1
|
Li Y, Yang W, Yang X, Ma A, Zhang X, Li H, Wu H. Quemeiteng granule relieves goiter by suppressing thyroid microvascular endothelial cell proliferation and angiogenesis via miR-217-5p-mediated targeting of FGF2-induced regulation of the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117908. [PMID: 38367931 DOI: 10.1016/j.jep.2024.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.
Collapse
Affiliation(s)
- Yang Li
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewei Yang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Aijia Ma
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuepeng Zhang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wu
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Chen L, Liang W, Zhang K, Wang Z, Cheng W, Li W. To elucidate the mechanism of "Scrophulariae Radix-Fritillaria" in goiter by integrated metabolomics and serum pharmaco-chemistry. Front Pharmacol 2024; 15:1206718. [PMID: 38828449 PMCID: PMC11140129 DOI: 10.3389/fphar.2024.1206718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
The pharmacodynamic substances in "Scrophulariae Radix-Fritillaria" and the molecular mechanisms underlying its therapeutic effects against goiter were analyzed through metabolomics and serum pharmaco-chemistry. A rat model of goiter was established using propylthiouracil (PTU), and the animals were treated using "Scrophulariae Radix-Fritillaria." The efficacy of the drug pair was evaluated in terms of thyroid gland histopathology and blood biochemical indices. Serum and urine samples of the rats were analyzed by UPLC-Q-TOF/MS. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to screen potential biomarkers in urine and the corresponding metabolic pathways. The blood components of "Scrophulariae Radix-Fritillaria" were also identified, and their correlation with urine biomarkers was analyzed in order to screen for potential bioactive compounds. "Scrophulariae Radix-Fritillaria" mitigated injury to thyroid tissues and normalized the levels of the thyroid hormones FT3, FT4, and TSH. We also identified 22 urine biomarkers related to goiter, of which 19 were regulated by "Scrophulariae Radix-Fritillaria." Moreover, urine biomarkers are involved in tryptophan metabolism, steroid hormone biosynthesis, and beta-alanine metabolism, and these pathways may be targeted by the drug pair. In addition, 47 compounds of "Scrophulariae Radix-Fritillaria" were detected by serum pharmacochemistry, of which nine components, namely, syringic acid, paeonol, cedrol, and cis-ferulic acid, fetisinine, aucubigenin, linolenic acid, ussuriedine, and 5-(methylsulfanyl)pentanenitrile, were identified as potential effective substances against goiter. To summarize, we characterized the chemical components and mechanisms of "Scrophulariae Radix-Fritillaria" involved in the treatment of goiter, and our findings provide an experimental basis for its clinical application.
Collapse
Affiliation(s)
| | - Wei Liang
- School of Pharmaceutical Sciences, Harbin University of Commerce, Harbin, Heilongjiang, China
| | | | | | | | - Wenlan Li
- School of Pharmaceutical Sciences, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Daniel DJP, Shanmugasundaram S, Chandra Mohan KS, Siva Bharathi V, Abraham JK, Anbazhagan P, Pavadai P, Ram Kumar Pandian S, Sundar K, Kunjiappan S. Elucidating the role of phytocompounds from Brassica oleracea var. italic (Broccoli) on hyperthyroidism: an in-silico approach. In Silico Pharmacol 2024; 12:6. [PMID: 38187876 PMCID: PMC10766920 DOI: 10.1007/s40203-023-00180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid hormone (TH) plays a crucial role in regulating the metabolism in every cell and all organs in of the human body. TH also control the rate of calorie burning, body weight, and function of the heartbeat. Therefore, the aim of the present study is to investigate the role of phytocompounds from Brassica oleracea var. italic (Broccoli) against irregularities of TH biosynthesis (hyperthyroidism) through in silico molecular modelling. Initially, the genetic network was built with graph theoretical network analysis to find the right target to control excessive TH production. Based on the network analysis, the three-dimensional crystal structure of the mammalian enzyme lactoperoxidase (PDB id: 5ff1) was retrieved from the protein data bank (PDB), and the active site was predicted using BIOVIA Discovery studio. Sixty-three phytocompounds were selected from the IMPPAT database and other literature. Selected sixty-six phytocompounds were docked against lactoperoxidase enzyme and compared with the standard drug methimazole. Based on the docking scores and binding energies, the top three compounds, namely brassicoside (- 10.00 kcal × mol-1), 24-methylene-25-methylcholesterol (- 9.50 kcal × mol-1), 5-dehydroavenasterol (- 9.40 kcal × mol-1) along with standard drug methimazole (- 4.10 kcal × mol-1) were selected for further ADMET and molecular dynamics simulation analysis. The top-scored compounds were for their properties such as ADMET, physicochemical and drug-likeness. The molecular dynamics simulation analyses proved the stability of lactoperoxidase-ligand complexes. The intermolecular interaction assessed by the dynamic conditions paved the way to discover the bioactive compounds brassicoside, 24-methylene-25-methylcholesterol, and 5-dehydroavenasterol prevent the excessive production of thyroid hormones. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00180-2.
Collapse
Affiliation(s)
- Derina J. Pearlin Daniel
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Shruthi Shanmugasundaram
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Karunya Sri Chandra Mohan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Velayutham Siva Bharathi
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Jins K. Abraham
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Parthiban Anbazhagan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, 560054 Karnataka India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126 Tamil Nadu India
| |
Collapse
|
4
|
Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front Pharmacol 2023; 14:1291856. [PMID: 38111381 PMCID: PMC10725963 DOI: 10.3389/fphar.2023.1291856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis maintains normal metabolic balance and homeostasis in the human body through positive and negative feedback regulation. Its main regulatory mode is the secretion of thyrotropin (TSH), thyroid hormones (TH), and thyrotropin-releasing hormone (TRH). By binding to their corresponding receptors, they are involved in the development and progression of several systemic diseases, including digestive, cardiovascular, and central nervous system diseases. The HPT axis-related receptors include thyrotropin receptor (TSHR), thyroid hormone receptor (TR), and thyrotropin-releasing hormone receptor (TRHR). Recently, research on regulators has become popular in the field of biology. Several HPT axis-related receptor modulators have been used for clinical treatment. This study reviews the developments and recent findings on HPT axis-related receptor modulators. This will provide a theoretical basis for the development and utilisation of new modulators of the HPT axis receptors.
Collapse
Affiliation(s)
- Xianbin Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
- Postdoctoral Research Workstation, Changchun Gangheng Electronics Company Limited, Changchun, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Kar A, Mahar D, Biswas S, Chakraborty D, Efferth T, Panda S. Phytochemical profiling of polyphenols and thyroid stimulatory activity of Ficus religiosa leaf extract in 6-propyl-thiouracil-induced hypothyroid rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116479. [PMID: 37062529 DOI: 10.1016/j.jep.2023.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant, Ficus religiosa (L.) from the family Moraceae, has been extensively used in Ayurveda and Unani. Traditionally this plant is known for the treatment of constipation, liver diseases and neurological disorders that are related to hypothyroidism. AIM OF THE STUDY This study was primarily designed to evaluate the effect of Ficus religiosa leaf (FL) extract in ameliorating hypothyroidism in rats and to identify the major bioactive compounds in the test extract that might be responsible for the thyroid-altering activity. In addition, the probable mechanism underlying the thyroid regulation of the main FL constituents were analyzed by molecular docking. MATERIALS AND METHODS Adult female Wistar rats were used. LC-ESI-MS/MS was performed to identify the compounds present in the extract. HPLC analysis of FL extract was also performed. A pilot study was made using 3 doses of FL extract. Out of 50, 100, and 200 mg/kg, 100 mg/kg appeared to be the most effective one as it could increase thyroid hormones and decreased TSH levels. In the final experiment, propyl-thiouracil (PTU)-induced hypothyroid rats were orally treated with FL extract (100 mg/kg) or L-thyroxine (100 μg/kg, i.p.) daily for 28 consecutive days. On 29th day, all rats were sacrificed and the serum levels of triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and hepatic 5' deiodinase-1(5'D1) were estimated by ELISA. Liver marker enzymes (alanine aminotransferase, ALT and aspartate aminotransferase, AST); total cholesterol (TC) and triglycerides (TG); hepatic lipid peroxidation (LPO) and the activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) content were estimated in liver tissues. RESULTS LC-MS-MS analyses of the leaf extract identified 11 compounds including the three major compounds, betulinic acid (BA), chlorogenic acid (CGA), and quinic acid (QA). While the PTU treatment decreased the levels of thyroid hormones and 5'D1 activity, it increased the TSH, ALT, AST, TNF-α, IL-6, TC, and TG levels. Furthermore, hepatic LPO significantly increased with a decrease in reduced GSH, SOD, CAT, and GPx. However, FL treatment in PTU-induced animals nearly reversed these adverse effects and improved liver function by decreasing ALT, AST, hepatic LPO and increasing the levels of antioxidants. FL not only improved the liver histology, but also suppressed the inflammatory cytokines, TNF-α and IL-6 in PTU-induced animals. A molecular docking study towards the understanding of the thyroid stimulatory mechanism of action revealed that BA, CGA, and QA might have augmented thyroid hormones by interacting with the thyroid hormone receptor (TRβ1) and TSH receptor (TSHR). CONCLUSION For the first time, we report the pro-thyroidal potential of Ficus religiosa leaf extract. We postulate that its main bioactive compounds, BA, CGA, and QA involved in this action may serve as novel thyroid agonists in ameliorating hypothyroidism.
Collapse
Affiliation(s)
- Anand Kar
- School of Life Sciences, Devi Ahilya University, Takhshila Campus, Khandwa Road, Indore, 452001, M.P., India.
| | - Durgesh Mahar
- School of Life Sciences, Devi Ahilya University, Takhshila Campus, Khandwa Road, Indore, 452001, M.P., India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Sunanda Panda
- School of Life Sciences, Devi Ahilya University, Takhshila Campus, Khandwa Road, Indore, 452001, M.P., India.
| |
Collapse
|
6
|
Li N, Li M, Xiu L, Liao W, Ren Y, Liu H, Chen S, Chen F, Yu X, Fan A, Huo M, He J, Zhong G. Haizao Yuhu decoctions including three species of glycyrrhiza protected against propylthiouracil-induced goiter with hypothyroidism in rats via the AMPK/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115443. [PMID: 35680037 DOI: 10.1016/j.jep.2022.115443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza and sargassum are among the 18 incompatible medicaments according to traditional Chinese medicine (TCM) theory. Although it contains glycyrrhiza and sargassum, Haizao Yuhu decoction (HYD) is a classic prescription widely used as TCM to treat goiter. According to the Chinese Pharmacopoeia, glycyrrhiza is divided into three varieties: Glycyrrhiza uralensis Fish., Glycyrrhiza glabra L., and Glycyrrhiza inflata Bat. Whether the three varieties of glycyrrhiza have different efficacy or toxicity when applied in the HYD is unknown. AIM OF THE STUDY To explore whether the HYDs comprising three varieties of glycyrrhiza have different efficacy or toxicity when used to treat goiter in rats and the underlying mechanisms of these HYDs. MATERIALS AND METHODS For two weeks, the goiter model was replicated by intragastric propylthiouracil (PTU) administration. Samples were divided into the control group, model group, euthyrox group, HYD with glycyrrhiza uralensis (HYD-U) group, HYD with glycyrrhiza glabra (HYD-G) group, and HYD with glycyrrhiza inflata (HYD-I) group. After four weeks of treatment, body weight, rectal temperature, thyroid/liver/kidney coefficient, thyroid/liver/kidney function, thyroid/liver/kidney histomorphology, and thyroid ultrastructure were evaluated. Then, real-time quantitative reverse-transcription polymerase chain reaction (RTqPCR), Western blot, and immunofluorescence analyses were performed to detect genes and proteins affecting autophagy and apoptosis in thyroid cells in the AMP-activated Protein Kinases (AMPK)/Mammalian target of rapamycin (mTOR) pathway. RESULTS All three HYDs increased thyroid hormones (THs) levels, relieved thyroid pathological tissue and ultrastructure, and activated vital proteins and genes in the AMPK/mTOR pathway. Comparisons among the efficacy of the three HYDs indicated that HYD-U restored the THs most effectively; however, no difference in the anti-goiter effect was observed. Moreover, the three HYDs resulted in no toxicity and promoted the recovery of impaired liver and kidney function caused by PTU. Comparisons among the recovery effects of the three HYDs on the liver and kidney were the same. CONCLUSION Our experiments demonstrated that the three HYDs had outstanding anti-goiter effects and protected liver and kidney function. Their anti-goiter effects were attributed to AMPK/mTOR pathway-induced autophagy and apoptosis. HYD-U resulted in the best THs recovery. It was further indicated that in our present study, glycyrrhiza and sargassum were compatible in the three HYDs, thereby suggesting their safety of compounding in HYD and providing a basis for the research of the 18 incompatible medicaments.
Collapse
Affiliation(s)
- Na Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Muyun Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Linlin Xiu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenyong Liao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yuna Ren
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Haiyan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shaohong Chen
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Feng Chen
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Yu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Angran Fan
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Min Huo
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jia He
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Gansheng Zhong
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Ferah Okkay I, Okkay U, Gundogdu OL, Bayram C, Mendil AS, Ertugrul MS, Hacimuftuoglu A. Syringic acid protects against thioacetamide-induced hepatic encephalopathy: Behavioral, biochemical, and molecular evidence. Neurosci Lett 2021; 769:136385. [PMID: 34871743 DOI: 10.1016/j.neulet.2021.136385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
The objective of this study was to elucidate the effects of syringic acid on thioacetamide-induced hepatic encephalopathy which is a complex serious syndrome with neuropsychiatric abnormalities related to acute liver dysfunctions like cirrhosis. Rats were treated with syringic acid (50 and 100 mg/kg, p.o.) for 14 days in treatment groups. Hepatic encephalopathy was induced by three doses of (200 mg/kg i.p.) thioacetamide injection. Syringic acid effectively alleviated thioacetamide-induced hepatic injury via reduction in ammonia, AST, ALT, ALP, LDH and decrease in oxidative stress (decreased MDA, ROS and increased SOD and GSH). Syringic acid also attenuated inflammatory injury by suppressing TNF-α, IL-1β, and NF-κB and increasing IL-10. The caspase-3 expression was also down-regulated in both liver and brain tissues. Immunohistochemical results confirmed the recovery with syringic acid by downregulation of iNOS, 8-OHdG and GFAP expression. Syringic acid decreased the deteriorating effects of thioacetamide as seen by reduced ammonia concentration and also preserved astrocyte and hepatocyte structure. The behavioral test results from elevated plus maze test, similar to the open-field locomotor test results, confirmed that syringic acid can reverse behavioral impairments. In conclusion, syringic acid exerted hepatoprotective and neuroprotective effects against hepatic encephalopathy by mitigating hepatotoxicity biomarkers, exerting antioxidant, anti-inflammatory effects in addition to suppressing hyperammonemia.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| | - Omer Lutfi Gundogdu
- Department of Neurology, Faculty of Medicine, Recep Tayyip Erdogan University, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | | | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| |
Collapse
|
8
|
Ranhulova T. Non-Alcoholic Fatty Liver Disease and Hypothyroidism: Review of Clinical and Experimental Studies. GALICIAN MEDICAL JOURNAL 2021. [DOI: 10.21802/gmj.2021.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypothyroidism is a widespread condition affecting people of different socio-economic background and geographical location. A lot of studies highlight the effect of hypothyroidism on the metabolic processes in various organs, including the liver. On the other hand, liver damage often results in the development of non-alcoholic fatty liver disease; however, the data on the impact of hypothyroidism on liver morphology, which can serve as a direct indicator and marker of liver condition and function, are limited and controversial. In this report, we reviewed the relationship between non-alcoholic fatty liver disease and hypothyroidism with an accent on morphological alteration of the liver discovered in clinical and experimental studies.
Collapse
|