1
|
Zhu L, Liu Z, Cui Q, Guan G, Hui R, Wang X, Wang J, Zhang Y, Zhu X. Epigenetic modification of CD4 + T cells into Tregs by 5-azacytidine as cellular therapeutic for atherosclerosis treatment. Cell Death Dis 2024; 15:689. [PMID: 39304654 PMCID: PMC11415506 DOI: 10.1038/s41419-024-07086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Recent research has explored the potential of the demethylating drug 5-azacytidine (Aza) as therapy for a range of diseases. However, the therapeutic efficacy of Aza for patients of atherosclerosis remains unclear. This study investigates the therapeutic application of Aza to atherosclerosis in order to elucidate the underlying mechanisms. We generated induced Tregs (iTregs) from CD4+ T cells by using Aza in vitro, and this was followed by the intravenous infusion of iTregs for the treatment of atherosclerosis. The adoptive transfer of Aza-iTreg significantly increased peripheral blood Treg cells, suppressed inflammation, and attenuated atherosclerosis in ApoE-/- mice. Furthermore, we observed a notable demethylation of the Forkhead box P3 (Foxp3)-regulatory T cell-specific demethylated region (TSDR) and an upregulation of Foxp3 expression in the CD4+ T cells in the spleen of the ApoE-/- mice following the transfer of Aza- iTregs. We also demonstrated that Aza converted naive CD4+ T cells into Tregs by DNA methyltransferase 1 (Dnmt1)-mediated Foxp3-TSDR demethylation and the upregulation of Foxp3 expression. Conversely, the overexpression of Dnmt1 in the CD4+ T cells attenuated the Aza-induced Foxp3-TSDR demethylation and upregulation of Foxp3 expression. Our results reveal that Aza converts naive CD4+ T cells into functional Tregs by inhibiting Dnmt1, and the transfer of Aza-iTregs suppresses atherosclerosis in mice.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
2
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
3
|
Liu X, Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. Basic Res Cardiol 2024:10.1007/s00395-024-01054-0. [PMID: 38724618 DOI: 10.1007/s00395-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
4
|
Boovarahan SR, Kurian GA. Ischemic preconditioning modulates the DNA methylation process of the rat heart to provide tolerance to withstand ischemia reperfusion injury and its associated mitochondrial dysfunction. 3 Biotech 2024; 14:121. [PMID: 38550905 PMCID: PMC10965879 DOI: 10.1007/s13205-024-03965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
DNA methylation plays a crucial role in the pathogenesis of myocardial ischemia reperfusion injury(I/R) and the I/R injury can be combated effectively by ischemia preconditioning (IPC), but the role is DNA methylation in this process is unknown. In this study, we uncovered the role of ischemic preconditioning (IPC)- mediated cardioprotection of rat myocardium by using a Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion. Heart conditioned with short cycles of ischemia and reperfusion (IPC procedure) prior to I/R protocol significantly reduced the I/R-induced global DNA hypermethylation level by 32% and the DNMT activity by 33% while rendering cardioprotection. Blocking the PI3K pathway via wortmannin not only negates the cardio-protection by IPC, but also increases the methylation of DNA by 75%. Besides, the correlation analysis showed a negative relationship between PI3K gene expression and the global DNA methylation level (r = - 0.8690, p = 0.0419) in IPC-treated rat hearts. Moreover, the global level DNA hypomethylation induced by IPC exhibited a regulatory effect on the genes involved in I/R pathology mediators like apoptosis (Caspase3), mitochondrial function (PGC 1α, TFAM, ND1) and oxidative stress (CuZnSOD, SOD2), and their corresponding function. The present study results provide novel evidence for the involvement of DNA methylation in the IPC procedure, and suggest DNA methylation as one of the potential therapeutic targets regulated by ischemic preconditioning in rat hearts subjected to ischemia reperfusion. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03965-0.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| |
Collapse
|
5
|
Zhou B, Yang Y, Kang Y, Hou J, Yang Y. Targeting the macrophage immunocheckpoint: a novel insight into solid tumor immunotherapy. Cell Commun Signal 2024; 22:66. [PMID: 38273373 PMCID: PMC10809660 DOI: 10.1186/s12964-023-01384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/04/2023] [Indexed: 01/27/2024] Open
Abstract
Tumor immunotherapy, which targets immune checkpoints, presents a promising strategy for the treatment of various cancer types. However, current clinical data indicate challenges in its application to solid tumors. Recent studies have revealed a significant correlation between the degree of immune response in immunotherapy and the tumor microenvironment, particularly with regard to tumor-infiltrating immune cells. Among these immune cells, macrophages, a critical component, are playing an increasingly vital role in tumor immunotherapy. This review focuses on elucidating the role of macrophages within solid tumors and provides an overview of the progress in immunotherapy approaches centered around modulating macrophage responses through various immune factors. Video Abstract.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yan Yang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yan Kang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China.
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| | - Yun Yang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
6
|
Araujo AMD, Cerqueira SVSD, Menezes-Filho JERD, Heimfarth L, Matos KKDOG, Mota KO, Conceição MRDL, Marques LP, Roman-Campos D, Santos-Neto AGD, Albuquerque-Júnior RLCD, Santos VCDO, Vasconcelos CMLD. Naringin improves post-ischemic myocardial injury by activation of K ATP channels. Eur J Pharmacol 2023; 958:176069. [PMID: 37741428 DOI: 10.1016/j.ejphar.2023.176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Naringin (NRG) is a flavonoid with recognized cardioprotective effects. Then, it was investigated the cardioprotective mechanisms of NRG against ischemia-reperfusion (I/R) injury. The rats were pretreated for 7 days (v.o.) with NRG (25 mg/kg) or n-acetylcysteine (NAC, 100 mg/kg) and their isolated hearts were subjected to global ischemia (30 min) and reperfusion (60 min). Furthermore, isolated hearts were perfused with 5 μM NRG in the presence of 10 μM glibenclamide (GLI) and subjected to I/R protocol. In healthy ventricular cardiomyocyte, it was evaluated the acute effect of 5 μM NRG on the GLI sensitive current. The results showed that NRG pretreatment restored the cardiac function and electrocardiogram (ECG) alterations induced by I/R injury, decreasing arrhythmia scores and the occurrence of severe arrhythmias. Lactate dehydrogenase and infarct area were decreased while superoxide dismutase (SOD), catalase and citrate synthase activities increased. Expression of SOD CuZn and SOD Mn not was altered. NRG treatment decreased reactive oxygen species (ROS) generation and lipid peroxidation without alter sulfhydryl groups and protein carbonylation. Also, NRG (5 μM) increased the glibenclamide sensitive current in isolated cardiomyocytes. In isolated heart, the cardioprotection of NRG was significantly reduced by GLI. Furthermore, NRG promoted downregulation of Bax expression and Bax/Bcl-2. Histopathological analysis showed that NRG decreased cell edema, cardiomyocytes and nucleus diameter. Thus, NRG has a cardioprotective effect against cardiac I/R injury which is mediated by its antioxidant and antiapoptotic actions and KATP channels activation.
Collapse
Affiliation(s)
| | | | | | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Karina Oliveira Mota
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
7
|
Boovarahan SR, Balu K, Prem P, Sivakumar B, Kurian GA. DNA hypomethylation by fisetin preserves mitochondria functional genes and contributes to the protection of I/R rat heart. Funct Integr Genomics 2023; 23:325. [PMID: 37880513 DOI: 10.1007/s10142-023-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Myocardial I/R can alter the expression of different sets of cardiac genes that negatively influence the I/R outcome via epigenetic modifications. Fisetin is known to be cardioprotective against I/R, but its underlying epigenetic mode of action is not known and is addressed in the present study. Male Wistar rats were subjected to I/R by using the Langendorff perfusion system. Fisetin (20 mg/kg; i.p.) was administered before I/R induction, followed by the measurement of cardiac injury, hemodynamics, physiological indices, the differential expression of genes that regulate DNA methylation, and the function of mitochondria were performed. Fisetin administered I/R rat heart significantly reduced the global DNA hypermethylation and infarct size with an improved physiological recovery, measured via RPP (81%) and LVDP (82%) from the I/R control. Additionally, we noted decreased expression of the DNMT1 gene by 35% and increased expression of the TET1, TET2, and TET3 genes in fisetin-treated I/R rat hearts. Molecular docking analysis data reveals that the fisetin inhibits DNMT1 at the substrate binding site with minimum binding energy (- 8.2 kcal/mol) compared to the DNMT1 inhibitor, 5-azacytidine. Moreover, fisetin-treated I/R heart reversed the expression of the I/R-linked declined expression of bioenergetics genes (MT-ND1, MT-ND2, MT-ND4, MT-Cyt B, MT-COX1, MT-COX2, MT-ATP6), mitochondrial fission gene (Fis1), replication control genes PGC-1α, POLG, and TFAM to near-normal level. Based on the above findings, we demonstrated that fisetin possesses the ability to modulate the expression of different mitochondrial genes via influencing the global DNA methylation in cardiac tissue, which contributes significantly to the improved contractile function and thereby renders cardioprotection against I/R.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Kirankumar Balu
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Priyanka Prem
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
8
|
Behera R, Sharma V, Grewal AK, Kumar A, Arora B, Najda A, Albadrani GM, Altyar AE, Abdel-Daim MM, Singh TG. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion. Biomed Pharmacother 2023; 162:114599. [PMID: 37004326 DOI: 10.1016/j.biopha.2023.114599] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Mitochondrial dysfunction is one of the fundamental causes of ischemia reperfusion (I/R) damage. I/R refers to the paradoxical progression of cellular dysfunction and death that occurs when blood flow is restored to previously ischemic tissues. I/R causes a significant rise in mitochondrial permeability resulting in the opening of mitochondrial permeability transition pores (MPTP). The MPTP are broad, nonspecific channels present in the inner mitochondrial membrane (IMM), and are known to mediate the deadly permeability alterations that trigger mitochondrial driven cell death. Protection from reperfusion injury occurs when long-term ischemia is accompanied by short-term ischemic episodes or inhibition of MPTP from opening via mitochondrial ATP dependent potassium (mitoKATP) channels. These channels located in the IMM, play an essential role in ischemia preconditioning (PC) and protect against cell death by blocking MPTP opening. This review primarily focuses on the interaction between the MPTP and mitoKATP along with their role in the I/R injury. This article also describes the molecular composition of the MPTP and mitoKATP in order to promote future knowledge and treatment of diverse I/R injuries in various organs.
Collapse
|
9
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
10
|
Diabetic Hearts Exhibit Global DNA Hypermethylation That Alter the Mitochondrial Functional Genes to Enhance the Sensitivity of the Heart to Ischemia Reperfusion Injury. Biomedicines 2022; 10:biomedicines10123065. [PMID: 36551820 PMCID: PMC9776053 DOI: 10.3390/biomedicines10123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
A recent study has shown that DNA hypermethylation can promote ischemia reperfusion (I/R) injury by regulating the mitochondrial function. Diabetes mellitus (DM) is reported to induce DNA hypermethylation, but whether this prior DNA methylation in DM I/R heart inflicts a beneficial or detrimental effect is not known and is addressed in this study. DM was induced in 6-week-old male Wistar rats with streptozotocin (65 mg/kg b.wt). After 24 weeks on a normal diet, I/R was induced in rat heart using a Langendorff perfusion system and analyzed the myocardium for different parameters to measure hemodynamics, infarct size, DNA methylation and mitochondrial function. Diabetic heart exhibited DNA hypermethylation of 39% compared to the control, along with DNMT expression elevated by 41%. I/R induction in diabetic heart promoted further DNA hypermethylation (24%) with aggravated infarct size (21%) and reduced the cardiac rate pressure product (43%) from I/R heart. Importantly, diabetic I/R hearts also experienced a decline in the mitochondrial copy number (60%); downregulation in the expression of mitochondrial bioenergetics (ND1, ND2, ND3, ND4, ND5, ND6) and mitofusion (MFN1, MFN2) genes and the upregulation of mitophagy (PINK, PARKIN, OPTN) and mitofission (MFF, DNM1, FIS1) genes that reduce the dp/dt contribute to the contractile dysfunction in DM I/R hearts. Besides, a negative correlation was obtained between mitochondrial PGC1α, POLGA, TFAM genes and DNA hypermethylation in DM I/R hearts. Based on the above data, the elevated global DNA methylation level in diabetic I/R rat hearts deteriorated the mitochondrial function by downregulating the expression of POLGA, TFAM and PGC1α genes and negatively contributed to I/R-associated increased infarct size and altered hemodynamics.
Collapse
|
11
|
Boovarahan SR, Ali N, AlAsmari AF, Alameen AA, Khan R, Kurian GA. Age-associated global DNA hypermethylation augments the sensitivity of hearts towards ischemia-reperfusion injury. Front Genet 2022; 13:995887. [PMID: 36457746 PMCID: PMC9705337 DOI: 10.3389/fgene.2022.995887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 10/27/2023] Open
Abstract
Most pre-clinical studies in cardiac ischemia-reperfusion injury (I/R) are carried out in young or old animals, which does not cater to the adult age in humans who encounter I/R. Not many studies in the literature are available that emphasize the sensitivity of the adult heart to injury from the young heart, where there exist distinct alterations in DNA methylation and mitochondrial function that contribute to injury. In the present study, we utilized young (8 weeks old) and adult (24 weeks old) rat hearts to evaluate distinct DNA methylation alterations that contribute to I/R injury. The cardiac basal physiological activities in young and adult rat hearts were insignificantly changed from normal. But the DNA hypermethylation and expression level of mitochondrial genes were slightly higher in adult rat hearts. The consequential effect of these changes was measured in the I/R heart to understand its response to additional stress. Accordingly, we noted an increase in global DNA hypermethylation levels by 40% and 62% in young and adult I/R hearts, respectively, from their respective control. Subsequently, a decline in mitochondrial genes (ND1, ND4L, ND6, Cyt B, COX1, COX2, and ATP8) that regulate cardiac contractility was observed in adult I/R hearts. These changes, in turn, reduced hemodynamics (Rate pressure product) by 51% and 32% in adult and young I/R hearts, respectively, from their controls. Besides, the I/R-linked infarct size was higher in adult hearts (58%) than in young hearts (37%). Correlation analysis showed a significant negative correlation of global DNA methylation with the MT-ND1 expression (r = -0.7591), MFN2 expression (r = -0.8561) and cardiac RPP (r = -0.8015) in adult I/R hearts. Based on the above observations, we concluded that age promoted DNA methylation and deteriorated cardiac responsive ability to resist I/R injury.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Alnoor Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Khan
- Department Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Gino A. Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
12
|
Boovarahan SR, AlAsmari AF, Ali N, Khan R, Kurian GA. Targeting DNA methylation can reduce cardiac injury associated with ischemia reperfusion: One step closer to clinical translation with blood-borne assessment. Front Cardiovasc Med 2022; 9:1021909. [PMID: 36247432 PMCID: PMC9554207 DOI: 10.3389/fcvm.2022.1021909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia reperfusion (I/R) injury is one of the main clinical challenges for cardiac surgeons. No effective strategies or therapy targeting the molecular and cellular mechanisms to reduce I/R exists to date, despite altered gene expression and cellular metabolism/physiology. We aimed to identify whether DNA methylation, an unexplored target, can be a potential site to curb I/R-associated cell death by using the left anterior descending artery occlusion model in male Wistar rats. I/R rat heart exhibited global DNA hypermethylation with a corresponding decline in the mitochondrial genes (PGC-1α, TFAM, POLG, ND1, ND3, ND4, Cyt B, COX1, and COX2), antioxidant genes (SOD2, catalase, and Gpx2) and elevation in apoptotic genes (Casp3, Casp7, and Casp9) expression with corresponding changes in their activity, resulting in injury. Targeting global DNA methylation in I/R hearts by using its inhibitor significantly reduced the I/R-associated infarct size by 45% and improved dysferlin levels via modulating the genes involved in cell death apoptotic pathway (Casp3, Casp7, and PARP), inflammation (IL-1β, TLR4, ICAM1, and MyD88), oxidative stress (SOD1, catalase, Gpx2, and NFkB) and mitochondrial function and its regulation (MT-ND1, ND3, COX1, ATP6, PGC1α, and TFAM) in the cardiac tissue. The corresponding improvement in the genes' function was reflected in the respective hearts via the reduction in apoptotic TUNEL positive cells and ROS levels, thereby improving myocardial architecture (H&E staining), antioxidant enzymes (SOD, catalase activity) and mitochondrial electron transport chain activities and ATP levels. The analysis of blood from the I/R animals in the presence and absence of methylation inhibition exhibited a similar pattern of changes as that observed in the cardiac tissue with respect to global DNA methylation level and its enzymes (DNMT and TET) gene expression, where the blood cardiac injury markers enzymes like LDH and CK-MB were elevated along with declined tissue levels. Based on these observations, we concluded that targeting DNA methylation to reduce the level of DNA hypermethylation can be a promising approach in ameliorating I/R injury. Additionally, the blood-borne changes reflected I/R-associated myocardial tissue alteration, making it suitable to predict I/R-linked pathology.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Khan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Gino A. Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
13
|
GSK3β Exacerbates Myocardial Ischemia/Reperfusion Injury by Inhibiting Myc. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2588891. [PMID: 35528516 PMCID: PMC9076327 DOI: 10.1155/2022/2588891] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening disease with high morbidity and mortality. Herein, the present study is conducted to explore the regulatory mechanism of GSK3β in MI/R injury regarding cardiomyocyte apoptosis and oxidative stress. The MI/R injury mouse model and hypoxic reoxygenation (H/R) cell model were established. The expression pattern of GSK3β, FTO, KLF5, and Myc was determined followed by their relation validation. Next, loss-of-function experiments were implemented to verify the effect of GSK3β/FTO/KLF5/Myc on cardiomyocyte apoptosis and oxidative stress in the MI/R injury mouse model and H/R cell model. High expression of GSK3β and low expression of FTO, KLF5, and Myc were observed in the MI/R injury mouse model and H/R cell model. GSK3β promoted phosphorylation of FTO and KLF5, thus increasing the ubiquitination degradation of FTO and KLF5. A decrease of FTO and KLF5 was able to downregulate Myc expression, resulting in enhanced cardiomyocyte apoptosis and oxidative stress. These data together supported the crucial role that GSK3β played in facilitating cardiomyocyte apoptosis and oxidative stress so as to accelerate MI/R injury, which highlights a promising therapeutic strategy against MI/R injury.
Collapse
|
14
|
Luo W, Yang J. Schizophrenia predisposition gene Unc-51-like kinase 4 for the improvement of cerebral ischemia/reperfusion injury. Mol Biol Rep 2022; 49:2933-2943. [PMID: 35083612 DOI: 10.1007/s11033-021-07108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) has complex pathogenesis, and inhibiting apoptosis and supporting neural progenitor proliferation are extremely beneficial strategies for treating CIRI. Unc-51-like kinase 4 (ULK4), a susceptibility gene for schizophrenia, promotes neural progenitors proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway plays a critical role in CIRI via inhibition of apoptosis. Therefore, the relationship among ULK4, the PI3K pathway, and apoptosis in the context of CIRI has attracted our great interest. METHODS AND RESULTS Primary cortical neurons were subjected to oxygen-glucose deprivation/reperfusion (OGD/R), and rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Transfection of the ULK4-overexpression lentivirus was performed alone or in combination with PI3K inhibitor treatment. Here, we revealed that ULK4 was poorly expressed in the cortex in MCAO/R rats and OGD/R-treated primary cortical neurons, ULK4 overexpression inhibited apoptosis, and reduced neurological deficit scores, cerebral infarct volume, and histopathological damage. Moreover, ULK4 overexpression increased PI3K expression and the p-protein kinase B/AKT and p-glycogen synthase kinase 3 beta (GSK3β)/GSK3β ratios, and inhibited apoptosis, while a PI3K inhibitor reversed the effects of ULK4 overexpression on CIRI. CONCLUSIONS ULK4 protects against CIRI, and the underlying mechanism involves PI3K pathway activation which in turn inhibits apoptosis.
Collapse
Affiliation(s)
- Wen Luo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, China
| | - Junqing Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|