1
|
Abd-Elmawla MA, Elsamanoudie NM, Ismail MF, Hammam OA, El Magdoub HM. The interplay of TapSAKI and NEAT-1 as potential modulators in gentamicin-induced acute kidney injury via orchestrating miR-22-3p/TLR4/MyD88/NF-қB/IL-1 β milieu: Novel therapeutic approach of Betanin. Int Immunopharmacol 2024; 143:113577. [PMID: 39541843 DOI: 10.1016/j.intimp.2024.113577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Gentamicin (GNT) is a broad-spectrum antibiotic that is widely prescribed in critically ill patients. However, GNT exerts deleterious effects on renal proximal tubules which could predispose to acute kidney injury (AKI). AIM The study aimed to investigate the interplay of TapSAKI, NEAT-1, and miR-22-3p in GNT-induced AKI via modulating the TLR4/MyD88/NF-қB/IL-1β trajectory. The study was extended to show the role of betanin (BET) in alleviating GNT-induced AKI. METHODS BET (25 mg/kg/day) was administered via oral route for 28 consecutive days in addition to GNT (100 mg/kg/day) i.p. during the last 8 days. TapSAKI, NEAT-1, and miR-22-3p gene expressions were measured using RT-PCR. The levels of SCr, urea were measured using colorimetric assay, whereas KIM-1, TLR4, and IL-1β were measured using ELISA technique. Additionally, histopathological examinations were done. RESULTS The present study revealed that the expression of TapSAKI and NEAT-1 were significantly upregulated in GNT-induced AKI group, whereas miR-22-3p was significantly downregulated. There were significant associations between the expression of these non-coding RNAs and TLR4/NF-қB/MyD88/IL-1β axis as well as malondialdehyde and glutathione levels. Favorably, BET pretreated group normalized the levels of SCr, urea, and KIM-1 and showed a significant downregulation of TapSAKI and NEAT-1 and upregulation of miR-22-3p compared with GNT-induced AKI group. Furthermore, BET showed a marked inhibition of TLR4/MyD88/NF-қB/IL-1β cascade compared with non-treated AKI rats. Moreover, BET normalized oxidative stress markers. CONCLUSION BET reduced GNT's toxic effects on kidneys through modulating TLR4/MyD88/NF-қB/IL-1β signaling pathway under the influence of lncRNAs TapSAKI, NEAT-1, and miRNA-22-3p, which consequently suppress oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Nourhan M Elsamanoudie
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Manal Fouad Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
2
|
Dewi IP, Aldiana M, Viadina ZA, Fajrin FA, Holidah D, Christianty FM. Nephroprotective effect of sugarcane ( Saccharum officinarum L.) leaves ethanol extract on gentamicin-induced nephrotoxicity in rats. J Adv Pharm Technol Res 2024; 15:208-213. [PMID: 39290540 PMCID: PMC11404439 DOI: 10.4103/japtr.japtr_440_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 09/19/2024] Open
Abstract
Kidney damage is commonly attributed to using certain drugs, such as gentamicin, which causes elevated kidney parameters in blood and damage to renal tissue. This damage is often a result of oxidative stress, but it can be mitigated by using antioxidants. Several studies proved the potential of sugarcane (Saccharum officinarum L.) leaves as an antioxidant. Therefore, this experiment aimed to examine the nephroprotective action of sugarcane leaves. Twenty-five Wistar rats were separated into the normal, negative, and sugarcane leaf extract (SLE) (200, 400, and 600 mg/kg BW) groups. The animals were handled for 8 days, and then, the blood and tissue were collected 24 h later. The results revealed that SLE prevents increased creatinine, blood urea nitrogen, uric acid, and malondialdehyde levels. The histology analysis indicated that the extract improved kidney morphology and histopathology. Sugarcane leaves have the potential to be a nephroprotective agent.
Collapse
Affiliation(s)
- Ika Puspita Dewi
- Department of Pharmacy Clinic and Community, Preclinical Pharmacology Research Group, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| | - Merinda Aldiana
- Department of Pharmacy Clinic and Community, Laboratory of Pharmacology, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| | - Zildjian Adela Viadina
- Department of Pharmacy Clinic and Community, Laboratory of Pharmacology, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| | - Fifteen Aprila Fajrin
- Department of Pharmacy Clinic and Community, Preclinical Pharmacology Research Group, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| | - Diana Holidah
- Department of Pharmacy Clinic and Community, Preclinical Pharmacology Research Group, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| | - Fransiska Maria Christianty
- Department of Pharmacy Clinic and Community, Preclinical Pharmacology Research Group, Faculty of Pharmacy, University of Jember, Jember, East Java, Indonesia
| |
Collapse
|
3
|
Sun K, Wang B, Lin J, Han L, Li M, Wang P, Yu X, Tian J. A Multichannel Fluorescent Array Sensor for Discrimination of Different Types of Drug-Induced Kidney Injury. SENSORS (BASEL, SWITZERLAND) 2023; 23:6114. [PMID: 37447963 DOI: 10.3390/s23136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The differences in urinary proteins could provide a novel opportunity to distinguish the different types of drug-induced kidney injury (DIKI). In this research, Au nanoparticles-polyethyleneimine (AuNPs-PEI) and the three fluorophore-labeled proteins (FLPs) have been constructed as a multichannel fluorescent array sensor via electrostatic interaction, which was used to detect the subtle changes in urine collected from the pathological state of DIKI. Once the urine from different types of DIKI was introduced, the binding equilibrium between AuNPs-PEI and FLPs would be broken due to the competitive binding of urinary protein, and the corresponding fluorescence response pattern would be generated. Depending on the different fluorescence response patterns, the different types of DIKI were successfully identified by principal component analysis (PCA) and linear discriminant analysis (LDA). Accordingly, the strategy was expected to be a powerful technique for evaluating the potential unclear mechanisms of nephrotoxic drugs, which would provide a promising method for screening potential renal-protective drugs.
Collapse
Affiliation(s)
- Kunhui Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Jiaoli Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Xiean Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. Int J Mol Sci 2023; 24:ijms24054740. [PMID: 36902169 PMCID: PMC10002595 DOI: 10.3390/ijms24054740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Bacterial biofilms generally contribute to chronic infections, including wound infections. Due to the antibiotic resistance mechanisms protecting bacteria living in the biofilm, they are a serious problem in the wound healing process. To accelerate the wound healing process and avoid bacterial infection, it is necessary to select the appropriate dressing material. In this study, the promising therapeutic properties of alginate lyase (AlgL) immobilised on BC membranes for protecting wounds from Pseudomonas aeruginosa infection were investigated. The AlgL was immobilised on never dried BC pellicles via physical adsorption. The maximum adsorption capacity of AlgL was 6.0 mg/g of dry BC, and the equilibrium was reached after 2 h. The adsorption kinetics was studied, and it has been proven that the adsorption was consistent with Langmuir isotherm. In addition, the impact of enzyme immobilisation on bacterial biofilm stability and the effect of simultaneous immobilisation of AlgL and gentamicin on the viability of bacterial cells was investigated. The obtained results showed that the AlgL immobilisation significantly reduced the amount of polysaccharides component of the P. aeruginosa biofilm. Moreover, the biofilm disruption by AlgL immobilised on BC membranes exhibited synergism with the gentamicin, resulting in 86.5% more dead P. aeruginosa PAO-1 cells.
Collapse
|
5
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Khunmanee S, Chun SY, Ha YS, Lee JN, Kim BS, Gao WW, Kim IY, Han DK, You S, Kwon TG, Park H. Improvement of IgA Nephropathy and Kidney Regeneration by Functionalized Hyaluronic Acid and Gelatin Hydrogel. Tissue Eng Regen Med 2022; 19:643-658. [PMID: 35325404 PMCID: PMC9130434 DOI: 10.1007/s13770-022-00442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Immunoglobulin A (IgA) nephropathy (IgAN) is one of an important cause of progressive kidney disease and occurs when IgA settles in the kidney resulted in disrupts kidney's ability to filter waste and excess water. Hydrogels are promising material for medical applications owing to their excellent adaptability and filling ability. Herein, we proposed a hyaluronic acid/gelatin (CHO-HA/Gel-NH2) bioactive hydrogel as a cell carrier for therapeutic kidney regeneration in IgAN. METHODS CHO-HA/Gel-NH2 hydrogel was fabricated by Schiff-base reaction without any additional crosslinking agents. The hydrogel concentrations and ratios were evaluated to enhance adequate mechanical properties and biocompatibility for further in vivo study. High serum IgA ddY mice kidneys were treated with human urine-derived renal progenitor cells encapsulated in the hydrogel to investigate the improvement of IgA nephropathy and kidney regeneration. RESULTS The stiffness of the hydrogel was significantly enhanced and could be modulated by altering the concentrations and ratios of hydrogel. CHO-HA/Gel-NH2 at a ratio of 3/7 provided a promising milieu for cells viability and cells proliferation. From week four onwards, there was a significant reduction in blood urea nitrogen and serum creatinine level in Cell/Gel group, as well as well-organized glomeruli and tubules. Moreover, the expression of pro-inflammatory and pro-fibrotic molecules significantly decreased in the Gel/Cell group, whereas anti-inflammatory gene expression was elevated compared to the Cell group. CONCLUSION Based on in vivo studies, the renal regenerative ability of the progenitor cells could be further increased by this hydrogel system.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| | - Jun Nyung Lee
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea
| | - Bum Soo Kim
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - In Yong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea.
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea.
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Korea.
| |
Collapse
|
7
|
Nephroprotective Effect of Asparagus africanus Lam. Root Extract against Gentamicin-Induced Nephrotoxicity in Swiss Albino Mice. J Toxicol 2022; 2022:8440019. [PMID: 35495873 PMCID: PMC9050328 DOI: 10.1155/2022/8440019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The kidney is the organ most vulnerable to nephrotoxic drugs such as gentamicin. Nephrotoxicity is a rapid deterioration of kidney function due to various factors. Gentamicin causes nephrotoxicity, which was manifested by an increase in serum kidney biomarkers. Asparagus africanus is one of the ethnomedicinal plants used as traditional medicine for treating various ailments, including kidney disease in Ethiopian society. Thus, the aim of this study is to evaluate the nephroprotective effect of A. africanus root extract on gentamicin-induced nephrotoxicity. Using maceration techniques, 100 g of dried plant powder was extracted in 1 L of ethanol. The physicochemical screening of plant extracts revealed the presence of flavonoids, phenols, tannins, saponins, and steroids. The nephroprotective activity of A. africanus crude extract was evaluated on male Swiss albino mice. The crude ethanolic extract at 200 and 400 mg/kg doses showed strong nephroprotective effects by restoring biomarkers such as creatinine, uric acid, and blood urea nitrogen, which were damaged by gentamicin (p < 0.05) in a dose-dependent manner. The mice treated with higher doses (400 mg/kg) had a comparable nephroprotective effect compared to the positive control group (200 mg/kg silymarin; p > 0.05). The histopathology of the control group showed normal glomeruli, normal parenchyma, distal convoluted, and no tubular damage. The toxicant-induced group showed damage to glomeruli and inflammatory infiltration. Therefore, A. africanus root extract has a nephroprotective activity by retarding the gentamicin toxicity in male Swiss albino mice.
Collapse
|
8
|
Bera S, Mondal D. Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS OMEGA 2022; 7:4724-4734. [PMID: 35187293 PMCID: PMC8851436 DOI: 10.1021/acsomega.1c04399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of broad-spectrum aminoglycoside antibiotics is restricted from various clinical applications due to the emergence of bacterial resistance and the adverse effects such as ototoxicity and nephrotoxicity. The intensive applicability of nanoparticles in modern medicinal chemistry has gained the interest of researchers for modification of aminoglycosides as nanoconjugates either via covalent conjugation or physical interactions to alleviate their undesirable effects and bacterial resistance. In this context, various carbohydrates, polymers, lipids, silver, gold, and silica-attached aminoglycoside nanoparticles have been reported with improvements in physicochemical properties, bioavailability, and biocompatibility in physiological medium. Overall, this review encompassed the synthesis of nanostructured aminoglycosides and their applications in the development of new antibacterial therapeutics.
Collapse
|
9
|
Darabi F, Keshavarzi M, Abdullah MN, Dehghani F, Khanjani N, Yousefinejad S, Khajehnasiri F, Zamanian Z. Evaluation of oxidative stress and biochemical biomarkers, and psychological parameters in cement plant workers. Toxicol Ind Health 2022; 38:29-40. [PMID: 35100896 DOI: 10.1177/07482337211055132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cement industry is one of the main world industries with exposure to a wide range of hazardous chemical and physical occupational agents that may increase free radicals and lead to disease. The aim of this study was to evaluate oxidative stress, biochemical markers, and psychological parameters among cement plant workers. In this cross-sectional study, 40 workers exposed to cement and 40 office employees were selected as the exposed and non-exposed groups, respectively. Exposure to cement dust, silica, and noise were, respectively, assessed using the NIOSH 0600, NIOSH 7601, and noise dosimetry methods. Oxidative stress biomarkers including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and biochemical parameters were measured in the serum of all participants. Depression, anxiety, and stress were assessed by the Depression Anxiety Stress Scales (DASS-21) questionnaire. The results demonstrated that the level of MDA as a marker of oxidative stress was significantly higher in the exposed group. The level of antioxidant enzymes including SOD and CAT were also significantly higher in the exposed group. The level of TAC was lower in the exposed group, but the difference was not statistically significant. The levels of alkaline phosphatase (ALP), aspartate transaminase (AST), and the scores of depression and stress were also significantly higher in the exposed group. According to our results, noise, cement dust, and silica exposure were associated with oxidative stress, and this may be one of the mechanisms in which they adversely affect liver function and mental health.
Collapse
Affiliation(s)
- Faezeh Darabi
- Department of Occupational Health, School of Public Health, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, 108917Shiraz University of Medical Sciences, Shiraz, Iran
| | - Media N Abdullah
- Directorate of Health and Safety, 566744Salahaddin University-Erbil, Erbil, Iraq
| | - Fatemeh Dehghani
- Student Research Committee, School of Public Health, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, 154204Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health, School of Public Health, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Khajehnasiri
- Department of Community Medicine, School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zamanian
- Department of Occupational Health, School of Public Health, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100049. [PMID: 34909675 PMCID: PMC8663991 DOI: 10.1016/j.crphar.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.
Collapse
Affiliation(s)
- Khadijah Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhipeng Jia
- College of Animal Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Ommati MM, Mohammadi H, Mousavi K, Azarpira N, Farshad O, Dehghani R, Najibi A, Kamran S, Niknahad H, Heidari R. Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. LIVER RESEARCH 2021; 5:171-180. [PMID: 39957842 PMCID: PMC11791814 DOI: 10.1016/j.livres.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Background and aim Cholestasis-associated renal injury or cholemic nephropathy (CN) is a serious clinical problem. Previous studies mentioned that oxidative stress and mitochondrial impairment play a role in CN. There is no specific pharmacological intervention for CN. Metformin is an anti-diabetic drug administered for decades. On the other hand, novel pharmacological properties have emerged for this drug. The effect of metformin on oxidative stress parameters has been well-recognized in different experimental models. It has also been found that metformin positively affected mitochondrial function. The current study aimed to evaluate the effects of metformin in an animal model of CN. Methods Rats underwent bile duct ligation (BDL) and were treated with metformin (250 and 500 mg/kg) for 14 consecutive days. Two weeks after the BDL operations, urine, serum, and kidney samples were collected and analyzed. Results Markers of oxidative stress, including reactive oxygen species (ROS) formation, lipid peroxidation, protein carbonylation, depleted antioxidant capacity, and decreased glutathione (GSH) levels were detected in BDL animals. Moreover, mitochondrial indices, including adenosine triphosphate (ATP) level, dehydrogenase activity, mitochondrial membrane potential, and mitochondrial permeability, were impaired in the kidney of cholestatic rats. Renal histopathological alterations in cholestatic animals included tubular degeneration and interstitial inflammation, cast formation, and fibrosis. It was found that metformin significantly alleviated oxidative stress and improved mitochondrial indices in the kidney of cholestatic rats. Tissue histopathological alterations were also mitigated in metformin-treated groups. Conclusions Metformin could be a candidate for managing CN. The nephroprotective role of metformin is primarily associated with its effects on oxidative stress parameters and mitochondrial function.
Collapse
Affiliation(s)
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Sedigheh Kamran
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Najafi H, Abolmaali SS, Heidari R, Valizadeh H, Jafari M, Tamaddon AM, Azarpira N. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J Control Release 2021; 337:1-13. [PMID: 34271033 DOI: 10.1016/j.jconrel.2021.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is responsible for significant mortality and morbidity during renal procedures. Nitric oxide (NO) deficiency is known to play a crucial role in renal I/R injury; however, low stability and severe toxicity of high concentrations of NO have limited its applications. Herein, we developed an in-situ forming Fmoc-dipheylalanine hydrogel releasing s-nitroso-n-acetylpenicillamine (FmocFF-SNAP) for renal I/R injury. Fmoc-FF hydrogel comprising of β-sheet nanofibers was prepared through the pH-titration method. It was then characterized by electron microscopy, pyrene assay, and circular dichroism techniques. Mechanical properties of Fmoc-FF hydrogel (thixotropy and syringeability) were investigated by oscillatory rheology and texture analysis. To assess the therapeutic efficiency in the renal I/R injury model, expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) was measured in various samples (different concentrations of free SNAP and FmocFF-SNAP, unloaded Fmoc-FF, and sham control) by real-time RT-PCR, ROS production, serum biomarkers, and histopathological evaluations. According to the results, Fmoc-FF self-assembly in physiologic conditions led to the formation of an entangled nanofibrous and shear-thinning hydrogel. FmocFF-SNAP exhibited a sustained NO release over 7 days in a concentration-dependent manner. Importantly, intralesional injection of FmocFF-SNAP caused superior recovery of renal I/R injury when compared to free SNAP in terms of histopathological scores and renal function indices (e.g. serum creatinine, and blood urea nitrogen). Compared to the I/R control group, biomarkers of oxidative stress and iNOS expression were significantly reduced possibly due to the sustained release of NO. Interestingly, the eNOS expression showed a significant enhancement reflecting the regeneration of the injured endothelial tissue. Thus, the novel FmocFF-SNAP can be recommended for the alleviation of renal I/R injury.
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Hadi Valizadeh
- Pharmaceutics Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, Shiraz 7193711351, Iran.
| |
Collapse
|
13
|
Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress 2021; 24:213-228. [PMID: 32510264 DOI: 10.1080/10253890.2020.1777970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholestasis is a multifaceted clinical complication. Obstructive jaundice induced by bile duct ligation (BDL) is known as an animal model to investigate cholestasis and its associated complications. N-acetyl cysteine (NAC) is an antioxidant, radical scavenger, and thiol reductant widely investigated for its cytoprotective properties. The current investigation was designed to evaluate the role of NAC treatment on biomarkers of oxidative stress and organ histopathological alterations in a rat model of cholestasis/cirrhosis. BDL animals were supplemented with NAC (100 and 300 mg/kg, i.p, 42 consecutive days). Biomarkers of oxidative stress in the liver, brain, heart, skeletal muscle, lung, serum, and kidney tissue, as well as organ histopathological changes, were monitored. A significant increase in reactive oxygen species, lipid peroxidation, and protein carbonylation were detected in different tissues of BDL rats. Moreover, tissue antioxidant capacity was hampered, glutathione (GSH) reservoirs were depleted, and oxidized glutathione (GSSG) levels were significantly increased in the BDL group. Significant tissue histopathological alterations were evident in cirrhotic animals. It was found that NAC treatment (100 and 300 mg/kg, i.p) significantly mitigated biomarkers of oxidative stress and alleviated tissue histopathological changes in cirrhotic rats. These data represent NAC as a potential protective agent with therapeutic capability in cirrhosis and its associated complications.HIGHLIGHTSCholestasis is a multifaceted clinical complication that affects different organsOxidative stress plays a pivotal role in cholestasis-associated complicationsTissue antioxidant capacity is hampered in different tissues of cholestatic animalsAntioxidant therapy might play a role in the management of cholestasis-induced organ injuryNAC alleviated biomarkers of oxidative stress in cholestatic animalsNAC significantly improved tissues histopathological alterations in cholestatic rats.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Peoples' Republic of China
| | - Ali Amjadinia
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Protective Role of Probiotic Supplements in Hepatic Steatosis: A Rat Model Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5487659. [PMID: 33299871 PMCID: PMC7704153 DOI: 10.1155/2020/5487659] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Background Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. Methods Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics (1∗109 CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. Results Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. Conclusions Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics' cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.
Collapse
|
15
|
Mousavi K, Niknahad H, Ghalamfarsa A, Mohammadi H, Azarpira N, Ommati MM, Heidari R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp Hepatol 2020; 6:207-219. [PMID: 33145427 PMCID: PMC7592093 DOI: 10.5114/ceh.2020.99513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cirrhosis-induced heart injury and cardiomyopathy is a serious consequence of this disease. It has been shown that bile duct ligated (BDL) animals could serve as an appropriate experimental model to investigate heart tissue injury in cirrhosis. The accumulation of cytotoxic chemicals (e.g., bile acids) could also adversely affect the heart tissue. Oxidative stress and mitochondrial impairment are the most prominent mechanisms of bile acid cytotoxicity. Taurine (Tau) is the most abundant non-protein amino acid in the human body. The cardioprotective effects of this amino acid have repeatedly been investigated. In the current study, it was examined whether mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of cirrhosis-induced heart injury. Rats underwent BDL surgery. BDL animals received Tau (50, 100, and 500 mg/kg, i.p.) for 42 consecutive days. A significant increase in oxidative stress biomarkers was detected in the heart tissue of BDL animals. Moreover, it was found that heart tissue mitochondrial indices of functionality were deteriorated in the BDL group. Tau treatment significantly decreased oxidative stress and improved mitochondrial function in the heart tissue of cirrhotic animals. These data provide clues for the involvement of mitochondrial impairment and oxidative stress in the pathogenesis of heart injury in BDL rats. On the other hand, Tau supplementation could serve as an effective ancillary treatment against BDL-associated heart injury. Mitochondrial regulating and antioxidative properties of Tau might play a fundamental role in its mechanism of protective effects in the heart tissue of BDL animals.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ghalamfarsa
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol 2020; 12:129-136. [PMID: 32581601 PMCID: PMC7280086 DOI: 10.2147/jep.s255861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The last-line agent for gram-negative bacteria that have developed resistance towards commonly used antibiotics is polymyxin E (PolyE). The renal toxicity attributed to this agent limits its use, proper dosing, and eventually its clinical efficacy. Although the exact mechanism of PolyE-induced nephrotoxicity is not obvious, some investigations suggest the role of oxidative stress and its associated events in this complication. Curcumin (CUR) is a potent antioxidant molecule. The aim of the current investigation was the evaluation of the potential nephroprotective properties of CUR in PolyE-treated mice. Materials and Methods Mice were randomly allocated into five groups (n = 8 per group). PolyE (15 mg/kg/day, i.v, for 7 days) alone or in combination with CUR (10, 100 and 200 mg/kg, i.p) were administered to mice. Renal injury biomarkers, in addition to markers of oxidative stress and kidney histopathological alterations, were evaluated. Results Plasma creatinine (Cr) and blood urine nitrogen (BUN) significantly raised in PolyE group. Oxidative stress biomarkers consisting of reactive oxygen species (ROS) and lipid peroxidation (LPO) also increased, and concomitantly GSH and antioxidant capacity of renal cells significantly decreased following the use of PolyE. Interstitial nephritis, tissue necrosis, and glomerular atrophy were all induced by the use of PolyE in the mice kidney. CUR (10, 100, and 200 mg/kg, i.p) treatment alleviated PolyE-induced oxidative stress and histopathological alterations in the kidney tissue significantly. Conclusion According to the results of this study, CUR has a protective role against renal toxicity induced by PolyE. Hence, more research is necessary until this compound could be clinically applicable to alleviate PolyE-induced renal injury.
Collapse
Affiliation(s)
- Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodami
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Emadi E, Abdoli N, Ghanbarinejad V, Mohammadi HR, Mousavi Mobarakeh K, Azarpira N, Mahboubi Z, Niknahad H, Heidari R. The potential role of mitochondrial impairment in the pathogenesis of imatinib-induced renal injury. Heliyon 2019; 5:e01996. [PMID: 31294126 PMCID: PMC6595238 DOI: 10.1016/j.heliyon.2019.e01996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Imatinib is a tyrosine kinase inhibitor widely administered against chronic myeloid leukemia. On the other hand, drug-induced kidney proximal tubular injury, electrolytes disturbances, and renal failure is a clinical complication associated with imatinib therapy. There is no precise cellular mechanism(s) for imatinib-induced renal injury. The current investigation aimed to evaluate the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of imatinib nephrotoxicity. Rats received imatinib (50 and 100 mg/kg, oral, 14 consecutive days). Serum and urine biomarkers of renal injury and markers of oxidative stress in the kidney tissue were assessed. Moreover, kidney mitochondria were isolated, and mitochondrial indices, including mitochondrial depolarization, dehydrogenases activity, mitochondrial permeabilization, lipid peroxidation (LPO), mitochondrial glutathione levels, and ATP content were determined. A significant increase in serum (Creatinine; Cr and blood urea nitrogen; BUN) and urine (Glucose, protein, gamma-glutamyl transferase; γ-GT, and alkaline phosphatase; ALP) biomarkers of renal injury, as well as serum electrolytes disturbances (hypokalemia and hypophosphatemia), were evident in imatinib-treated animals. On the other hand, imatinib (100 mg/kg) caused an increase in kidney ROS and LPO. Renal tubular interstitial nephritis, tissue necrosis, and atrophy were evident as tissue histopathological changes in imatinib-treated rats. Mitochondrial parameters were also adversely affected by imatinib administration. These data represent mitochondrial impairment, renal tissue energy crisis, and oxidative stress as possible mechanisms involved in the pathogenesis of imatinib-induced renal injury and serum electrolytes disturbances.
Collapse
Affiliation(s)
- Ehsan Emadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Vahid Ghanbarinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi Mobarakeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mahboubi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Pastor M, Basas J, Vairo C, Gainza G, Moreno-Sastre M, Gomis X, Fleischer A, Palomino E, Bachiller D, Gutiérrez FB, Aguirre JJ, Esquisabel A, Igartua M, Gainza E, Hernandez RM, Gavaldà J, Pedraz JL. Safety and effectiveness of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) against P. aeruginosa: in vitro and in vivo studies following pulmonary and intramuscular administration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:101-111. [PMID: 30849549 DOI: 10.1016/j.nano.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
The usefulness of nanotechnology to increase the bioavailability of drugs and decrease their toxicity may be a tool to deal with multiresistant P. aeruginosa (Mr-Pa) respiratory infections. We describe the preparation and the in vivo efficacy and safety of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) by the pulmonary and intramuscular routes. Nanoparticles showed 1-2 mg/L minimum inhibitory concentration against eight extensively drug-resistant P. aeruginosa strains. In vivo, SCM-NLC displayed significantly lower CFU/g lung than the saline and similar to that of the free SCM, even the dose in SCM-NLC group was lower than free SCM. There was no tissue damage related to the treatments. Biodistribution assessments showed a mild systemic absorption after nebulization and a notorious absorption after IM route. Altogether, it could be concluded that SCM-NLC were effective against P. aeruginosa in vivo, not toxic and distribute efficiently to the lung and liver after pulmonary or intramuscular administrations.
Collapse
Affiliation(s)
- Marta Pastor
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - Jana Basas
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Claudia Vairo
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain; NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain
| | - Garazi Gainza
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - María Moreno-Sastre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Xavier Gomis
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Aarne Fleischer
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Esther Palomino
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Daniel Bachiller
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | | | - Jose Javier Aguirre
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain; Department of Pathological Anatomy, Hospital Universitario de Álava (HUA), Vitoria-Gasteiz, Spain
| | - Amaia Esquisabel
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Eusebio Gainza
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Joan Gavaldà
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
19
|
Heidari R, Mandegani L, Ghanbarinejad V, Siavashpour A, Ommati MM, Azarpira N, Najibi A, Niknahad H. Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy. Biomed Pharmacother 2019; 109:271-280. [DOI: 10.1016/j.biopha.2018.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
|
20
|
Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 2019; 109:103-111. [DOI: 10.1016/j.biopha.2018.10.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
|
21
|
Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother 2018; 107:834-840. [DOI: 10.1016/j.biopha.2018.08.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
|
22
|
Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H. Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton) 2018; 23:351-361. [PMID: 28141910 DOI: 10.1111/nep.13012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
AIM Drug-induced kidney proximal tubular injury and renal failure (Fanconi syndrome; FS) is a clinical complication. Valproic acid (VPA) is among the FS-inducing drugs. The current investigation was designed to evaluate the role of mitochondrial dysfunction and oxidative stress in VPA-induced renal injury. METHODS Animals received VPA (250 and 500 mg/kg, i.p., 15 consecutive days). Serum biomarkers of kidney injury and markers of oxidative stress were assessed. Moreover, kidney mitochondria were isolated and mitochondrial indices, including succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial permeability transition pore (MPP), reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial glutathione, and ATP were determined. RESULTS Valproic acid-treated animals developed biochemical evidence of FS as judged by elevated serum gamma-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), creatinine (Cr), and blood urea nitrogen (BUN) along with hypokalaemia, hypophosphataemia, and a decrease in serum uric acid. VPA caused an increase in kidney ROS and LPO. Renal GSH reservoirs were depleted and tissue antioxidant capacity decreased in VPA-treated animals. Renal tubular interstitial nephritis, tissue necrosis, and atrophy were also evident in VPA-treated rats. Mitochondrial parameters including SDA, MMP, GSH, ATP and MPP were decreased and mitochondrial ROS and LPO were increased with VPA treatment. It was found that carnitine (100 mg/kg, i.p.) mitigated VPA adverse effects towards the kidney. CONCLUSIONS These data suggest that mitochondrial dysfunction and oxidative stress contributed to the VPA-induced FS. On the other hand, carnitine could be considered a potentially safe and effective therapeutic option in attenuating VPA-induced renal injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Jafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Shirazi Yeganeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Chun SY, Kim DH, Kim JS, Kim HT, Yoo ES, Chung JW, Ha YS, Song PH, Joung YK, Han DK, Chung SK, Kim BS, Kwon TG. A Novel Dorsal Slit Approached Non-Ischemic Partial Nephrectomy Method for a Renal Tissue Regeneration in a Mouse Model. Tissue Eng Regen Med 2018; 15:453-466. [PMID: 30603569 PMCID: PMC6171652 DOI: 10.1007/s13770-018-0123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Kidney ischemia-reperfusion (IR) via laparotomy is a conventional method for kidney surgery in a mouse model. However, IR, an invasive procedure, can cause serious acute and chronic complications through apoptotic and inflammatory pathways. To avoid these adverse responses, a Non-IR and dorsal slit approach was designed for kidney surgery. METHODS Animals were divided into three groups, 1) sham-operated control; 2) IR, Kidney IR via laparotomy; and 3) Non-IR, Non-IR and dorsal slit. The effects of Non-IR method on renal surgery outcomes were verified with respect to animal viability, renal function, apoptosis, inflammation, fibrosis, renal regeneration, and systemic response using histology, immunohistochemistry, real-time polymerase chain reaction, serum chemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and Masson's trichrome staining. RESULTS The Non-IR group showed 100% viability with mild elevation of serum blood urea nitrogen and creatinine values at day 1 after surgery, whereas the IR group showed 20% viability and lethal functional abnormality. Histologically, renal tubule epithelial cell injury was evident on day 1 in the IR group, and cellular apoptosis enhanced TUNEL-positive cell number and Fas/caspase-3 and KIM-1/NGAL expression. Inflammation and fibrosis were high in the IR group, with enhanced CD4/CD8-positive T cell infiltration, inflammatory cytokine secretion, and Masson's trichrome stain-positive cell numbers. The Non-IR group showed a suitable microenvironment for renal regeneration with enhanced host cell migration, reduced immune cell influx, and increased expression of renal differentiation-related genes and anti-inflammatory cytokines. The local renal IR influenced distal organ apoptosis and inflammation by releasing circulating pro-inflammatory cytokines. CONCLUSION The Non-IR and dorsal slit method for kidney surgery in a mouse model can be an alternative surgical approach for researchers without adverse reactions such as apoptosis, inflammation, fibrosis, functional impairment, and systemic reactions.
Collapse
Affiliation(s)
- So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
| | - Dae Hwan Kim
- Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 South Korea
| | - Jeong Shik Kim
- Department of Pathology, Central Hospital, 480 Munsu-ro, Nam-gu, Ulsan, 44667 South Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
- Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404 South Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
- Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404 South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 South Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, 5 Hwarangro, Seongbuk-gu, Seoul, 02792 South Korea
| | - Dong Keun Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarangro, Seongbuk-gu, Seoul, 02792 South Korea
| | - Sung Kwang Chung
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 South Korea
- Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404 South Korea
| |
Collapse
|
24
|
Niknahad H, Heidari R, Mohammadzadeh R, Ommati MM, Khodaei F, Azarpira N, Abdoli N, Zarei M, Asadi B, Rasti M, Shirazi Yeganeh B, Taheri V, Saeedi A, Najibi A. Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail 2018; 39:745-753. [PMID: 29214868 PMCID: PMC6446160 DOI: 10.1080/0886022x.2017.1399908] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sulfasalazine is a commonly used drug for the treatment of rheumatoid arthritis and inflammatory bowel disease. There are several cases of renal injury encompass sulfasalazine administration in humans. The mechanism of sulfasalazine adverse effects toward kidneys is obscure. Oxidative stress and its consequences seem to play a role in the sulfasalazine-induced renal injury. The current investigation was designed to investigate the effect of sulfasalazine on kidney mitochondria. Rats received sulfasalazine (400 and 600 mg/kg/day, oral) for 14 consecutive days. Afterward, kidney mitochondria were isolated and assessed. Sulfasalazine-induced renal injury was biochemically evident by the increase in serum blood urea nitrogen (BUN), gamma-glutamyl transferase (γ-GT), and creatinine (Cr). Histopathological presentations of the kidney in sulfasalazine-treated animals revealed by interstitial inflammation, tubular atrophy, and tissue necrosis. Markers of oxidative stress including an increase in reactive oxygen species (ROS) and lipid peroxidation (LPO), a defect in tissue antioxidant capacity, and glutathione (GSH) depletion were also detected in the kidney of sulfasalazine-treated groups. Decreased mitochondrial succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial GSH depletion, increase in mitochondrial ROS, LPO, and mitochondrial swelling were also evident in sulfasalazine-treated groups. Current data suggested that oxidative stress and mitochondrial injury might be involved in the mechanism of sulfasalazine-induced renal injury.
Collapse
Affiliation(s)
- Hossein Niknahad
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Reza Heidari
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Roya Mohammadzadeh
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Mehdi Ommati
- c Department of Animal Sciences, School of Agriculture , Shiraz University , Shiraz , Iran
| | - Forouzan Khodaei
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Negar Azarpira
- d Transplant Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Narges Abdoli
- e Food and Drug Organization, Ministry of Health , Tehran , Iran
| | - Mahdi Zarei
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Behnam Asadi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Rasti
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Babak Shirazi Yeganeh
- f Department of Pathology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Vahid Taheri
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Arastoo Saeedi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Asma Najibi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
25
|
Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, Hosseini A, Azarpira N, Khodaei F, Farshad O, Rashidi E, Siavashpour A, Najibi A, Ahmadi A, Jamshidzadeh A. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother 2018; 103:75-86. [DOI: 10.1016/j.biopha.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
|
26
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
27
|
Mahmoud YI. Kiwi fruit (Actinidia deliciosa) ameliorates gentamicin-induced nephrotoxicity in albino mice via the activation of Nrf2 and the inhibition of NF-κB (Kiwi & gentamicin-induced nephrotoxicity). Biomed Pharmacother 2017; 94:206-218. [PMID: 28759758 DOI: 10.1016/j.biopha.2017.07.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Gentamicin is a potent aminoglycoside antibiotic, but the risk of nephrotoxicity limits its prolonged use. The toxicity of gentamicin is believed to result from oxidative stress, a condition that could be counteracted by dietary antioxidants. This study determines the possible renoprotective effects of kiwifruit against the pathophysiological and ultrastructural alterations induced by gentamicin. Mice were intraperitoneally injected with gentamicin (100mg/kg body weight) for eight consecutive days, and kiwi juice was administered for 8days, either concomitant to or after gentamicin injection. Gentamicin caused nephrotoxicity evidenced by the significant elevation of serum creatinine and blood urea nitrogen levels, along with significant reduction of serum sodium and potassium ions, compared to normal controls. This was associated with proximal tubular necrosis, lysosomal accumulation and mitochondrial alterations, together with glomerular atrophy, mesangial hypercellularity, and inflammatory cell infiltration. Moreover, immunohistochemical results pointed to the relevant role of Nrf2 and NF-κB in gentamicin-induced nephrotoxicity. Kiwi administration, especially when given after gentamicin injection, significantly ameliorated gentamicin-induced pathophysiological alterations, increased the nuclear immunoreactivity of Nrf2 and decreased that of NF-κB. In short, kiwi fruit shows a promising role as a nephroprotective agent against gentamicin-induced nephrotoxicity via attenuating oxidative stress, inflammation and cell death.
Collapse
Affiliation(s)
- Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
28
|
Shah VM, Nguyen DX, Alfatease A, Bracha S, Alani AW. Characterization of pegylated and non-pegylated liposomal formulation for the delivery of hypoxia activated vinblastine-N-oxide for the treatment of solid tumors. J Control Release 2017; 253:37-45. [PMID: 28302582 DOI: 10.1016/j.jconrel.2017.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Solid tumors often contain hypoxic regions which are resistant to standard chemotherapy and radiotherapy. We have developed a liposomal delivery system for a prodrug of vinblastine (CPD100) which converts to the parent compound only in the presence of lower oxygen levels. As a part of this work we have developed and optimized two formulations of CPD100: one composed of sphingomyelin/cholesterol (55/45; mol/mol) (CPD100Li) and the other composed of sphingomyelin/cholesterol/PEG (55/40/5; mol/mol) (CPD100 PEGLi). We evaluated the antiproliferative effect of CPD100 and the two formulations against A549 non-small lung cancer cell. A549 cell line showed to be sensitive to CPD100 and the two formulations displayed a higher hypoxic: air cytotoxicity ratio compared to the pro-drug. CPD100 elimination from the circulation after injection in mouse was characterized by a very short circulation time (~0.44h), lower area under the curve (AUC) (33μgh/mL) and high clearance (916mL/h/kg) and lower volume of distribution (17.4mL/kg).Total drug elimination from the circulation after the administration of liposomal formulation was characterized by prolonged circulation time (5.5h) along with increase in the AUC (56μgh/mL) for CPD100 Li and (9.5h) with AUC (170μgh/mL) for CPD100PEGLi. This was observed along with increase in volume of distribution and decrease in clearance for the liposomes. The systemic exposure of the free drug was much lower than that achieved with the liposomes. When evaluated for the efficacy in A549 xenograft model in mice, both the liposomes demonstrated excellent tumor suppression and reduction for 3months. The blood chemistry panel and the comprehensive blood analysis showed no increase or decrease in the markers and blood count. In summary, the pharmacokinetic analysis along with the efficacy data emphasis on how the delivery vehicle modifies and enhances the accumulation of the drug and at the same time the increased systemic exposure is not related to toxicity.
Collapse
Affiliation(s)
- Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR 97201, United States
| | - Duc X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR 97201, United States
| | - Adel Alfatease
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR 97201, United States
| | - Shay Bracha
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Adam Wg Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR 97201, United States.
| |
Collapse
|
29
|
Barbera L, Franco D, De Plano LM, Gattuso G, Guglielmino SPP, Lentini G, Manganaro N, Marino N, Pappalardo S, Parisi MF, Puntoriero F, Pisagatti I, Notti A. A water-soluble pillar[5]arene as a new carrier for an old drug. Org Biomol Chem 2017; 15:3192-3195. [DOI: 10.1039/c7ob00530j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of deca-carboxylatopillar[5]areneWP5to bind the antibiotic amikacin and modulate its antimicrobial response towards Gram-positive bacteria is reported.
Collapse
|
30
|
Rabe M, Schaefer F. Non-Transgenic Mouse Models of Kidney Disease. Nephron Clin Pract 2016; 133:53-61. [PMID: 27212380 DOI: 10.1159/000445171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
Animal models are essential tools to understand the mechanisms underlying the development and progression of renal disease and to study potential therapeutic approaches. Recently, interventional models suitable to induce acute and chronic kidney disease in the mouse have become a focus of interest due to the wide availability of genetically engineered mouse lines. These models differ by their damaging mechanism (cell toxicity, immune mechanisms, surgical renal mass reduction, ischemia, hypertension, ureter obstruction etc.), functional and histomorphological phenotype and disease evolution. The susceptibility to a damaging mechanism often depends on strain and gender. The C57BL/6 strain, the most commonly used genetic background of transgenic mice, appears to be relatively resistant against developing glomerulosclerosis, proteinuria and hypertension. This review serves to provide a comprehensive overview of interventional mouse models of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Michael Rabe
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
31
|
Jamshidzadeh A, Heidari R, Golzar T, Derakhshanfar A. Effect ofEisenia foetidaExtract against Cisplatin-Induced Kidney Injury in Rats. J Diet Suppl 2016; 13:551-9. [DOI: 10.3109/19390211.2015.1124163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Heidari R, Sadeghi N, Azarpira N, Niknahad H. Sulfasalazine-Induced Hepatic Injury in an Ex Vivo Model of Isolated Perfused Rat Liver and the Protective Role of Taurine. PHARMACEUTICAL SCIENCES 2015. [DOI: 10.15171/ps.2015.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Doddapaneni BS, Kyryachenko S, Chagani SE, Alany RG, Rao DA, Indra AK, Alani AW. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma. J Control Release 2015; 220:503-514. [DOI: 10.1016/j.jconrel.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/18/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
|