1
|
Basu A, Kumar GS. Interaction of the putative anticancer alkaloid chelerythrine with nucleic acids: biophysical perspectives. Biophys Rev 2020; 12:10.1007/s12551-020-00769-3. [PMID: 33131000 PMCID: PMC7755961 DOI: 10.1007/s12551-020-00769-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
Alkaloids represent an important group of molecules that have immense pharmacological potential. Benzophenanthridine alkaloids are one such class of alkaloids known for their myriad pharmacological activities that include potential anticancer activities. Chelerythrine is a premier member of the benzophenanthridine family of the isoquinoline group. This alkaloid is endowed with excellent medicinal properties and exhibits antibacterial, antimicrobial and anti-inflammatory properties. The molecular basis of its therapeutic activity is considered due to its nucleic acid binding capabilities. This review focuses on consolidating the current status on the nucleic acid binding properties of chelerythrine that is essential for the rational design and development of this alkaloid as a potential drug. This work reviews the interaction of chelerythrine with different natural and synthetic nucleic acids like double- and single-stranded DNAs, heat-denatured DNA, quadruplex DNA, double- and single-stranded RNA, tRNA and triplex and quadruplex RNA. The review emphasizes on the mode, specificity, conformational aspects and energetics of the binding that is particularly helpful for developing nucleic acid targeted therapeutics. The fundamental results discussed in this review will greatly benefit drug development for many diseases and serve as a database for the design of futuristic benzophenanthridine-based therapeutics.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, India.
| | | |
Collapse
|
2
|
Cyclosporin A activates human hepatocellular carcinoma (HepG2 cells) proliferation: implication of EGFR-mediated ERK1/2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:897-908. [PMID: 31907582 DOI: 10.1007/s00210-019-01798-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
Abstract
One of the most common causes of cancer mortality worldwide is hepatocellular carcinoma (HCC). Extracellular signal-regulated kinase (ERK1/2) pathway has been shown to play an important role in the development and progression of HCC. Here, we demonstrate that the immunosuppressive agent cyclosporin A (CsA) has the ability to increase the cellular growth in HCC (HepG2 cells) via activation of ERK1/2 signaling cascade. It was found that ERK1/2 phosphorylation induced by CsA was highly reduced in the presence of the reactive oxygen species (ROS) scavenger polyethylene glycol-superoxide dismutase (PEG-SOD). Furthermore, it was observed that inhibition of metalloproteinase activity using TAPI-2 prevents ERK1/2 activation by CsA. Moreover, a disintegrin and metalloproteinase domain 17 (ADAM-17) activity was found to be critical for ERK phosphorylation by CsA. In addition, CsA-induced ERK phosphorylation was highly reduced in the presence of either neutralizing anti-heparin-binding-epidermal growth factor (HB-EGF) antibody or UO126 (MEK inhibitor). By using the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, it was found that EGFR is critical for ERK phosphorylation induced by CsA. Furthermore, CsA-induced cell proliferation was strongly reduced in the presence of either PEG-SOD or TAPI-2 or neutralizing anti-ADAM17 antibody or neutralizing anti-HB-EGF antibody or AG1478 or UO126. Collectively, these data demonstrate that CsA has the ability to activate ERK1/2 signaling cascade that could be translated into an increase in HepG2 cell proliferation. Furthermore, these data support the role of ROS, ADAM-17, and EGFR in ERK1/2 signaling activation and subsequent cell proliferation induced by CsA in HepG2 cells.
Collapse
|
3
|
Terenzi A, Gattuso H, Spinello A, Keppler BK, Chipot C, Dehez F, Barone G, Monari A. Targeting G-quadruplexes with Organic Dyes: Chelerythrine-DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants (Basel) 2019; 8:antiox8100472. [PMID: 31658666 PMCID: PMC6826623 DOI: 10.3390/antiox8100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023] Open
Abstract
The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.
Collapse
Affiliation(s)
- Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| | - Hugo Gattuso
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Angelo Spinello
- CNR-IOM DEMOCRITOS c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
| | - Christophe Chipot
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
4
|
Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109809. [PMID: 31349497 DOI: 10.1016/j.msec.2019.109809] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
Despite the all recent advancements in medicine, infectious diseases continue to be major causes of death worldwide. Developing nanomaterials as preventive and therapeutic agents against infectious diseases has been one of the research priorities in medicine. However, the application of metal nanoparticles as antimicrobial agents is hampered due to environmental and safety concerns. Using green chemistry, researchers can produce biocompatible nanoparticles that have fewer detrimental effects on human health and the environment. Although chemical compounds have been considered as traditional sources for producing nanomaterials, a wide variety of biocompatible plant-derived secondary metabolites have recently been introduced that can be used to synthesize and stabilize metal nanoparticles. These metabolites have shown potent antibacterial effects making them suitable substitutes for the chemical agents in nanoparticle synthesis. This review has focused on the antimicrobial properties of metal nanoparticles synthesized using plant-derived secondary metabolites instead of crude extract. The mechanisms of metal nanoparticles synthesis and antimicrobial activity are also discussed for different phytochemicals and metal nanoparticles. Finally, the evaluation of the toxicity and safety of phytochemicals coated metal nanoparticles has been conducted. I believe that this is the first review on the antimicrobial and other biological properties of metal nanoparticles synthesized or coated utilizing specific plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Prado AF, Pernomian L, Azevedo A, Costa RAP, Rizzi E, Ramos J, Paes Leme AF, Bendhack LM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinase-2-induced epidermal growth factor receptor transactivation impairs redox balance in vascular smooth muscle cells and facilitates vascular contraction. Redox Biol 2018; 18:181-190. [PMID: 30029165 PMCID: PMC6052251 DOI: 10.1016/j.redox.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022] Open
Abstract
Increased reactive oxygen species (ROS) formation may enhance matrix metalloproteinase (MMP)-2 activity and promote cardiovascular dysfunction. We show for the first time that MMP-2 is upstream of increased ROS formation and activates signaling mechanisms impairing redox balance. Incubation of vascular smooth muscle cells (VSMC) with recombinant MMP-2 increased ROS formation assessed with dihydroethidium (DHE) by flow cytometry. This effect was blocked by the antioxidant apocynin or by polyethylene glycol-catalase (PEG-catalase), and by MMP inhibitors (doxycycline or GM6001). Next, we showed in HEK293 cells that MMP-2 transactivates heparin-binding epidermal growth factor (HB-EGF) leading to EGF receptor (EGFR) activation and increased ROS concentrations. This effect was prevented by the EGFR kinase inhibitor Ag1478, and by phospholipase C (PLC) or protein kinase C (PKC) inhibitors (A778 or chelerythrine, respectively), confirming the involvement of EGFR pathway in MMP-2-induce responses. Next, we showed that intraluminal exposure of aortas to MMP-2 increased vascular MMP-2 levels detected by immunofluorescence and gelatinolytic activity (by in situ zimography) in association with increased ROS formation. This effect was inhibited by MMP inhibitors (phenanthroline or doxycycline) and by apocynin or PEG-catalase. MMP-2 also increased aortic contractility to phenylephrine and this effect was prevented by MMP inhibitor GM6001 and by apocynin or PEG-catalase, showing again that increased ROS formation mediates functional effects of MMP-2. These results show that MMP-2 activates the EGFR and triggers downstream signaling pathways increasing ROS formation and promoting vasoconstriction. These findings may have various implications for cardiovascular diseases. MMP-2 is activated by reactive oxygen species and promotes cardiovascular diseases. We show here that MMP-2 is upstream of reactive oxygen species formation. This effect involves epidermal growth factor receptor transactivation. MMP-2 impairs redox balance and contributes to vascular contraction.
Collapse
Affiliation(s)
- Alejandro F Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil
| | - Laena Pernomian
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil
| | - Aline Azevedo
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rute A P Costa
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Junia Ramos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil; Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil; Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
6
|
Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, Tocilj A, Joshua-Tor L, Tonks NK. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nat Commun 2018; 9:283. [PMID: 29348454 PMCID: PMC5773487 DOI: 10.1038/s41467-017-02252-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity. The activity of protein tyrosine phosphatase PTP1B, a major metabolic regulator, depends on its oxidation state. Here the authors identify and characterize a small molecule that targets the oxidized, inactive form of PTP1B, suggesting a new therapeutic approach to diabetes and obesity.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Christopher A Bonham
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ioana A Rus
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Genetics and Medical Scientist Training Program, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Om Kumar Shrestha
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Carla M Gauss
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Aftabul Haque
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
7
|
Kawahara R, Granato DC, Yokoo S, Domingues RR, Trindade DM, Paes Leme AF. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate. J Proteomics 2016; 151:53-65. [PMID: 27576135 DOI: 10.1016/j.jprot.2016.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | | | | |
Collapse
|
8
|
Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 2014; 9:e97000. [PMID: 24824737 PMCID: PMC4019524 DOI: 10.1371/journal.pone.0097000] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1-3), and nine benzophenanthridine alkaloids (4-12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group.
Collapse
|
9
|
Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection. Int J Cardiol 2014; 172:340-9. [DOI: 10.1016/j.ijcard.2014.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
|
10
|
Aragão AZB, Nogueira MLC, Granato DC, Simabuco FM, Honorato RV, Hoffman Z, Yokoo S, Laurindo FRM, Squina FM, Zeri ACM, Oliveira PSL, Sherman NE, Paes Leme AF. Identification of novel interaction between ADAM17 (a disintegrin and metalloprotease 17) and thioredoxin-1. J Biol Chem 2012; 287:43071-82. [PMID: 23105116 PMCID: PMC3522302 DOI: 10.1074/jbc.m112.364513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/24/2012] [Indexed: 12/31/2022] Open
Abstract
ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.
Collapse
Affiliation(s)
- Annelize Z. B. Aragão
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Maria Luiza C. Nogueira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Daniela C. Granato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Fernando M. Simabuco
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Rodrigo V. Honorato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Zaira Hoffman
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Sami Yokoo
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | | | - Fabio M. Squina
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Ana Carolina M. Zeri
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Paulo S. L. Oliveira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Nicholas E. Sherman
- the W. M. Keck Biomedical Mass Spectrometry Lab, University of Virginia, Charlottesville, Virginia 22908
| | - Adriana F. Paes Leme
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| |
Collapse
|
11
|
Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 2011; 83:286-95. [PMID: 22100870 DOI: 10.1016/j.bcp.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
We previously demonstrated that the widely used immunosuppressive drugs cyclosporin A (CsA) and tacrolimus (FK506), independent of immunophilin binding, can activate profibrogenic transforming growth factor β (TGFβ)/Smad signaling cascades in rat renal mesangial cells (MC). Here we report that both peptidyl-prolyl cis/trans isomerase (PPIase) inhibitors activate the extracellular-signaling regulated kinase (ERK) a member of the mitogen activated protein kinase (MAPK) and induce a rapid and transient increase in ERK phosphorylation. The MEK inhibitor U0126, the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC), a cell-permeant superoxide dismutase (SOD) and stigmatellin, an inhibitor of mitochondrial cytochrome bc1 complex strongly attenuated the increase in ERK1/2 phosphorylation triggered by PPIase inhibitors. Moreover, neutralizing antibodies against heparin binding-epidermal growth factor (HB-EGF), and inhibition of the EGF receptor by either small interfering (si)RNA or AG1478, demonstrate that ERK activation by both PPIase inhibitors is mediated via HB-EGF-induced EGF receptor (EGFR) tyrosine kinase activation. The strong inhibitory effects achieved by GM6001 and TAPI-2 furthermore implicate the involvement of a desintegrin and metalloproteinase 17 (ADAM17). Concomitantly, the PPIase inhibitor-induced ADAM17 secretase activity was significantly reduced by SOD and stigmatellin thus suggesting that mitochondrial ROS play a primary role in PPIase inhibitor-induced and ADAM17-mediated HB-EGF shedding. Functionally, both immunosuppressants caused a strong increase in MC proliferation which was similarly impeded when cells were treated in the presence of NAC, TAPI-2 or AG1478, respectively. Our data suggest that CsA and FK506, via ROS-dependent and ADAM17-catalyzed HB-EGF shedding induce the mitogenic ERK1/2 signaling cascade in renal MC.
Collapse
|
12
|
Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ, Krepinsky JC. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 2011; 300:F921-31. [PMID: 21289053 DOI: 10.1152/ajprenal.00436.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- L Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem J 2010; 428:439-50. [PMID: 20345372 DOI: 10.1042/bj20100179] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ADAM17 (where ADAM is 'a disintegrin and metalloproteinase') can rapidly modulate cell-surface signalling events by the proteolytic release of soluble forms of proligands for cellular receptors. Many regulatory pathways affect the ADAM17 sheddase activity, but the mechanisms for the activation are still not clear. We have utilized a cell-based ADAM17 assay to show that thiol isomerases, specifically PDI (protein disulfide isomerase), could be responsible for maintaining ADAM17 in an inactive form. Down-regulation of thiol isomerases, by changes in the redox environment (for instance as elicited by phorbol ester modulation of mitochondrial reactive oxygen species) markedly enhanced ADAM17 activation. On the basis of ELISA binding studies with novel fragment antibodies against ADAM17 we propose that isomerization of the disulfide bonds in ADAM17, and the subsequent conformational changes, form the basis for the modulation of ADAM17 activity. The shuffling of disulfide bond patterns in ADAMs has been suggested by a number of recent adamalysin crystal structures, with distinct disulfide bond patterns altering the relative orientations of the domains. Such a mechanism is rapid and reversible, and the role of thiol isomerases should be investigated further as a potential factor in the redox regulation of ADAM17.
Collapse
|
14
|
Zhang L, Postina R, Wang Y. Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer's disease. Cell Mol Life Sci 2009; 66:3923-35. [PMID: 19672558 PMCID: PMC11115926 DOI: 10.1007/s00018-009-0121-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/07/2009] [Accepted: 07/28/2009] [Indexed: 01/09/2023]
Abstract
Receptor for advanced glycation end products (RAGE) mediates diverse physiological and pathological effects and is involved in the pathogenesis of Alzheimer's disease (AD). RAGE is a receptor for amyloid beta peptides (Ab), mediates Abeta neurotoxicity and also promotes Abeta influx into the brain and contributes to Abeta aggregation. Soluble RAGE (sRAGE), a secreted RAGE isoform, acts as a decoy receptor to antagonize RAGE-mediated damages. Accumulating evidence has suggested that sRAGE represents a promising pharmaceutic against RAGE-mediated disorders. Recent studies revealed proteolysis of RAGE as a previously unappreciated means of sRAGE production. In this review we summarize these findings on the proteolytic cleavage of RAGE and discuss the underlying regulatory mechanisms of RAGE shedding. Furthermore, we propose a model in which proteolysis of RAGE could restrain AD development by reducing Abeta transport intothe brain and Abeta production via BACE. Thus, the modulation of RAGE proteolysis provides a novel intervention strategy for AD.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Neurology, Zhongda Hospital Affiliated to Southeast University, 210009 Nanjing, China
| | - Rolf Postina
- Institute of Biochemistry, Johannes Gutenberg University of Mainz, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany
| | - Yingqun Wang
- Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
15
|
Abstract
A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohistochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the analytical techniques currently being used to evaluate PTMs.
Collapse
Affiliation(s)
- Hongjun Jin
- Cell Biology and Biochemistry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, 902 Battelle Blvd, Richland, WA 99352
| | | |
Collapse
|
16
|
Li YJ, Wang YH, Liu YX. Effects of chelerythine on hepatic TGF-β1 and α-SMA expression in rats with hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2009; 17:1821-1826. [DOI: 10.11569/wcjd.v17.i18.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of chelerythine on TGF-β1 and α-SMA expression of CCl4 -induced hepatic fibrosis in rats.
METHODS: Models of hepatic fibrosis were established by hypodermic injection of tetrachloride, in combination with the control of nutrition and the drinking of 100 mL/L alcohol to rats. According to histological sections, hepatic fibrosis in rats emerged at the end of the fourth week. Subsequently different doses of chelerythine were used of hepatic fibrosis in rats. In addition, normal control group, fibrotic model group, γ-interform group in experiment was arranged. At the end of the eighth week, all the rats were executed. Transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in liver were examined with the immunohistochemistrical technique.
RESULTS: The expression of TGF-β1 and α-SMA in liver of rats in fibrotic model group induced by CCl4 were ameliorated significantly compared with the model group (TGF-β1: 6.08 ± 2.35, 4.31 ± 2.10, 4.7 ± 1.70 vs 9.33 ± 3.08; α-SMA: 3.75 ± 1.76, 3.23 ± 1.42, 3.20 ± 1.17 vs 6.67 ± 2.29, all P < 0.01). The expression of TGF-β1 and α-SMA in liver was not obviously different between all chelerythine groups and γ-INF group (4.23 ± 2.24, 3.38 ± 1.39, both P > 0.05).
CONCLUSION: Chelerythine can decrease the expression of TGF-β1 as well as α-SMA CCl4 -induced hepatic fibrosis in rats.
Collapse
|
17
|
Leach RE, Kilburn BA, Petkova A, Romero R, Armant DR. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding epidermal growth factor-like growth factor. Am J Obstet Gynecol 2008; 198:471.e1-7; discussion 471.e7-8. [PMID: 18395045 DOI: 10.1016/j.ajog.2008.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 12/03/2007] [Accepted: 01/11/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. STUDY DESIGN A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. RESULTS Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. CONCLUSION These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.
Collapse
|
18
|
Haugwitz U, Bobkiewicz W, Han SR, Beckmann E, Veerachato G, Shaid S, Biehl S, Dersch K, Bhakdi S, Husmann M. Pore-forming Staphylococcus aureus alpha-toxin triggers epidermal growth factor receptor-dependent proliferation. Cell Microbiol 2006; 8:1591-600. [PMID: 16984414 DOI: 10.1111/j.1462-5822.2006.00733.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcal alpha-toxin is an archetypal killer protein that homo-oligomerizes in target cells to create small transmembrane pores. The membrane-perforating beta-barrel motif is a conserved attack element of cytolysins of Gram-positive and Gram-negative bacteria. Following the recognition that nucleated cells can survive membrane permeabilization, a profile of abundant transcripts was obtained in transiently perforated keratinocytes. Several immediate early genes were found to be upregulated, reminiscent of the cellular response to growth factors. Cell cycle analyses revealed doubling of S + G2/M phase cells 26 h post toxin treatment. Determination of cell counts uncovered that after an initial drop, numbers increased to exceed the controls after 2 days. A non-lytic alpha-toxin mutant remained without effect. The alpha-toxin pore is too small to allow egress of cytosolic growth factors, and evidence was instead obtained for growth signalling via the epidermal growth factor receptor (EGFR). Inhibition of the EGFR or of EGFR-proligand-processing blocked the mitogenic effect of alpha-toxin. Western blots with phospho-specific antibodies revealed activation of the EGFR, and of the adapter protein Shc. Immediate early response and proliferation upon transient plasma membrane pore formation by bacterial toxins may represent a novel facet of the complex interaction between pathogen and host.
Collapse
Affiliation(s)
- Ulrike Haugwitz
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg-University, Hochhaus am Augustusplatz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Armant DR, Kilburn BA, Petkova A, Edwin SS, Duniec-Dmuchowski ZM, Edwards HJ, Romero R, Leach RE. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor. Development 2006; 133:751-9. [PMID: 16407398 PMCID: PMC1679956 DOI: 10.1242/dev.02237] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Anatomy and Cell Biology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim J, Adam RM, Freeman MR. Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res 2005; 65:8242-9. [PMID: 16166300 DOI: 10.1158/0008-5472.can-05-0942] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) accumulates in the nucleus in aggressive transitional cell carcinoma (TCC) cells and this histologic feature is a marker of poor prognosis in human bladder cancer tissues. Here we report that HB-EGF can be exported from the nucleus during stimulated processing and secretion of the growth factor. Production of reactive oxygen species (ROS) resulted in mobilization of the HB-EGF precursor, proHB-EGF, from the nucleus of TCCSUP bladder cancer cells to a detergent-resistant membrane compartment, where the growth factor was cleaved by a metalloproteinase-mediated mechanism and shed into the extracellular space. Inhibition of nuclear export suppressed HB-EGF shedding. Production of ROS resulted in EGF receptor (EGFR) and Akt1 phosphorylation in HB-EGF-expressing cells. HB-EGF also stimulated cell proliferation and conferred cytoprotection when cells were challenged with cisplatin. These findings show that the nucleus can serve as an intracellular reservoir for a secreted EGFR ligand and, thus, can contribute to an autocrine loop leading to cell proliferation and protection from apoptotic stimuli.
Collapse
Affiliation(s)
- Jayoung Kim
- The Urological Diseases Research Center, Childrens Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
21
|
Raymond MA, Désormeaux A, Labelle A, Soulez M, Soulez G, Langelier Y, Pshezhetsky AV, Hébert MJ. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor. Biochem Biophys Res Commun 2005; 338:1374-82. [PMID: 16269129 DOI: 10.1016/j.bbrc.2005.10.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols, 25-hydroxyvitamin-D, and 1alpha,25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury.
Collapse
Affiliation(s)
- Marc-André Raymond
- Research Centre CHUM, University of Montreal, 1560 Sherbrooke East, Montreal, Que., Canada H2L 4M1
| | | | | | | | | | | | | | | |
Collapse
|