnodysostosis. Our results show that cathepsin K function has different effects around the skeleton due to site-specific variations in bone homeostasis, such as phenotypes of osteopetrosis in tibiae and osteolysis in calvariae as a result of cathepsin K mutation. Our data demonstrated that the expression levels of p19, p53 and p21 were significantly reduced in 129/Sv cathepsin K(-/-) OCs and forced expression of cathepsin K in pre-OCs induced premature senescence and increased expression of p19, p53 and p21. This is the first evidence that cathepsin K plays a key role in OC apoptosis and senescence, revealing the importance of OC senescence in bone homeostasis. The finding of this novel cathepsin K function provides insight into the pathomechanism of pycnodysostosis and may provide new drug targets for diseases involved in OC-related abnormal bone homeostasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Yoke Abe
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Ming Li
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Yucheng Wang
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Jianzhong Shao
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Life Science College, Zhejiang University, Hangzhou, China
| | - En Li
- Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- To whom correspondence should be addressed: Tel: +1 6178928260; Fax: +1 6172624021;
| |
Collapse
|
35
|
Abstract
Degradation of elastin, the main amorphous component of elastic fibers, by elastases belonging to the serine, metallo, or cysteine families leads to the generation of elastin fragments, designated as elastokines in keeping with their cytokine-like properties. Generation of elastokines from one of the longest lived protein in human might represent a strong tissue repair signal. Indeed, they (1) exhibit potent chemotactic activity for leukocytes, (2) stimulate fibroblast and smooth muscle cell proliferation, and (3) display proangiogenic activity as potent as VEGF. However, continuous exposure of cells to these matrikines, through increased elastase(s) expression with age, can contribute to the formation of a chronic inflammatory state, that is, inflamm-aging. Importantly, binding of elastokines to S-Gal, their cognate receptor, proved to stimulate matrix metalloproteinase expression in normal and cancer cells. Besides, these elastin fragments can polarize lymphocytes toward a Th-1 response or induce an osteogenic response in smooth muscle cells, and arterial wall calcification. In this chapter, emphasis will be made on the contribution of elastokines on the genesis of age-related arterial wall diseases, particularly abdominal aortic aneurysms (AAAs). An elastokine theory of AAAs progression will be proposed. Age is one main risk factor of cancer incidence and development. The myriad of biological effects exerted by elastokines on stromal and inflammatory cells led us to hypothesize that they might be main actors in elaborating a favorable cancerization field in melanoma; for instance these peptides could catalyze the vertical growth phase transition in melanoma through increased expression of gelatinase A and membrane-type 1 matrix metalloproteinase.
Collapse
Affiliation(s)
- Frank Antonicelli
- Faculty of Medicine Extracellular Matrix and Cell Signaling--Reims University, UMR 6198 CNRS 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
36
|
Abstract
UNLABELLED How RANKL evokes [Ca(2+)](i) oscillations and leads to osteoclast differentiation is unclear. We identified a new signaling protein, RGS12, and found that RGS12 is essential for [Ca(2+)](i) oscillations and osteoclast differentiation induced by RANKL. RGS12 may play a critical role in the RANKL-evoked PLCgamma-calcium channels-[Ca(2+)](i) oscillation-NFAT2 pathway. INTRODUCTION RANKL-induced [Ca(2+)](i) oscillations play a switch-on role in NFAT2 expression and osteoclast differentiation. However, RANKL evokes [Ca(2+)](i) oscillations and leads to osteoclast differentiation by an unknown mechanism. In this study, we identified a new RANKL-induced signaling protein, regulator of G signaling protein 12 (RGS12), and investigated its effect on osteoclast differentiation in vitro. MATERIALS AND METHODS We used a genome-wide screening approach to identify genes that are specifically or prominently expressed in osteoclasts. To study the role of the RGS12 in osteoclast differentiation, we used vector and lentivirus-based RNAi gene silencing technology to silence the RGS12 gene in the monocyte progenitor cell lines and primary bone marrow-derived monocytes (BMMs). The interaction between RGS12 and N-type calcium channels was elucidated using co-immunoprecipitation and immunoblotting. RESULTS We found that RGS12 was prominently expressed in osteoclast-like cells (OLCs) induced by RANKL. This result was further confirmed at both the mRNA and protein level in human osteoclasts and mouse OLCs. Silence of RGS12 expression using vector and lentivirus based RNA interference (RNAi) impaired phosphorylation of phospholipase C (PLC)gamma and blocked [Ca(2+)](i) oscillations, NFAT2 expression, and osteoclast differentiation in RANKL-induced RAW264.7 cells and BMMs. We further found that N-type calcium channels were expressed in OLCs after RANKL stimulation and that RGS12 directly interacted with the N-type calcium channels. CONCLUSIONS These results reveal that RGS12 is essential for the terminal differentiation of osteoclasts induced by RANKL. It is possible that RGS12 regulates osteoclast differentiation through a PLC gamma-calcium channel-[Ca(2+)](i) oscillation-NFAT2 pathway.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts, USA
- Department of Developmental Biology, and Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts, USA
- Department of Developmental Biology, and Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Park YG, Kim YH, Kang SK, Kim CH. cAMP-PKA signaling pathway regulates bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts. Int Immunopharmacol 2006; 6:947-56. [PMID: 16644480 DOI: 10.1016/j.intimp.2006.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/11/2005] [Accepted: 01/10/2006] [Indexed: 11/28/2022]
Abstract
Cathepsin K (Cat K) is the major cysteine protease expressed in osteoclast and is thought to play a key role in matrix degradation during bone resorption. It is shown that the intracellular maturation of Cat K was prevented by the cAMP antagonist, Rp-cAMP, and the protein kinase A (PKA) inhibitors of KT5720 and H89. In contrast, forskolin, an adenylate cyclase agonist, rather induced Cat K processing and maturation in osteoclast. Furthermore, to determine whether Cat K processing and maturation signaling involves protein kinase C (PKC), mouse total bone cells were treated with calphostin C, a specific inhibitor of PKC, however, no effect was observed, indicating that PKC calphostin C did not affect to osteoclast-mediated Cat K processing and maturation in osteoclast. Thus, it is indicated that the cAMP-PKA signaling pathway regulate Cat K maturation in osteoclast. Since secreted proenzymes have the potential to reenter the cell via M6P receptor, to prevent this possibility, we tested cAMP antagonist Rp-cAMP and the PKA inhibitors KT5720 and H89 in the absence or presence of M6P. Inhibition of Cat K processing by Rp-cAMP, KT5720 or H89 was observed in a dose-dependent manner. Furthermore, the addition of M6P resulted in enhanced potency of Rp-cAMP, KT5720 and H89, which dose-dependently inhibited in vitro bone resorption with potency similar to that observed for inhibition of Cat K processing.
Collapse
Affiliation(s)
- Young-Guk Park
- Department of Orthodondritics, Kyung-Hee University College of Dental Medicine, Dongdaemun-ku, Seoul 130-701, South Korea
| | | | | | | |
Collapse
|
38
|
Jeong JC, Lee JW, Yoon CH, Lee YC, Chung KH, Kim MG, Kim CH. Stimulative effects of Drynariae Rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2005; 96:489-495. [PMID: 15619569 DOI: 10.1016/j.jep.2004.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 09/13/2004] [Accepted: 09/24/2004] [Indexed: 05/24/2023]
Abstract
Pharmacological factors are needed to prevent bone loss that occurs with increasing age. The chemical compounds that act on bone metabolism in herbal medicines, however, are poorly understood. Effects of traditional Korean medicine, Drynariae Rhizoma [Drynaria fortunei (kunze) J. Sm] extract (DR), on the osteoblastic proliferation and differentiation were investigated. The effect of DR, a natural phyto herb, on the proliferation and osteoblastic differentiation in non-transformed osteoblastic cells (MC3T3-E1) was studied. DR dose-dependently increased DNA synthesis (significant at 50-150 microg/ml). DR increased alkaline phosphatase (ALP) activity and prolyl hydroxylase activity of MC3T3-E1 cells (50-150 microg/ml). Antiestrogen tamoxifen eleminated the stimulation of proliferation and ALP activity of MC3T3-E1, which were induced by DR. DR at concentrations ranged from 30-100 microg/ml inhibited prostaglandin E2 production in MC3T3-E1. These results indicate that DR directly stimulates cell proliferation and differentiation of osteoblasts. These results also suggest and DR is effective for bone anti-resorptive action in bone cells.
Collapse
Affiliation(s)
- Ji-Cheon Jeong
- Department of Internal Medicine, Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University and National Research Laboratory for Glycobiology, Kyungju 780-714, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Kamolmatyakul S, Chen W, Yang S, Abe Y, Moroi R, Ashique AM, Li YP. IL-1alpha stimulates cathepsin K expression in osteoclasts via the tyrosine kinase-NF-kappaB pathway. J Dent Res 2004; 83:791-6. [PMID: 15381721 PMCID: PMC3966556 DOI: 10.1177/154405910408301011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interleukin-1alpha (IL-1alpha) is a powerful activator of osteoclast cells. However, the underlying mechanism for this activation is unknown. In this study, we reveal that IL-1alpha up-regulates the expression of cathepsin K protein, a key protease in bone resorption, by five-fold. Northern blot analysis and promoter analysis show that this induction occurs at the transcriptional level, in a dose-responsive and time-dependent manner. No increase in expression occurs in the presence of either pyrrolidine dithiocarbamate (PDTC), a selective inhibitor of NF-kappaB, or Genistein, a protein tyrosine kinase inhibitor, suggesting that IL-1alpha up-regulation may be via the tyrosine kinase-NF-kappaB pathway to regulate cathepsin K expression. Antisense oligonucleotides to p65, but not the p50 subunit of NF-kappaB, suppress the IL-1alpha-induced expression of cathepsin K. We therefore conclude that IL-1alpha up-regulates cathepsin K gene expression at the transcription level, and this regulation may be via the tyrosine-kinase-NF-kappaB pathway.
Collapse
Affiliation(s)
- S. Kamolmatyakul
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - W. Chen
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - S. Yang
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Y. Abe
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - R. Moroi
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - A. M. Ashique
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Y.-P. Li
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, Boston, MA 02115, USA
- corresponding author:
| |
Collapse
|
40
|
Jeong JC, Yoon CH, Jeong CW, Lee YC, Chang YC, Kim CH. Inhibitory Activity ofDrynariae rhizomaExtracts on Cathepsin Having Bone Resorption Activity. Immunopharmacol Immunotoxicol 2004; 26:373-85. [PMID: 15518171 DOI: 10.1081/iph-200026879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Effects of traditional Korean (Hanbang) medicine, Drynariae rhizoma (DR), on the protease activity of bone loss-initiation in rats and mice were investigated. Ethanol extracts-DR (EE-DR) and water extracts-DR (WE-DR) were identified as potent inhibitor of cathepsins K and L. The original WE-DR inhibits cathepsins K and L with IC50 values of 3.7 microg/ml and 4.5 microg/ml, respectively. EE-DR was more potent than that of WE-DR, because the inhibitions of cathepsin K and L increased to 0.5 microg/ml and 0.8 microg/ml, respectively. The EE-DR was proved to be the most potent. EE-DR was found to be a potent inhibitor of cathepsins K with a Ki value of 5.0 microg/ml for cathepsin K. The activity was increased by 10-fold when the assay is performed in the presence of glutathione at pH 7.0, which favors the formation of a GSH thiolate anion. Thus, it is suggested that this increase in potency is probably due to an enhanced chemical reactivity of the extract mixtures toward the thiolate of the active site of the enzyme. WE-DR exhibited time-dependet inhibition which allowed us to determine the association and dissociation rate constants with cathepsin K. Finally, EE-DR inhibits bone resorption in an in vitro assay involving mouse osteoclasts and bovine bone with an IC50 value of 70 microg/ml. WE-DR represents a new herbal formulation inhibiting cathepsin K and L activity and proteolysis of bone collagen. These results strongly suggest that DR is effective for preventing the development of bone loss induced by cathepsin K. This result also suggested that the DR is effective for bone resorptive action in bone cells.
Collapse
Affiliation(s)
- Ji-Cheon Jeong
- Department of Biochemistry and Internal Medicine, Dongguk University College of Oriental Medicine, MOST, Kyungju, Kyungbuk, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Wang D, Li W, Pechar M, Kopecková P, Brömme D, Kopecek J. Cathepsin K inhibitor–polymer conjugates: potential drugs for the treatment of osteoporosis and rheumatoid arthritis. Int J Pharm 2004; 277:73-9. [PMID: 15158970 DOI: 10.1016/j.ijpharm.2003.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 02/05/2003] [Accepted: 03/23/2003] [Indexed: 10/26/2022]
Abstract
The role of the newly discovered cysteine protease, cathepsin K, in osteoporosis and rheumatoid arthritis is reviewed. The current development of cathepsin K inhibitors and their targeted delivery using synthetic polymer carriers are discussed. Future challenges and possible strategies to improve these delivery systems are addressed.
Collapse
Affiliation(s)
- D Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, 30 S 2000 E Rm. 301, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
42
|
Inhibition of the Cysteine Protease Cathepsin K (EC 3.4.22.38). ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2004. [DOI: 10.1016/s0065-7743(04)39007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
43
|
Deaton DN, Kumar S. Cathepsin K Inhibitors: Their Potential as Anti-Osteoporosis Agents. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:245-375. [PMID: 15003723 DOI: 10.1016/s0079-6468(04)42006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David N Deaton
- Medicinal Chemistry Department, GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
44
|
Jeong JC, Kang SK, Youn CH, Jeong CW, Kim HM, Lee YC, Chang YC, Kim CH. Inhibition of Drynariae Rhizoma extracts on bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts. Int Immunopharmacol 2003; 3:1685-97. [PMID: 14555293 DOI: 10.1016/j.intimp.2003.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the traditional Korean medicine, Drynariae Rhizoma (DR) [Drynaria fortunei (kunze) J. Sm] has been reported as a good enhancer for bone healing. In this experiment, we investigate the effects of DR on bone resorption using the bone cells culture. Different concentrations of crude extract of DR were added to mouse bone cells culture. The mitochondria activity of the bone cells after exposure was determined by colorimetric MTT assay. It was demonstrated that DR has potential effects on the bone cells culture without any cytotoxicity. The most effective concentration of DR on bone cells was 100 micro g/ml. On the other hand, cathepsin K (Cat K) is the major cysteine protease expressed in osteoclasts and is thought to play a key role in matrix degradation during bone resorption. In this study, Mouse long bone cells including osteoclasts and osteoblast were treated with the PI3-kinase inhibitor, wortmannin (WT), and a specific inhibitor of protein kinase C (PKC), calphostin C. Although WT prevented the osteoclast-mediated intracellular processing of Cat K, calphostin C did not. Similarly, treatment of osteoclasts-containing long bone cells with Drynariae Rhizoma (DR) extracts prevented the intracellular maturation of Cat K, suggesting that DR may disrupt the intracellular trafficking of pro Cat K. This is similar to that of WT. Since secreted proenzymes have the potential to reenter the cell via mannose-6-phosphate (M6P) receptor, to prevent this possibility, we tested WT and DR in the absence or presence of M6P. Inhibition of Cat K processing by WT or DR was observed in a dose-dependent manner. Furthermore, the addition of M6P resulted in enhanced potency of WT and DR. DR dose-dependently inhibited in vitro bone resorption with a potency similar to that observed for inhibition of Cat K processing.
Collapse
Affiliation(s)
- Ji-Cheon Jeong
- National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, and Department of Biochemistry, Molecular Biology and Internal Medicine, College of Oriental Medicine, Dongguk University, Kyungbuk Kyungju, 780-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cathepsin K is a member of the papain superfamily of cysteine proteases and plays a pivotal role in osteoclast-mediated bone resorption. This enzyme is an excellent target for antiresorptive therapies for osteopenic disorders such as osteoporosis.(1) Although isolated inhibitor studies on purified enzymes is required to discover potent and selective inhibitors of cathepsin K, a quantitative cytochemical assay(2) for cathepsin K would allow inhibitors to be tested on actual osteoclasts within sections of bone. Furthermore cathepsin K activity could be used to identify and analyse osteoclasts at definitive stages of their lifespan. A cytochemical assay is described that localizes osteoclast cathepsin K activity in unfixed, undecalcified cryostat sections of animal and human bone.
Collapse
Affiliation(s)
- Robert A Dodds
- Growth Factors Drug Discovery, Johnson and Johnson Pharmaceutical Research and Development, Raritan, NJ 08869, USA.
| |
Collapse
|
46
|
Oshiro T, Shibasaki Y, Martin TJ, Sasaki T. Immunolocalization of vacuolar-type H+-ATPase, cathepsin K, matrix metalloproteinase-9, and receptor activator of NFkappaB ligand in odontoclasts during physiological root resorption of human deciduous teeth. THE ANATOMICAL RECORD 2001; 264:305-11. [PMID: 11596012 DOI: 10.1002/ar.1127] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To investigate the cellular mechanisms of physiological root resorption in human deciduous teeth, the authors examined the immunocytochemical localization of vacuolar-type H+-ATPase, a lysosomal cysteine proteinase, cathepsin K, matrix metalloproteinase-9 (MMP-9), and receptor activator of NFKB ligand (RANKL) in odontoclasts. H+-ATPase, cathepsin K, and MMP-9 are the most important enzymes for decalcification of apatite crystals and degradation of type-I collagen. In addition, RANKL is one of the key regulatory molecules in osteoclast formation and functions. Odontoclasts developed extensive ruffled borders and clear zones apposed to the resorbing root dentine surfaces. On immunoelectron microscopy, the expression of vacuolar-type H+-ATPase was detected along the limiting membranes of pale vacuoles and the ruffled border membranes of odontoclasts. Cathepsin K in odontoclasts was localized within pale vacuoles, lysosomes, the extracellular canals of ruffled borders, and the underlying resorbing dentine surfaces. MMP-9 localization in odontoclasts was similar to those of cathepsin K. RANKL was detected in both mononuclear stromal cells and odontoclasts located on resorbing dentine surfaces. These results suggest that (1) odontoclasts are directly involved in decalcification of apatite crystals by active extrusion of proton ions mediated by H+-ATPase and (2) extracellular degradation of dentine type-I collagen by both cathepsin K and MMP-9, and (3) odontoclast differentiation and activity are regulated, at least in part, by RANKL, possibly produced by mononuclear stromal cells and odontoclasts themselves in the resorbing tissues. Thus, the cellular mechanisms of physiological root resorption appear to be quite similar to those of osteoclastic bone resorption.
Collapse
Affiliation(s)
- T Oshiro
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | | | | | | |
Collapse
|
47
|
Konttinen YT, Takagi M, Mandelin J, Lassus J, Salo J, Ainola M, Li TF, Virtanen I, Liljestrom M, Sakai H, Kobayashi Y, Sorsa T, Lappalainen R, Demulder A, Santavirta S. Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res 2001; 16:1780-6. [PMID: 11585341 DOI: 10.1359/jbmr.2001.16.10.1780] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Normal bone remodeling and pathological bone destruction have been considered to be osteoclast-driven. Osteoclasts are able to attach to bare bone surface and produce an acidic subcellular space. This leads to acid dissolution of hydroxyapatite, allowing cathepsin K to degrade the organic type I collagen-rich osteoid matrix under the acidic condition prevailing in Howship lacunae. Using a sting pH electrode, the interface membrane around a loosened total hip replacement prosthesis was found to be acidic. Confocal laser scanning disclosed irregular demineralization of the bone surface in contact with the acidic interface. Cathepsin K, an acidic collagenolytic enzyme, was found in interface tissue macrophages/giant cells and pseudosynovial fluid. Tissue extracts contained high levels of cathepsin K messenger RNA (mRNA) and protein. These observations suggest the presence of an acid- and cathepsin K-driven pathological mechanism of bone resorption, mediated not by osteoclasts in subosteoclastic space, but rather by the uncontrolled activity of macrophages in extracellular space.
Collapse
Affiliation(s)
- Y T Konttinen
- Institute of Biomedicine, Department of Anatomy, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ishikawa T, Kamiyama M, Tani-Ishii N, Suzuki H, Ichikawa Y, Hamaguchi Y, Momiyama N, Shimada H. Inhibition of osteoclast differentiation and bone resorption by cathepsin K antisense oligonucleotides. Mol Carcinog 2001; 32:84-91. [PMID: 11746820 DOI: 10.1002/mc.1067] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We confirmed the expression of cathepsin K, the most abundant and specific cysteine protease found in osteoclasts, at the mRNA level in most of our cases of breast cancer, and even at the protein level in bone metastatic lesions. Therefore, we investigated the functions of cathepsin K in osteoclasts with special attention to bone metastasis from breast cancer. Mouse osteoclast-like cells (OCLs) were established by coculture of mouse bone marrow cells and osteoblastic cells. Rodent cathepsin K antisense (AS) or random control (CL) oligonucleotides were added on day 0, 3, or 6 of culture. Tartrate-resistant acid phosphatase staining confirmed the formation of OCLs after 9 d of incubation. AS treatment significantly reduced both the number of TRAP-positive cells and the percentage of multinuclear cells. For the pit-forming assay, after 9 d of incubation, mature OCLs were collected and incubated on ivory slices with AS or CL for 48 h. The antisense oligonucleotides also inhibited the bone-resorbing activity of OCLs. CL treatment did not affect either the number of TRAP-positive cells or pit formation. Cathepsin K may play important roles in bone resorption as well as in differentiation of osteoclasts. These findings indicate that the inhibition of this enzyme may prevent the development of bone metastasis from breast cancer.
Collapse
Affiliation(s)
- T Ishikawa
- Second Department of Surgery, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamaza T, Tsuji Y, Goto T, Kido MA, Nishijima K, Moroi R, Akamine A, Tanaka T. Comparison in localization between cystatin C and cathepsin K in osteoclasts and other cells in mouse tibia epiphysis by immunolight and immunoelectron microscopy. Bone 2001; 29:42-53. [PMID: 11472890 DOI: 10.1016/s8756-3282(01)00466-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the distribution of a cysteine proteinase inhibitor, cystatin C, with that of cathepsin K in osteoclasts of the mouse tibia by immunolight and immunoelectron microscopy. Light microscopically, strong immunoreactivity for cystatin C was found extracellularly along the resorption lacuna and intracellularly in the organelles of osteoclasts. In serial sections, various patterns of cystatin C and cathepsin K localization were seen, specifically: (1) some resorption lacuna were positive for both cystatin C and cathepsin K; (2) others were positive for either cystatin C or cathepsin K, but not both; and (3) some lacuna were negative for both. In osteoclasts, the localization of cystatin C was similar to that of cathepsin K. Furthermore, cystatin C immunoreactivity was detected in preosteoclasts and osteoblasts, whereas cathepsin K was seen only in preosteoclasts. Electron microscopically, cystatin C immunoreactive products were found in the rough endoplasmic reticulum (ER), Golgi apparatus, vesicles, granules, and vacuoles of osteoclasts. These cystatin C-positive vesicles had fused or were in the process of fusion with the ampullar vacuoles (extracellular spaces) containing cystatin C-positive, fragmented, fibril-like structures. The extracellular cystatin C was deposited on and between the cytoplasmic processes of ruffled borders, and on and between type I collagen fibrils. In the basolateral region of osteoclasts, cystatin C-positive vesicles and granules also fused with vacuoles that contained cystatin C-positive or negative fibril-like structures. These results indicate that osteoclasts not only synthesize and secrete cathepsin K from the ruffled border into the bone resorption lacunae, but also a cysteine proteinase inhibitor, cystatin C. Therefore, it is suggested that cystatin C regulates the degradation of bone matrix by cathepsin K, both extracellularly and intracellularly.
Collapse
Affiliation(s)
- T Yamaza
- Department of Endodontology and Operative Dentistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dodds RA, James IE, Rieman D, Ahern R, Hwang SM, Connor JR, Thompson SD, Veber DF, Drake FH, Holmes S, Lark MW, Gowen M. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption. J Bone Miner Res 2001; 16:478-86. [PMID: 11277265 DOI: 10.1359/jbmr.2001.16.3.478] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cathepsin K is a member of the papain superfamily of cysteine proteases and has been proposed to play a pivotal role in osteoclast-mediated bone resorption. We have developed a sensitive cytochemical assay to localize and quantify osteoclast cathepsin K activity in sections of osteoclastoma and human bone. In tissue sections, osteoclasts that are distant from bone express high levels of cathepsin K messenger RNA (mRNA) and protein. However, the majority of the cathepsin K in these cells is in an inactive zymogen form, as assessed using both the cytochemical assay and specific immunostaining. In contrast, osteoclasts that are closer to bone contain high levels of immunoreactive mature cathepsin K that codistributes with enzyme activity in a polarized fashion toward the bone surface. Polarization of active enzyme was clearly evident in osteoclasts in the vicinity of bone. The osteoclasts apposed to the bone surface were almost exclusively expressing the mature form of cathepsin K. These cells showed intense enzyme activity, which was polarized at the ruffled border. These results suggest that the in vivo activation of cathepsin K occurs intracellularly, before secretion into the resorption lacunae and the onset of bone resorption. The processing of procathepsin K to mature cathepsin K occurs as the osteoclast approaches bone, suggesting that local factors may regulate this process.
Collapse
Affiliation(s)
- R A Dodds
- Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|