1
|
Tariq A, Piontkivska H. Reovirus infection induces transcriptome-wide unique A-to-I editing changes in the murine fibroblasts. Virus Res 2024; 346:199413. [PMID: 38848818 PMCID: PMC11225029 DOI: 10.1016/j.virusres.2024.199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA; Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
2
|
Dembla E, Becherer U. Biogenesis of large dense core vesicles in mouse chromaffin cells. Traffic 2021; 22:78-93. [PMID: 33369005 DOI: 10.1111/tra.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.
Collapse
Affiliation(s)
- Ekta Dembla
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Garcia-Pardo J, Tanco S, Díaz L, Dasgupta S, Fernandez-Recio J, Lorenzo J, Aviles FX, Fricker LD. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS One 2017; 12:e0187778. [PMID: 29131831 PMCID: PMC5683605 DOI: 10.1371/journal.pone.0187778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lucía Díaz
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc X. Aviles
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (LDF); (FXA)
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LDF); (FXA)
| |
Collapse
|
4
|
Hu Z, Zhang H, Haley B, Macchi F, Yang F, Misaghi S, Elich J, Yang R, Tang Y, Joly JC, Snedecor BR, Shen A. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 2016; 113:2100-6. [DOI: 10.1002/bit.25977] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Zhilan Hu
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Henry Zhang
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Benjamin Haley
- Department of Molecular Biology; Genentech Inc.; 1 DNA Way; South San Francisco California
| | - Frank Macchi
- Department of Analytical Development and Quality Control; Genentech Inc.; 1 DNA Way; South San Francisco California
| | - Feng Yang
- Department of Analytical Development and Quality Control; Genentech Inc.; 1 DNA Way; South San Francisco California
| | - Shahram Misaghi
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Joseph Elich
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Renee Yang
- Department of Analytical Development and Quality Control; Genentech Inc.; 1 DNA Way; South San Francisco California
| | - Yun Tang
- Department of Analytical Development and Quality Control; Genentech Inc.; 1 DNA Way; South San Francisco California
| | - John C. Joly
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Bradley R. Snedecor
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| | - Amy Shen
- Department of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way; South San Francisco California 94080
| |
Collapse
|
5
|
Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic 2014; 15:1099-121. [PMID: 25040637 DOI: 10.1111/tra.12194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.
Collapse
Affiliation(s)
- Mathilde Bonnemaison
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | | | | | | |
Collapse
|
6
|
Koirala S, Thomas LN, Too CKL. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells. Mol Endocrinol 2014; 28:331-43. [PMID: 24433040 DOI: 10.1210/me.2013-1202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plasma membrane-bound carboxypeptidase-D (CPD) cleaves C-terminal arginine from extracellular substrates. In the cell, arginine is converted to nitric oxide (NO). We have reported that up-regulation of CPD mRNA/protein levels by 17β-estradiol and prolactin (PRL) in breast cancer cells, and by testosterone in prostate cancer cells, increased NO production and cell survival. The CPD promoter contains a consensus γ-interferon-activated sequence (GAS) and 3 putative androgen response elements (ARE.1, ARE.2, ARE.3) that could potentially bind PRL-activated transcription factor Stat5 (signal transducer and activator of transcription 5) and the liganded androgen receptor (AR), respectively. This study showed that synthetic androgen R1881 and PRL elevated CPD mRNA/protein levels in human MCF-7 and T47D breast cancer cells in a time-/dose-dependent manner. PRL/R1881-elevated CPD expression was blocked by actinomycin-D, and a CPD promoter construct containing these GAS and AREs was stimulated by PRL or R1881, indicating transcriptional regulation by both hormones. Luciferase reporter assays showed that GAS and the adjacent ARE.1 only were active. Mutation of GAS in the ΔGAS-CPD construct (ARE.1 intact) abolished CPD promoter activity in response to PRL and, surprisingly, to R1881 as well. ΔGAS-CPD promoter activity was restored by PRL+R1881 in combination, and enhanced by ectopic Stat5, but abolished by Stat5 gene knockdown. Chromatin immunoprecipitation analysis confirmed binding of activated Stat5 and liganded AR to GAS and ARE.1, respectively. Activated Stat5 also induced binding of unliganded AR to ARE.1, and liganded AR induced binding of unactivated Stat5 to GAS. In summary, PRL and R1881, acting through Stat5 and AR, act cooperatively to stimulate CPD gene transcription in breast cancer cells.
Collapse
Affiliation(s)
- Samir Koirala
- Department of Biochemistry & Molecular Biology (S.K., L.N.T., C.K.L.T.) and Department of Obstetrics & Gynaecology (C.K.L.T.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | |
Collapse
|
7
|
Fernández D, Pallarès I, Vendrell J, Avilés FX. Progress in metallocarboxypeptidases and their small molecular weight inhibitors. Biochimie 2010; 92:1484-500. [PMID: 20466032 DOI: 10.1016/j.biochi.2010.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/04/2010] [Indexed: 01/11/2023]
Abstract
In what corresponds to a life span, metallocarboxypeptidases (MCPs) have jumped from being mere contaminants in animal pancreas powders (in depression year 1929) to be key players in cellular and molecular processes (in yet-another-depression years 2009-2010). MCPs are unique zinc-dependent enzymes that catalyze the breakdown of the amide bond at the C-terminus of peptide and protein substrates and participate in the recovery of dietary amino acids, tissue organogenesis, neurohormone and cytokine maturation and other important physiological processes. More than 26 genes code for MCPs in the human genome, many of them still waiting to be fully understood in terms of physiological function. A variety of MCPs have been linked to diseases in man: acute pancreatitis and pancreas cancer, type 2 diabetes, Alzheimer's Disease, various types of cancer, and fibrinolysis and inflammation. Many of these discoveries have been made possible thanks to recent advances, as exemplified by plasma carboxypeptidases N and B, known for fifty and twenty years, respectively, which have had their structures released only very recently. Plasma carboxypeptidase B is a biological target for therapy because of its involvement in the coagulation/fibrinolysis processes. Besides, the widespread use of carboxypeptidase A as a benchmark metalloprotease since the early days of Biochemistry has allowed the identification and design of an increasingly vast repertory of small molecular weight inhibitors. With these two examples we wish to emphasize that MCPs have become part of the drug discovery portfolio of pharmaceutical companies and academic research laboratories. This paper will review key developments in the discovery and design of MCP small molecular weight inhibitors, with an emphasis on the discovery of chemically diverse entities. Although encouraging advances have been achieved in the last few years, the specificity and oral bioavailability of the new chemotherapeutic agents seem to pose a challenge to medicinal chemists.
Collapse
Affiliation(s)
- Daniel Fernández
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
8
|
Abdelmagid SA, Too CKL. Prolactin and estrogen up-regulate carboxypeptidase-d to promote nitric oxide production and survival of mcf-7 breast cancer cells. Endocrinology 2008; 149:4821-8. [PMID: 18535109 DOI: 10.1210/en.2008-0145] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carboxypeptidase-D (CPD) and carboxypeptidase-M (CPM) release C-terminal arginine (Arg) from polypeptides, and both are present in the plasma membrane. Cell-surface CPD increases intracellular Arg, which is converted to nitric oxide (NO). We have reported that prolactin (PRL) regulated CPD mRNA levels in MCF-7 breast cancer cells. This study examined PRL/17beta-estradiol (E2) regulation of CPD/CPM expression, and the role of CPD in NO production for survival of MCF-7 cells. We showed that PRL or E2 up-regulated CPD mRNA and protein expression. PRL/E2 increased CPD mRNA levels by 3- to 5-fold but had no effect on CPM. In Arg-free DMEM, exogenous L-Arg or substrate furylacryloyl-Ala-Arg (Fa-Ala-Arg) increased NO levels and cell survival, measured using 4,5-diaminofluorescein diacetate and the MTS assay, respectively. In the presence of Fa-Ala-Arg, NO production was enhanced by PRL and/or E2 but inhibited by CPD/CPM-specific inhibitor, 2-mercaptomethyl-3-guanidinoethylthio-propanoic acid (MGTA). MGTA also decreased MCF-7 cell survival. In Arg-free medium, annexin-V staining showed that apoptotic MCF-7 cells (approximately 60%) were rescued by Fa-Ala-Arg (25%) or diethylamine/NO (10%). Finally, CPD or CPM gene expression was knocked down with small interfering (si) CPD or siCPM, respectively, with nontargeting siNT as controls. In Arg-free DMEM, the stimulatory effect of Fa-Ala-Arg on NO production was inhibited by siCPD only, showing that CPD depletion inhibited Fa-Ala-Arg cleavage. Furthermore, more than 60% of siCPD-transfectants were apoptotic, and L-Arg, not Fa-Ala-Arg, significantly decreased apoptosis to 32% (P<or=0.05). Thus, CPD gene knockdown did not affect L-Arg uptake, which protected cells from apoptosis. In summary, PRL/E2-induced cell-surface CPD released Arg from extracellular substrates, increased intracellular NO, promoted survival and inhibited apoptosis of MCF-7 cells.
Collapse
Affiliation(s)
- Salma A Abdelmagid
- Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
9
|
Chen X, Ulintz PJ, Simon ES, Williams JA, Andrews PC. Global topology analysis of pancreatic zymogen granule membrane proteins. Mol Cell Proteomics 2008; 7:2323-36. [PMID: 18682380 DOI: 10.1074/mcp.m700575-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306-312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model contributes to a firm foundation for developing a higher order architecture model of the ZGM and for future functional studies of individual ZGM proteins.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
10
|
Park JJ, Koshimizu H, Loh YP. Biogenesis and Transport of Secretory Granules to Release Site in Neuroendocrine Cells. J Mol Neurosci 2008; 37:151-9. [DOI: 10.1007/s12031-008-9098-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/06/2008] [Indexed: 11/29/2022]
|
11
|
Harasaki K, Lubben NB, Harbour M, Taylor MJ, Robinson MS. Sorting of major cargo glycoproteins into clathrin-coated vesicles. Traffic 2006; 6:1014-26. [PMID: 16190982 DOI: 10.1111/j.1600-0854.2005.00341.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The AP-1 and AP-2 complexes are the most abundant adaptors in clathrin-coated vesicles (CCVs), but clathrin-mediated trafficking can still occur in the absence of any detectable AP-1 or AP-2. To find out whether adaptor abundance reflects cargo abundance, we used lectin pulldowns to identify the major membrane glycoproteins in CCVs from human placenta and rat liver. Both preparations contained three prominent high molecular-weight proteins: the cation-independent mannose 6-phosphate receptor (CIMPR), carboxypeptidase D (CPD) and low-density lipoprotein receptor-related protein 1 (LRP1). To investigate how these proteins are sorted, we constructed and stably transfected CD8 chimeras into HeLa cells. CD8-CIMPR localized mainly to early/tubular endosomes, CD8-CPD to the trans Golgi network and CD8-LRP1 to late/multivesicular endosomes. All three constructs redistributed to the plasma membrane when clathrin was depleted by siRNA. CD8-CIMPR was also strongly affected by AP-2 depletion. CD8-CPD was moderately affected by AP-2 depletion but strongly affected by depleting AP-1 and AP-2 together. CD8-LRP1 was only slightly affected by AP-2 depletion; however, mutating an NPXY motif in the LRP1 tail caused it to become AP-2 dependent. These results indicate that all three proteins have AP-dependent sorting signals, which may help to explain the relative abundance of AP complexes in CCVs. However, the relatively low abundance of cargo proteins in CCV preparations suggests either that some of the APs may be empty or that the preparations may be dominated by empty coats.
Collapse
Affiliation(s)
- Kouki Harasaki
- University of Cambridge, Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
12
|
Sidyelyeva G, Baker NE, Fricker LD. Characterization of the molecular basis of the Drosophila mutations in carboxypeptidase D. Effect on enzyme activity and expression. J Biol Chem 2006; 281:13844-13852. [PMID: 16556608 DOI: 10.1074/jbc.m513499200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxypeptidase D (CPD) functions in the processing of proteins and peptides in the secretory pathway. Drosophila CPD is encoded by the silver gene (svr), which is differentially spliced to produce long transmembrane protein forms with three metallocarboxypeptidase (CP)-like domains and short soluble forms with a single CP domain. Many svr mutants have been reported, but the precise molecular defects have not been previously determined. In the present study, three mutant lines were characterized. svr (PG33) mutants do not survive past the early larval stage. These mutants have a P-element insertion within exon 1B upstream of the initiation ATG, which greatly reduces mRNA levels of all forms of CPD. Both svr (1) and svr (poi) mutants are viable, with a silvery body color and pointed wings. The wing shape is generally similar between these two mutants, although svr (poi) mutants have smaller wings. The svr (1) gene has a three-nucleotide deletion in exon 6, removing a leucine in a region of the protein predicted to function as a folding domain for the second CP-like domain. svr (poi) has a 1072-bp duplication of the gene that introduces a stop codon into the open reading frame, causing the truncation of the protein in the middle of the second CP-like domain. Both deletions eliminate enzyme activity of the second CP-like domain and appear to cause the misfolding of the protein. This greatly reduces the levels of the long forms of CPD protein but do not affect the levels of the short forms. Taken together, these findings suggest that lethal and viable svr alleles differ in which protein forms are affected. Flies that retain the short form are viable, whereas flies that are missing all forms of CPD do not survive past the early larval stages.
Collapse
Affiliation(s)
- Galyna Sidyelyeva
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
13
|
Huang T, Wolkoff AW, Stockert RJ. Adaptor heat shock protein complex formation regulates trafficking of the asialoglycoprotein receptor. Am J Physiol Gastrointest Liver Physiol 2006; 290:G369-76. [PMID: 16210473 DOI: 10.1152/ajpgi.00204.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the asialoglycoprotein receptor (ASGPR) endocytic pathway, internalized receptors pass through early, recycling, and sorting endosomal compartments before returning to the cell surface. Sorting motifs in the cytoplasmic domain (CD) and protein interactions with these sequences presumably direct receptor trafficking. Previous studies have shown that association of a potential sorting heat shock protein (HSP) heterocomplex with the ASGPR-CD was regulated by casein kinase 2 (CK2)-mediated phosphorylation. Mass spectrometry and immunoblot analyses identified five of these ASGPR-CD-associated proteins as the molecular chaperones glycoprotein 96, HSP70, HSP90, cyclophilin A, and FK 506 binding protein. The present study was undertaken to determine whether any of the adaptor protein complexes (AP1, AP2, or AP3) were selectivity associated with the ASGPR-CD. In conjunction with molecular chaperones, AP2 and AP1 were recovered from a CK2 phosphorylated agarose-GSH-GST-ASGPR-CD matrix. Binding of AP3 was independent of the phosphorylation status of the CD matrix. Inhibition of CK2-mediated phosphorylation with tetrabromobenzotriazole prevented AP recovery within an immunoadsorbed ASGPR complex. Rapamycin, which dissociates the HSP heterocomplex from ASGPR-CD, thereby altering receptor trafficking also, inhibited AP association. Similar results were obtained with an inhibitor of HSP90 heterocomplex formation, geldanmycin. The data presented provide evidence that recruitment of AP1 and AP2, which is necessary for appropriate receptor trafficking, is mediated by the interaction of AP with the ASGPR-CD-bound HSP complex.
Collapse
Affiliation(s)
- Tianmin Huang
- Albert Einstein College of Medicine, 1300 Morris Park Ave., Liver Research Center, Ullmann 611, Bronx, NY 10416, USA
| | | | | |
Collapse
|
14
|
O'Malley P, Sangster S, Abdelmagid S, Bearne S, Too C. Characterization of a novel, cytokine-inducible carboxypeptidase D isoform in haematopoietic tumour cells. Biochem J 2006; 390:665-73. [PMID: 15918796 PMCID: PMC1199659 DOI: 10.1042/bj20050025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CPD-N is a cytokine-inducible CPD (carboxypeptidase-D) isoform identified in rat Nb2 T-lymphoma cells. The prototypic CPD (180 kDa) has three CP domains, whereas CPD-N (160 kDa) has an incomplete N-terminal domain I but intact domains II and III. CPD processes polypeptides in the TGN (trans-Golgi network) but the Nb2 CPD-N is nuclear. The present study identified a cryptic exon 1', downstream of exon 1 of the rat CPD gene, as an alternative transcription start site that encodes the N-terminus of CPD-N. Western-blot analysis showed exclusive synthesis of the 160 kDa CPD-N in rat Nb2 and Nb2-Sp lymphoma cells. Several haematopoietic cell lines including human K562 myeloma, Jurkat T-lymphoma and murine CTLL-2 cytotoxic T-cells express a 160 kDa CPD-immunoreactive protein, whereas mEL4 T-lymphoma cells express the 180 kDa CPD. The CPD-immunoreactive protein in hK562 cells is also nuclear and cytokine-inducible. In contrast, MCF-7 breast cancer cells express only the 180 kDa CPD, which is mainly in the TGN. CPD/CPD-N assays using substrate dansyl-L-alanyl-L-arginine show approx. 98% of CPD-N activity in the Nb2 nucleus, whereas MCF-7 CPD activity is enriched in the post-nuclear 10000 g pellet. The K(m) for CPD-N and CPD are 132+/-30 and 63+/-9 microM respectively. Specific activity/K(m) ratios show that dansyl-L-alanyl-L-arginine is a better substrate for CPD-N than for CPD. CPD-N has an optimal pH of 5.6 (due to domain II), whereas CPD has activity peaks at pH 5.6 (domain II) and pH 6.5-7.0 (domain I). CPD and CPD-N are inhibited non-competitively by zinc chelator 1,10-phenanthroline and competitively by peptidomimetic inhibitor DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid. The Nb2 CPD-N co-immunoprecipitated with phosphatase PP2A (protein phosphatase 2A) and alpha4 phosphoprotein. In summary, a cytokine-inducible CPD-N is selectively expressed in several haematopoietic tumour cells. Nuclear CPD-N is enzymatically active and interacts with known partners of CPD.
Collapse
Affiliation(s)
- Padraic G. P. O'Malley
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Shirley M. Sangster
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Salma A. Abdelmagid
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Stephen L. Bearne
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Catherine K. L. Too
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
- †Department of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Kalinina E, Fontenele-Neto JD, Fricker LD. Drosophila S2 cells produce multiple forms of carboxypeptidase D with different intracellular distributions. J Cell Biochem 2006; 99:770-83. [PMID: 16676361 DOI: 10.1002/jcb.20972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carboxypeptidase D (CPD) functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates examined as well as Drosophila. Several forms of CPD mRNA were previously found in Drosophila that resulted from differential splicing of the gene. In the present study, Northern blot, reverse transcriptase PCR, and Western blot analysis showed that each splice variant occurs in a single cell type, the Drosophila-derived Schneider 2 (S2) cell line. The short forms containing a single carboxypeptidase domain were secreted from the S2 cells while the long forms containing three carboxypeptidase domains, a transmembrane domain, and one of two different cytosolic tails were retained in the cell. To investigate the role of the two different C-terminal tail sequences (tail-1 and tail-2) that result from the differential splicing within exon 8, constructs containing a reporter protein (albumin) attached to the transmembrane domain and tail-1 or tail-2 of CPD were expressed in S2 cells and a mouse pituitary cell line (AtT20 cells). Immunofluorescence analysis revealed different intracellular distributions of the two constructs, with the tail-2 construct showing considerable overlap with a Golgi marker. The two C-terminal tail sequences also resulted in different internalization efficiencies from the cell surface in both cell lines. Interestingly, the distribution and routing of the tail-2 form of Drosophila CPD in the AtT20 cells are similar to the previously characterized endogenous mouse CPD protein, indicating that the elements for this trafficking have been conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Fayad T, Lévesque V, Sirois J, Silversides DW, Lussier JG. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol Reprod 2003; 70:523-33. [PMID: 14568916 DOI: 10.1095/biolreprod.103.021709] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Development of antral follicles beyond 3 to 4 mm in cattle appears as a wave pattern that occurs two to three times during the estrous cycle. Each wave presents a cyclic recruitment of multiple follicles at the 3- to 4-mm stage, followed by the selection of a single follicle that becomes the dominant follicle (DF). The molecular determinants involved in the follicular dominance process remain poorly understood. The objective of the current study was to compare gene expression in granulosa cells (GCs) between growing dominant follicles from Day 5 of the estrous cycle and nonselected small follicles (<or=4 mm) using the suppression subtractive hybridization (SSH) approach to identify candidate genes differentially expressed in GCs of the DF. Small follicle cDNAs were subtracted from DF cDNAs (DF-SF) and used to establish a DF GC-subtracted cDNA library. A total of 42 nonredundant cDNAs were identified. Detection of previously identified genes such as CX43, CYP19, INHBA, and SERPINE2 supported the validity of our experimental model and the use of SSH as the method of analysis. For selected genes such as ApoER2, CPD, CSPG2, 14-3-3 epsilon, NR5A2/SF2, RGN/SMP30, and SERPINE2, gene expression profiles were compared by virtual Northern blot or reverse transcriptase-polymerase chain reaction, and results confirmed an increase or induction of their mRNA in GCs of dominant follicles compared with that of small follicles. We conclude that we have identified novel genes (known and unknown) that are up-regulated in bovine GCs that may affect follicular growth, dominance, or both.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
17
|
Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:89-96. [PMID: 12873769 DOI: 10.1016/s0005-2736(03)00166-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The early steps in hepatitis B virus (HBV) infection, a human hepadnavirus, initiates from cell attachment followed by entry and delivery of the genetic information to the nucleus. Despite the fact that these steps determine the virus-related pathogenesis, their molecular basis is poorly understood. Cumulative data suggest that this process can be divided to cell attachment, endocytosis, membrane fusion and post-fusion consecutive steps. These steps are likely to be regulated by the viral envelope proteins and by the cellular membrane, receptors and extracellular matrix. In the absence of animal model for HBV, the duck hepadnavirus DHBV turned out to be a fruitful animal model. Therefore data concerning the early, post-attachment steps in hepadnaviral entry are largely based on studies performed with DHBV in primary duck liver hepatocytes. These studies are now starting to illuminate the mechanisms of hepadnavirus route of cell entry and to provide some new insights on the molecular basis of the strict species specificity of hepadnavirus infection.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
18
|
Kalinina EV, Fricker LD. Palmitoylation of carboxypeptidase D. Implications for intracellular trafficking. J Biol Chem 2003; 278:9244-9. [PMID: 12643288 DOI: 10.1074/jbc.m209379200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Covalent lipid modifications mediate protein-membrane and protein-protein interactions and are often essential for function. The purposes of this study were to examine the Cys residues of the transmembrane domain of metallocarboxypeptidase D (CPD) that could be a target for palmitoylation and to clarify the function of this modification. CPD is an integral membrane protein that cycles between the trans Golgi network and the plasma membrane. We constructed AtT-20 cells stably expressing various constructs carrying a reporter protein (albumin) fused to a transmembrane domain and the CPD cytoplasmic tail. Some of the constructs contained the three Cys residues present in the CPD transmembrane region, while other constructs contained Ala in place of the Cys. Constructs carrying Cys residues were palmitoylated, while those constructs lacking the Cys residues were not. Because palmitoylation of several proteins affects their association with cholesterol and sphingolipid-rich membrane domains or caveolae, we tested endogenous CPD and several of the reporter constructs for resistance to extraction with Triton X-100. A construct containing the Cys residues of the CPD transmembrane domain was soluble in Triton X-100 as was endogenous palmitoylated CPD, indicating that palmitoylation does not target CPD to detergent-resistant membrane rafts. Interestingly, constructs of CPD that lack palmitoylation sites have an increased half-life, a slightly more diffuse steady-state localization, and a slower rate of exit from the Golgi as compared with constructs containing palmitoylation sites. Thus, the covalent attachment of palmitic acid to the Cys residues of CPD has a functional significance in the trafficking of the protein.
Collapse
Affiliation(s)
- Elena V Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
19
|
Abstract
Metallocarboxypeptidase D (CPD), is a 180-kDa protein that contains three carboxypeptidase-like domains, a transmembrane domain, and a cytosolic tail and which functions in the processing of proteins that transit the secretory pathway. An initial report on the Drosophila melanogaster silver gene indicated a CPD-like protein with only two and a half carboxypeptidase-like domains with no transmembrane region (Settle, S. H., Jr., Green, M. M., and Burtis, K. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9470-9474). A variety of bioinformatics and experimental approaches were used to determine that the Drosophila silver gene corresponds to a CPD-like protein with three carboxypeptidase-like domains, a transmembrane domain, and a cytosolic tail. In addition, two alternative exons were found, which result in proteins with different carboxypeptidase-like domains, termed domains 1A and 1B. Northern blot, reverse transcriptase PCR, and sequence analysis were used to confirm the presence of the various mRNA forms. Individual domains of Drosophila CPD were expressed in insect Sf9 cells using the baculovirus expression system. Media from domain 1B- and domain 2-expressing cells showed substantial enzymatic activity, whereas medium from domain 1A-expressing cells was no different from cells infected with wild-type virus. Domains 1B and 2 were purified, and the enzymatic properties were examined. Both enzymes cleaved substrates with C-terminal Arg or Lys, but not Leu, and were inhibited by conventional metallopeptidase inhibitors and some divalent cations. Drosophila domain 1B is more active at neutral pH and greatly prefers C-terminal Arg over Lys, whereas domain 2 is more active at pH 5-6 and slightly prefers C-terminal Lys over Arg. The differences in pH optima and substrate specificity between Drosophila domains 1B and 2 are similar to the differences between duck CPD domains 1 and 2, suggesting that these properties are essential to CPD function.
Collapse
Affiliation(s)
- Galyna Sidyelyeva
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|