1
|
Valat A, Fourel L, Sales A, Machillot P, Bouin AP, Fournier C, Bosc L, Arboléas M, Bourrin-Reynard I, Wagoner Johnson AJ, Bruckert F, Albigès-Rizo C, Picart C. Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front Cell Dev Biol 2023; 10:1027334. [PMID: 36684447 PMCID: PMC9846056 DOI: 10.3389/fcell.2022.1027334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Upon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells via the extracellular matrix (ECM). Methods: Biommetics films were prepared using a recently developed automated method that enable high content studies of cellular processes. Comparative gene expressions were done using RNA sequencing from the encyclopedia of the regulatory elements (ENCODE). Gene expressions of transcription factors, beta chain (1, 3, 5) integrins and cadherins (M, N, and Cad11) were studied using quantitative PCR. ECM proteins and adhesion receptor expressions were also quantified by Western blots and dot blots. Their spatial organization in and around cells was studied using immuno-stainings. The individual effect of each receptor on osteogenic transcription factors and alkaline phosphatase expression were studied using silencing RNA of each integrin and cadherin receptor. The organization of fibronectin was studied using immuno-staining and quantitative microscopic analysis. Results: Our findings highlight a switch of integrin and cadherin expression during muscle to bone transdifferentiation upon BMP-2 stimulation. This switch occurs no matter the presentation mode, for BMP-2 presented in solution or via the biomimetic film. While C2C12 muscle cells express M-cadherin and Laminin-specific integrins, the BMP-2-induced transdifferentiation into bone cells is associated with an increase in the expression of cadherin-11 and collagen-specific integrins. Biomimetic films presenting matrix-bound BMP-2 enable the revelation of specific roles of the adhesive receptors depending on the transcription factor. Discussion: While β3 integrin and cadherin-11 work in concert to control early pSMAD1,5,9 signaling, β1 integrin and Cadherin-11 control RunX2, ALP activity and fibronectin organization around the cells. In contrast, while β1 integrin is also important for osterix transcriptional activity, Cadherin-11 and β5 integrin act as negative osterix regulators. In addition, β5 integrin negatively regulates RunX2. Our results show that biomimetic films can be used to delinate the specific events associated with BMP-2-mediated muscle to bone transdifferentiation. Our study reveals how integrins and cadherins work together, while exerting distinct functions to drive osteogenic programming. Different sets of integrins and cadherins have complementary mechanical roles during the time window of this transdifferentiation.
Collapse
Affiliation(s)
- Anne Valat
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Laure Fourel
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Adria Sales
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Paul Machillot
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Carole Fournier
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Lauriane Bosc
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Mélanie Arboléas
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Ingrid Bourrin-Reynard
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Amy J. Wagoner Johnson
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States
| | - Franz Bruckert
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Corinne Albigès-Rizo
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Catherine Picart
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Yang S, Wang N, Ma Y, Guo S, Guo S, Sun H. Immunomodulatory effects and mechanisms of distraction osteogenesis. Int J Oral Sci 2022; 14:4. [PMID: 35067679 PMCID: PMC8784536 DOI: 10.1038/s41368-021-00156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022] Open
Abstract
Distraction osteogenesis (DO) is widely used for bone tissue engineering technology. Immune regulations play important roles in the process of DO like other bone regeneration mechanisms. Compared with others, the immune regulation processes of DO have their distinct features. In this review, we summarized the immune-related events including changes in and effects of immune cells, immune-related cytokines, and signaling pathways at different periods in the process of DO. We aim to elucidated our understanding and unknowns about the immunomodulatory role of DO. The goal of this is to use the known knowledge to further modify existing methods of DO, and to develop novel DO strategies in our unknown areas through more detailed studies of the work we have done.
Collapse
|
3
|
Zhao F, Lacroix D, Ito K, van Rietbergen B, Hofmann S. Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Rep 2020; 12:100265. [PMID: 32613033 PMCID: PMC7315008 DOI: 10.1016/j.bonr.2020.100265] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/24/2022] Open
Abstract
Bone tissue engineering (BTE) experiments in vitro have shown that fluid-induced wall shear stress (WSS) can stimulate cells to produce mineralized extracellular matrix (ECM). The application of WSS on seeded cells can be achieved through bioreactors that perfuse medium through porous scaffolds. In BTE experiments in vitro, commonly a constant flow rate is used. Previous studies have found that tissue growth within the scaffold will result in an increase of the WSS over time. To keep the WSS in a reported optimal range of 10–30 mPa, the applied external flow rate can be decreased over time. To investigate what reduction of the external flow rate during culturing is needed to keep the WSS in the optimal range, we here conducted a computational study, which simulated the formation of ECM, and in which we investigated the effect of constant fluid flow and different fluid flow reduction scenarios on the WSS. It was found that for both constant and reduced fluid flow scenarios, the WSS did not exceed a critical value, which was set to 60 mPa. However, the constant flow velocity resulted in a reduction of the cell/ECM surface being exposed to a WSS in the optimal range from 50% at the start of culture to 18.6% at day 21. Reducing the fluid flow over time could avoid much of this effect, leaving the WSS in the optimal range for 40.9% of the surface at 21 days. Therefore, for achieving more mineralized tissue, the conventional manner of loading the perfusion bioreactors (i.e. constant flow rate/velocity) should be changed to a decreasing flow over time in BTE experiments. This study provides an in silico tool for finding the best fluid flow reduction strategy.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| | - Damien Lacroix
- INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, S1 3JD Sheffield, United Kingdom
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Yu H, Yu W, Liu Y, Yuan X, Yuan R, Guo Q. Expression of HIF‑1α in cycling stretch‑induced osteogenic differentiation of bone mesenchymal stem cells. Mol Med Rep 2019; 20:4489-4498. [PMID: 31702030 PMCID: PMC6797986 DOI: 10.3892/mmr.2019.10715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
During orthodontic treatment, mechanical force is applied to the teeth, and following a series of complex metabolism changes, the position of the teeth in the alveolar bone change. This process is closely associated with primitive bone mesenchymal stem cells (BMSCs), which may differentiate into osteoblasts precursor cell. A hypoxic microenvironment may be caused by orthodontic mechanical forces between the alveolar bone and the root. Hypoxia-inducible factor 1α (HIF-1α) is a specific receptor that adapts to a hypoxic environment. The present study was designed to investigate whether HIF-1α was involved in the osteoblastic differentiation of BMSCs induced by cyclic tensile stress. During this process, HIF-1α mRNA and protein expression were detected using a reverse transcription-quantitative polymerase chain reaction and western blotting. It was revealed that alkaline phosphatase activity increased in a time-dependent manner in three different stretching strength groups, which indicates that cyclic stretch promotes the osteogenic differentiation of BMSCs. The optimal force stage of osteogenesis was an unexpected discovery, which will provide theoretical guidance for selecting the most suitable orthodontic force for tooth movement in clinical orthodontic treatment. Most importantly, all experiments revealed that HIF-1α mRNA and protein were significantly increased following stretching treatment in BMSCs. It was therefore concluded that HIF-1α may be involved in BMSCs modulating osteogenic metabolism during exposure to cyclic stretch and a hypoxic microenvironment, which may prove useful for the reconstruction of a jaw during orthodontic treatment.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Wenyi Yu
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Ying Liu
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xiao Yuan
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Rongtao Yuan
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Qingyuan Guo
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
5
|
Han B, Wei SP, Zhang XC, Li H, Li Y, Li RX, Li K, Zhang XZ. Effects of constrained dynamic loading, CKIP‑1 gene knockout and combination stimulations on bone loss caused by mechanical unloading. Mol Med Rep 2018; 18:2506-2514. [PMID: 29956799 DOI: 10.3892/mmr.2018.9222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 11/05/2022] Open
Abstract
Mechanical stimulation plays an important role in maintaining the growth and normal function of the skeletal system. Mechanical unloading occurs, for example, in astronauts spending long periods of time in space or in patients on prolonged bed rest, and causes a rapid loss of bone mass. Casein kinase 2‑interacting protein‑1 (CKIP‑1) is a novel negative bone regulation factor that has been demonstrated to reduce bone loss and enhance bone formation. The aim of this study was to investigate the effect of constrained dynamic loading (Loading) in combination with CKIP‑1 gene knockout (KO) on unloading‑induced bone loss in tail‑suspension mice. The blood serum metabolism index [alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels], tibia mechanical behavior (including bone trabecular microstructure parameters and tibia biomechanical properties), osteoblast‑related gene expression [ALP, OCN, collagen I and bone morphogenetic protein‑2 and osteoprotegerin (OPG)] and osteoclast‑related gene expression [receptor activators of NF‑kB ligand (RANKL)] were measured. The results demonstrated that mice experienced a loss of bone mass after four weeks of tail suspension compared with a wild type group. The mechanical properties, microarchitecture and mRNA expression were significantly increased in mice after Loading + KO treatment (P<0.05). Furthermore, compared with loading or KO alone, the ratio of OPG/RANKL was increased in the combined treatment group. The combined effect of Loading + KO was greater than that observed with loading or KO alone (P<0.05). The present study demonstrates that Loading + KO can counter unloading‑induced bone loss, and combining the two treatments has an additive effect. These results indicate that combined therapy could be a novel strategy for the clinical treatment of disuse osteoporosis associated with space travel or bed rest.
Collapse
Affiliation(s)
- Biao Han
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Shu-Ping Wei
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xin-Chang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Hao Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Yu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Rui-Xin Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Kairen Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xi-Zheng Zhang
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| |
Collapse
|
6
|
Zhou Z, Shi G, Zheng X, Jiang S, Jiang L. Autophagy activation facilitates mechanical stimulation-promoted osteoblast differentiation and ameliorates hindlimb unloading-induced bone loss. Biochem Biophys Res Commun 2018. [PMID: 29524406 DOI: 10.1016/j.bbrc.2018.03.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autophagy has been indicated to be involved in regulating bone metabolism. However, little is known about the role of autophagy in mechanical stimulation-influenced osteoblast differentiation and bone formation. In the present study, we first demonstrated that autophagy activation was essential for cyclic mechanical stretching-promoted osteoblast differentiation of bone marrow mesenchymal stem cells. To explore the in vivo role of autophagy in osteoblast differentiation, the hindlimb unloading-induced disuse osteoporosis model was used. Compared to the normal controls, hindlimb unloading led to abundant bone loss as well as lessened autophagy activation of osteoblasts. However, the activation of autophagy by ULK1 overexpression or in the presence of rapamycin significantly increased osteoblast differentiation activity and restored the bone volume. The findings implicate autophagy as a novel mechanosensitive pathway that regulates osteoblast differentiation. The pharmacological activation of autophagy may be an interesting approach for the prevention and treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Zezhu Zhou
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Guixun Shi
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xinfeng Zheng
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shengdan Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Leisheng Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Kamenskiy A, Poulson W, Sim S, Reilly A, Luo J, MacTaggart J. Prevalence of Calcification in Human Femoropopliteal Arteries and its Association with Demographics, Risk Factors, and Arterial Stiffness. Arterioscler Thromb Vasc Biol 2018; 38:e48-e57. [PMID: 29371245 DOI: 10.1161/atvbaha.117.310490] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Arterial calcification and stiffening increase the risk of reconstruction failure, amputation, and mortality in patients with peripheral arterial disease, but underlying mechanisms and prevalence are unclear. APPROACH AND RESULTS Fresh human femoropopliteal arteries were obtained from n=431 tissue donors aged 13 to 82 years (mean age, 53±16 years) recording the in situ longitudinal prestretch. Arterial diameter, wall thickness, and opening angles were measured optically, and stiffness was assessed using planar biaxial extension and constitutive modeling. Histological features were determined using transverse and longitudinal Verhoeff-Van Gieson and Alizarin stains. Medial calcification was quantified using a 7-stage grading scale and was correlated with structural and mechanical properties and clinical characteristics. Almost half (46%) of the femoropopliteal arteries had identifiable medial calcification. Older arteries were more calcified, but small calcium deposits were observed in arteries as young as 18 years old. After controlling for age, positive correlations were observed between calcification, diabetes mellitus, dyslipidemia, and body mass index. Tobacco use demonstrated a negative correlation. Calcified arteries were larger in diameter but had smaller circumferential opening angles. They were also stiffer longitudinally and circumferentially and had thinner tunica media and external elastic lamina with more discontinuous elastic fibers. CONCLUSIONS Although aging is the dominant risk factor for femoropopliteal artery calcification and stiffening, these processes seem to be linked and can begin at a young age. Calcification is associated with the presence of certain risk factors and with elastic fiber degradation, suggesting overlapping molecular pathways that require further investigation.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| | - William Poulson
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Sylvie Sim
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Austin Reilly
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jiangtao Luo
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jason MacTaggart
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| |
Collapse
|
8
|
Wang R, Yang Q, Xiao W, Si R, Sun F, Pan Q. Cellular retinoic acid binding protein 2 inhibits osteogenic differentiation by modulating LIMK1 in C2C12 cells. Dev Growth Differ 2015; 57:581-9. [PMID: 26449203 DOI: 10.1111/dgd.12240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) is essential for myoblast differentiation, however, little is known about its role in osteogenic differentiation. This study mainly aims to explore the biological functions and the underlying molecular mechanisms of CRABP2 in osteogenesis. Using quantitative polymerase chain reaction and western blot assays, we found that the expression of CRABP2 at both mRNA and protein levels were downregulated during osteogenesis. Furthermore, CRABP2 knockdown displayed significant changes in the cell phenotype and the actin filaments (F-actin) polymerization in C2C12 cells treated with BMP2. Moreover, the western blotting of osteogenic differentiation biomarkers, alkaline phosphatase (ALP) staining and Alizarin red staining showed that CRABP2 dramatically inhibited osteogenic differentiation. The following investigation of molecular mechanisms implicated that CARBP2 specifically interacted with LIMK1, a key factor in acin cytoskeletal rearrangements in osteogenesis, to interrupt its activity and stability in an ubiquitin-proteasome pathway to prevent C2C12 cells from osteogenic differentiation in response to BMP2. Above all, our data suggest a novel function of CRABP2 in regulating actin remodeling and osteogenic differentiation via LIMK1, thus presenting a possible molecular target for promoting the osteogenic differentiation in bone degenerative diseases.
Collapse
Affiliation(s)
- Rui Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qingyuan Yang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Weifan Xiao
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ruirui Si
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qiuhui Pan
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| |
Collapse
|
9
|
Du HM, Wang LY, Zheng XH, Tang W, Liu L, Jing W, Lin YF, Tian WD, Long J. The Role of the Wnt Signaling Pathway in the Osteogenic Differentiation of Human Adipose-derived Stem Cells under Mechanical Stimulation. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong-ming Du
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Li-ya Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University
| | - Xiao-hui Zheng
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Lei Liu
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Jing
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Yun-feng Lin
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Wei-dong Tian
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Jie Long
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- The State Key Laboratory of Oral Diseases, Sichuan University
| |
Collapse
|
10
|
Canalis E, Kranz L, Zanotti S. Nemo-like kinase regulates postnatal skeletal homeostasis. J Cell Physiol 2014; 229:1736-43. [PMID: 24664870 DOI: 10.1002/jcp.24625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/04/2023]
Abstract
Nemo-like kinase (Nlk) is related to the mitogen-activated protein (MAP) kinases and known to regulate signaling pathways involved in osteoblastogenesis. In vitro Nlk suppresses osteoblastogenesis, but the consequences of the Nlk inactivation in the skeleton in vivo are unknown. To study the function of Nlk, Nlk(loxP/loxP) mice, where the Nlk exon2 is flanked by lox(P) sequences, were mated with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre), the Osterix (Osx-Cre) or the osteocalcin/bone gamma carboxyglutamate protein (Bglap-Cre) promoter. Prx1-Cre;Nlk(Δ/Δ) mice did not exhibit a skeletal phenotype except for a modest increase in trabecular number and connectivity observed only in 3-month-old male mice. Osx-Cre;Nlk(Δ/Δ) male and female mice exhibited an increase in trabecular bone volume secondary to an increased trabecular number at 3 months of age. Bone histomorphometry revealed a decrease in osteoclast number and eroded surface in male mice, and decreased osteoblast number and function in female mice. Expression of osteoprotegerin mRNA was increased in calvarial extracts, explaining the decreased osteoclast and osteoblast number. The conditional deletion of Nlk in mature osteoblasts (Bglap-Cre;Nlk(Δ/Δ) ) resulted in no skeletal phenotype in 1- to 6-month-old male or female mice. In conclusion, when expressed in undifferentiated osteoblasts, Nlk is a negative regulator of skeletal homeostasis possibly by targeting signals that regulate osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut; The University of Connecticut School of Medicine, Farmington, Connecticut
| | | | | |
Collapse
|
11
|
Tang H, Mattheos N, Yao Y, Jia Y, Ma L, Gong P. In vivo osteoprotegerin gene therapy preventing bone loss induced by periodontitis. J Periodontal Res 2014; 50:434-43. [PMID: 25203865 DOI: 10.1111/jre.12224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effects of osteoprotegerin (OPG) gene therapy on alveolar bone resorption caused by experimental periodontitis in rats, thus forming a foundation for potential clinical applications of OPG gene therapy in the treatment of periodontitis and peri-implantitis. MATERIAL AND METHODS To study the effects of OPG on alveolar bone protection, an experimental periodontitis model was used by placing a bacterial plaque retentive silk ligature in the gingival sulcus around the maxillary second molar tooth, injection of Porphyromonas gingivalis and high carbohydrate diet. A total of 30 Sprague-Dawley rats were randomly divided into three groups, with 10 rats in each group: group I (control) was treated with 10 μL normal saline injection; group II with 10 μL mock vector; and group III with 10 μL local OPG gene transfer by transfection with in vitro constructed pcDNA3.1-human OPG (pcDNA3.1-hOPG). A subperiosteal injection was done adjacent to the second molars on days 0, 7, 14 and 21. Four weeks later, all animals were killed and radiographic, histological and immunohistochemical examinations were performed. Statistical analysis included ANOVA and LSD-Bonferroni test. RESULTS Group III (OPG gene therapy) had significantly enhanced (p < 0.05) integrated optical density of OPG, had significantly decreased alveolar bone resorption volume and active osteoclast number (p < 0.05) through descriptive histological examination when compared with the other two groups at week 4. CONCLUSION Local recombinant OPG plasmid-mediated gene therapy suppresses osteoclastogenesis in vivo and inhibits alveolar bone height reduction caused by experimental periodontitis in rats. OPG gene therapy may be beneficial in preventing progressive periodontal bone loss.
Collapse
Affiliation(s)
- H Tang
- West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong, China
| | - N Mattheos
- The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong, China
| | - Y Yao
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Jia
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Ma
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Gong
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Baboolal TG, Boxall SA, El-Sherbiny YM, Moseley TA, Cuthbert RJ, Giannoudis PV, McGonagle D, Jones E. Multipotential stromal cell abundance in cellular bone allograft: comparison with fresh age-matched iliac crest bone and bone marrow aspirate. Regen Med 2014; 9:593-607. [PMID: 24617969 PMCID: PMC4077757 DOI: 10.2217/rme.14.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To enumerate and characterize multipotential stromal cells (MSCs) in a cellular bone allograft and compare with fresh age-matched iliac crest bone and bone marrow (BM) aspirate. MATERIALS & METHODS MSC characterization used functional assays, confocal/scanning electron microscopy and whole-genome microarrays. Resident MSCs were enumerated by flow cytometry following enzymatic extraction. RESULTS Allograft material contained live osteocytes and proliferative bone-lining cells defined as MSCs by phenotypic and functional capacities. Without cultivation/expansion, the allograft displayed an 'osteoinductive' molecular signature and the presence of CD45(-)CD271(+)CD73(+)CD90(+)CD105(+) MSCs; with a purity over 100-fold that of iliac crest bone. In comparison with BM, MSC numbers enzymatically released from 1 g of cellular allograft were equivalent to approximately 45 ml of BM aspirate. CONCLUSION Cellular allograft bone represents a unique nonimmune material rich in MSCs and osteocytes. This osteoinductive graft represents an attractive alternative to autograft bone or composite/synthetic grafts in orthopedics and broader regenerative medicine settings.
Collapse
Affiliation(s)
- Thomas G Baboolal
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Sally A Boxall
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | | | - Richard J Cuthbert
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| |
Collapse
|
13
|
Gao J, Liu Q, Liu X, Ji C, Qu S, Wang S, Luo Y. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling. PLoS One 2014; 9:e89884. [PMID: 24595300 PMCID: PMC3940656 DOI: 10.1371/journal.pone.0089884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xing Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Chunyan Ji
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shengqiang Qu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 2013; 162:156-73. [PMID: 23831269 DOI: 10.1016/j.trsl.2013.06.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
Different anatomic and physiological changes occur in the lung of aging people that can affect pulmonary functions, and different pulmonary diseases, including deadly diseases such as chronic obstructive pulmonary disease (COPD)/emphysema and idiopathic pulmonary fibrosis (IPF), can be related to an acceleration of the aging process. The individual genetic background, as well as exposure to a variety of toxic substances (cigarette smoke in primis) can contribute significantly to accelerating pulmonary senescence. Premature aging can impair lung function by different ways: by interfering specifically with tissue repair mechanisms after damage, thus perturbing the correct crosstalk between mesenchymal and epithelial components; by inducing systemic and/or local alteration of the immune system, thus impairing the complex mechanisms of lung defense against infections; and by stimulating a local and/or systemic inflammatory condition (inflammaging). According to recently proposed pathogenic models in COPD and IPF, premature cellular senescence likely affects distinct progenitors cells (mesenchymal stem cells in COPD, alveolar epithelial precursors in IPF), leading to stem cell exhaustion. In this review, the large amount of data supporting this pathogenic view are discussed, with emphasis on the possible molecular and cellular mechanisms leading to the severe parenchymal remodeling that characterizes, in different ways, these deadly diseases.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, University of Verona, Verona, Italy.
| | | | | | | |
Collapse
|
15
|
Saldaña L, Crespo L, Bensiamar F, Arruebo M, Vilaboa N. Mechanical forces regulate stem cell response to surface topography. J Biomed Mater Res A 2013; 102:128-40. [PMID: 23613185 DOI: 10.1002/jbm.a.34674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates.
Collapse
Affiliation(s)
- Laura Saldaña
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | |
Collapse
|
16
|
Raschke S, Eckardt K, Bjørklund Holven K, Jensen J, Eckel J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 2013; 8:e62008. [PMID: 23637948 PMCID: PMC3634789 DOI: 10.1371/journal.pone.0062008] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/17/2013] [Indexed: 12/15/2022] Open
Abstract
Proteins secreted by skeletal muscle, so called myokines, have been shown to affect muscle physiology and additionally exert systemic effects on other tissues and organs. Although recent profiling studies have identified numerous myokines, the amount of overlap from these studies indicates that the secretome of skeletal muscle is still incompletely characterized. One limitation of the models used is the lack of contraction, a central characteristic of muscle cells. Here we aimed to characterize the secretome of primary human myotubes by cytokine antibody arrays and to identify myokines regulated by contraction, which was induced by electrical pulse stimulation (EPS). In this study, we validated the regulation and release of two selected myokines, namely pigment epithelium derived factor (PEDF) and dipeptidyl peptidase 4 (DPP4), which were recently described as adipokines. This study reveals that both factors, DPP4 and PEDF, are secreted by primary human myotubes. PEDF is a contraction-regulated myokine, although PEDF serum levels from healthy young men decrease after 60 min cycling at VO2max of 70%. Most interestingly, we identified 52 novel myokines which have not been described before to be secreted by skeletal muscle cells. For 48 myokines we show that their release is regulated by contractile activity. This profiling study of the human skeletal muscle secretome expands the number of myokines, identifies novel contraction-regulated myokines and underlines the overlap between proteins which are adipokines as well as myokines.
Collapse
Affiliation(s)
- Silja Raschke
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jürgen Eckel
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| |
Collapse
|
17
|
Low-Frequency Mechanical Stimulation Modulates Osteogenic Differentiation of C2C12 Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/138704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mechanical stimulation influences stem cell differentiation and may therefore provide improved lineage specification control for clinical applications. Low-frequency oscillatory mechanical stimulation (0.01 Hz) has recently been shown to suppress adipogenic differentiation of mesenchymal stem cells, indicating that the range of effective stimulation frequencies is not limited to those associated with locomotion, circulation, and respiration. We hypothesized that low-frequency mechanical stimulation (0.01 Hz) can also promote osteogenic cell differentiation of myoblastic C2C12 cells in combination with BMP-2. Results indicate that low-frequency mechanical stimulation can significantly enhance osteogenic gene expression, provided that differentiation is initiated by a priming period involving BMP-2 alone. Subsequent application of low-frequency mechanical stimulation appears to act synergistically with continued BMP-2 exposure to promote osteogenic differentiation of C2C12 cells and can even partially compensate for the removal of BMP-2. These effects may be mediated by the ERK and Wnt signalling pathways. Osteogenic induction of C2C12 cells by low-frequency mechanical stimulation is therefore critically dependent upon previous exposure to growth factors, and the timing of superimposed BMP-2 and mechanical stimuli can sensitively influence osteogenesis. These insights may provide a technically simple means for control of stem cell differentiation in cell-based therapies, particularly for the enhancement of differentiation toward desired lineages.
Collapse
|
18
|
Zanotti S, Canalis E. Nemo-like kinase inhibits osteoblastogenesis by suppressing bone morphogenetic protein and WNT canonical signaling. J Cell Biochem 2012; 113:449-56. [PMID: 21928348 DOI: 10.1002/jcb.23365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bone morphogenetic protein/Signaling mothers against decapentaplegic (BMP/Smad) and the WNT signaling pathways regulate the commitment of mesenchymal cells to the osteoblastic lineage. Nemo-like kinase (Nlk) is an evolutionary conserved kinase that suppresses Smad transactivation and WNT canonical signaling. However, it is not clear whether these effects of Nlk have any consequence on the differentiation of mammalian cells. To study the function of Nlk during the commitment of ST-2 bone marrow stromal cells to the osteoblastic fate, Nlk was downregulated by RNA interference (RNAi), following transfection of a specific small interfering (si)RNA. Nlk downregulation increased alkaline phosphatase and osteocalcin expression and sensitized ST-2 cells to the effects of BMP2 and WNT3 on alkaline phosphatase mRNA expression and activity. Accordingly, Nlk downregulation enhanced the effect of BMP2 on the transactivation of the BMP/Smad reporter construct 12xSBE-Oc-pGL3, and on the levels of phosphorylated Smad1/5/8, whereas it did not affect the transactivation of the transforming growth factor-β/Smad reporter pSBE-Luc. Nlk downregulation sensitized ST-2 cells to the effects of WNT3 on the transactivation of the WNT/T-cell factor (Tcf) reporter construct 16xTCF-Luc, whereas it did not affect cytosolic β-catenin levels. To understand the function of Nlk in cells committed to the osteoblastic lineage, Nlk was suppressed by RNAi in primary calvarial osteoblasts. Downregulation of Nlk increased alkaline phosphatase and osteocalcin transcripts and sensitized osteoblasts to the effects of BMP2 on alkaline phosphatase activity and Smad1/5/8 transactivation and phosphorylation. In conclusion, Nlk suppresses osteoblastogenesis by opposing BMP/Smad and WNT canonical signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | |
Collapse
|
19
|
Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc Natl Acad Sci U S A 2011; 108:16277-82. [PMID: 21911383 DOI: 10.1073/pnas.1110286108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that the anterior pituitary hormone, thyroid-stimulating hormone (TSH), can bypass the thyroid to exert a direct protective effect on the skeleton. Thus, we have suggested that a low TSH level may contribute to the bone loss of hyperthyroidism that has been attributed traditionally to high thyroid hormone levels. Earlier mouse genetic, cell-based, and clinical studies together have established that TSH inhibits osteoclastic bone resorption. However, the direct influence of TSH on the osteoblast has remained unclear. Here, we have used a model system developed from murine ES cells, induced to form mature mineralizing osteoblasts, and show that TSH stimulates osteoblast differentiation primarily through the activation of protein kinase Cδ and the up-regulation of the noncanonical Wnt components frizzled and Wnt5a. We predict that a TSH-induced, fast-forward short loop in bone marrow permits Wnt5a production, which, in addition to enhancing osteoblast differentiation, also stimulates osteoprotegerin secretion to attenuate bone resorption by neighboring osteoclasts. We surmise that this loop should uncouple bone formation from bone resorption with a net increase in bone mass, which is what has been observed upon injecting TSH.
Collapse
|
20
|
Kaneuji T, Ariyoshi W, Okinaga T, Toshinaga A, Takahashi T, Nishihara T. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts. Biochem Biophys Res Commun 2011; 408:103-9. [PMID: 21459078 DOI: 10.1016/j.bbrc.2011.03.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/29/2011] [Indexed: 11/29/2022]
Abstract
Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm(2)) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca(2+) pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca(2+) pathway.
Collapse
Affiliation(s)
- Takeshi Kaneuji
- Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Yavropoulou MP, Papapoulos SE. Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis. Expert Rev Endocrinol Metab 2010; 5:711-722. [PMID: 30764023 DOI: 10.1586/eem.10.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of anti-osteoporotic drugs, predominantly inhibitors of bone resorption, are currently used in the management of patients with osteoporosis to reduce the risk of fractures. While the management of the disease has improved significantly, there are still unmet needs, mainly due to a lack of agents able to replace bone that has already been lost. Human and animal genetics have identified the pivotal role of the Wnt signaling pathway in the regulation of bone formation by the osteoblasts and have made it a very attractive target for the development of novel treatments for osteoporosis. In this article, we review evidence that supports the targeting of components of the Wnt signaling pathway for the design of bone-forming treatments for osteoporosis.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Socrates E Papapoulos
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- b
| |
Collapse
|
22
|
Huang SC, Wu TC, Yu HC, Chen MR, Liu CM, Chiang WS, Lin KM. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol 2010; 11:18. [PMID: 20219113 PMCID: PMC2841110 DOI: 10.1186/1471-2121-11-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 03/10/2010] [Indexed: 01/01/2023] Open
Abstract
Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs) of young (8-10 weeks), adult (5 months), and old (21 months) mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h) increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.
Collapse
Affiliation(s)
- See-Chang Huang
- Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|