1
|
Aouchiche K, Romanet P, Barlier A, Brue T, Pertuit M, Reynaud R, Saveanu A. CSNK2B Mutation: A Rare Cause of IGHD. Clin Endocrinol (Oxf) 2024. [PMID: 39676320 DOI: 10.1111/cen.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare neurodevelopmental syndrome, resulting from germline heterozygous CSNKB2 pathogenic variants. The main presentations are severe epilepsy, delayed psychomotor development, and/or profound intellectual disability. More recently, CSNK2B pathogenic variants have been reported in patients with mild intellectual disability and no history of epileptic symptoms. Short stature is present in 66% of patients, in half of these cases due to proven growth hormone deficiency. METHODS Whole genome sequencing (WGS) was performed through a French genomic program for a patient with isolated growth hormone deficiency after negative next generation sequencing (NGS) results. NGS panel analysis of CSNK2B and genes involved in isolated growth hormone deficiency (IGHD) was performed in 44 patients from the Genhypopit network (n = 2144) with growth hormone deficiency (GHD) and intellectual disability (ID) or epilepsy and in a convenience cohort of 68 GHD patients. RESULTS We present the first case of POBINDS presenting mainly as growth delay due to GHD. Genome analysis revealed a de novo pathogenic variant in the translation initiation codon of CSNK2B (c.1 A > G, p.(Met1?)). The patient had mild intellectual disability and subsequent analysis of the patient's clinical history revealed that he had had febrile convulsions, compatible with POBINDS. No CSNK2B pathogenic variants were identified among the 44 selected patients with GHD and ID or epilepsy, or in a convenience cohort of 68 patients with GHD. CONCLUSION Although rare, pediatricians should be aware that POIBNDS syndrome may present as IGHD with mild ID.
Collapse
Affiliation(s)
- Karine Aouchiche
- Multidisciplinary Pediatric Department, Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's Hospital, Marseille, France
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- GCS AURAGEN, Lyon, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, Marseille, France
| | - Thierry Brue
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, Marseille, France
| | - Morgane Pertuit
- Assistance-Publique des Hôpitaux de Marseille (AP-HM), La Timone University Hospital, Laboratory of Molecular Biology, Marseille, France
| | - Rachel Reynaud
- Multidisciplinary Pediatric Department, Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's Hospital, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- GCS AURAGEN, Lyon, France
| |
Collapse
|
2
|
Chen X, Han Y, Li X, Huang S, Yuan H, Qin Y. Case report: Two cases of Poirier-Bienvenu neurodevelopmental syndrome and review of literature. Front Pediatr 2023; 11:967701. [PMID: 37020656 PMCID: PMC10067874 DOI: 10.3389/fped.2023.967701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare disease caused by mutations in the CSNK2B gene, which is characterized by intellectual disability and early-onset epilepsy. Mosaicism has not been previously reported in CSNK2B gene. POBINDS is autosomal dominant and almost all reported cases were de novo variants. Here, we report two patients were diagnosed with POBINDS. Using Whole Exome Sequencing (WES), we detected two novel CSNK2B variants in the two unrelated individuals: c.634_635del (p.Lys212AspfsTer33) and c.142C > T (p.Gln48Ter) respectively. Both of them showed mild developmental delay with early-onset and clustered seizures. The patient with c.634_635del(p.Lys212AspfsTer33) variant was mutant mosaicism, and the proportion of alleles in peripheral blood DNA was 28%. Further, the literature of patients with a de novo mutation of the CSNK2B gene was reviewed, particularly seizure semiology and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunli Han
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Yuanhan Qin
| |
Collapse
|
3
|
Hunter CS, Malik RE, Witzmann FA, Rhodes SJ. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation. PLoS One 2013; 8:e68898. [PMID: 23861948 PMCID: PMC3701669 DOI: 10.1371/journal.pone.0068898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/07/2013] [Indexed: 01/19/2023] Open
Abstract
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
| | - Raleigh E. Malik
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon J. Rhodes
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 2013; 154:738-48. [PMID: 23288907 PMCID: PMC3548188 DOI: 10.1210/en.2012-1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.
Collapse
Affiliation(s)
- Kelly L Prince
- Departments of Cellular and Integrative Physiology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
5
|
Bhati M, Lee C, Gadd MS, Jeffries CM, Kwan A, Whitten AE, Trewhella J, Mackay JP, Matthews JM. Solution structure of the LIM-homeodomain transcription factor complex Lhx3/Ldb1 and the effects of a pituitary mutation on key Lhx3 interactions. PLoS One 2012; 7:e40719. [PMID: 22848397 PMCID: PMC3405102 DOI: 10.1371/journal.pone.0040719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023] Open
Abstract
Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of mutations and posttranslational modifications on key protein-protein interactions. Here, we use small-angle X-ray scattering of an Ldb1-Lhx3 complex to confirm that in solution the protein is well represented by our previously determined NMR structure as an ensemble of conformers each comprising two well-defined halves (each made up of LIM domain from Lhx3 and the corresponding binding motif in Ldb1) with some flexibility between the two halves. NMR analysis of an Lhx3 mutant that causes CPHDS, Lhx3(Y114C), shows that the mutation does not alter the zinc-ligation properties of Lhx3, but appears to cause a structural rearrangement of the hydrophobic core of the LIM2 domain of Lhx3 that destabilises the domain and/or reduces the affinity of Lhx3 for both Ldb1 and Isl1. Thus the mutation would affect the formation of Lhx3-containing transcription factor complexes, particularly in the pituitary gland where these complexes are required for the production of multiple pituitary cell types and hormones.
Collapse
Affiliation(s)
- Mugdha Bhati
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Lee
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Morgan S. Gadd
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Cy M. Jeffries
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Ann Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew E. Whitten
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
6
|
Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo. Proc Natl Acad Sci U S A 2010; 108:173-8. [PMID: 21149718 DOI: 10.1073/pnas.1009501108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable.
Collapse
|
7
|
Pfaeffle RW, Savage JJ, Hunter CS, Palme C, Ahlmann M, Kumar P, Bellone J, Schoenau E, Korsch E, Brämswig JH, Stobbe HM, Blum WF, Rhodes SJ. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab 2007; 92:1909-19. [PMID: 17327381 DOI: 10.1210/jc.2006-2177] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The Lhx3 LIM-homeodomain transcription factor gene is required for development of the pituitary and motoneurons in mice. Human LHX3 gene mutations have been reported in five subjects with a phenotype consisting of GH, prolactin, TSH, LH, and FSH deficiency; abnormal pituitary morphology; and limited neck rotation. OBJECTIVE The objective of the study was to determine the frequency and nature of LHX3 mutations in patients with isolated GH deficiency or combined pituitary hormone deficiency (CPHD) and characterize the molecular consequences of mutations. DESIGN The LHX3 sequence was determined. The biochemical properties of aberrant LHX3 proteins resulting from observed mutations were characterized using reporter gene and DNA binding experiments. PATIENTS The study included 366 patients with isolated GH deficiency or CPHD. RESULTS In seven patients with CPHD from four consanguineous pedigrees, four novel, recessive mutations were identified: a deletion of the entire gene (del/del), mutations causing truncated proteins (E173ter, W224ter), and a mutation causing a substitution in the homeodomain (A210V). The mutations were associated with diminished DNA binding and pituitary gene activation, consistent with observed hormone deficiencies. Whereas subjects with del/del, E173ter, and A210V mutations had limited neck rotation, patients with the W224ter mutation did not. CONCLUSIONS LHX3 mutations are a rare cause of CPHD involving deficiencies for GH, prolactin, TSH, and LH/FSH in all patients. Whereas most patients have a severe hormone deficiency manifesting after birth, milder forms can be observed, and limited neck rotation is not a universal feature of patients with LHX3 mutations. This study extends the known molecular defects and range of phenotypes found in LHX3-associated diseases.
Collapse
Affiliation(s)
- Roland W Pfaeffle
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo AP, Ten S, Weigel J, Pfäffle RW, Rhodes SJ. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol Cell Endocrinol 2007; 265-266:190-5. [PMID: 17210222 PMCID: PMC1853274 DOI: 10.1016/j.mce.2006.12.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Mutations in the genes encoding these regulatory proteins are associated with combined hormone deficiency diseases in humans and animal models. Patients with these diseases have complex syndromes involving short stature, and reproductive and metabolic disorders. Analyses of the features of these diseases and the biochemical properties of the LHX3 and LHX4 proteins will facilitate a better understanding of the molecular pathways that regulate the development of the specialized hormone-secreting cells of the mammalian anterior pituitary gland.
Collapse
Affiliation(s)
- Rachel D. Mullen
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie C. Colvin
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Chad S. Hunter
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Jesse J. Savage
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | | | | | - Svetlana Ten
- Infants and Children’s Hospital of Brooklyn at Maimonides, Brooklyn, NY
| | | | | | - Simon J. Rhodes
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
Melamed P, Kadir MNA, Wijeweera A, Seah S. Transcription of gonadotropin beta subunit genes involves cross-talk between the transcription factors and co-regulators that mediate actions of the regulatory hormones. Mol Cell Endocrinol 2006; 252:167-83. [PMID: 16644099 DOI: 10.1016/j.mce.2006.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The gonadotropins LH and FSH have distinct temporal patterns of expression as a result of differential regulation by hormones such as GnRH, steroids and activin. This specific regulation is due to diverse sets of transcription factors that are recruited to the promoters of these genes, and recruit specific co-activator complexes which function to stabilize interactions with the general transcription factors and RNA polymerase II, and also to induce covalent modifications of the histone tails at these gene loci. As these molecular mechanisms are elucidated, the nature of nuclear cross-talk between the various hormonally induced pathways is becoming evident, revealing both negative and positive effects of interacting transcription factors and co-regulators. This paper will review current knowledge on the transcriptional regulation of gonadotropin beta subunit gene expression in the chromatin setting, and will present new data pertaining to nuclear cross-talk between the various endocrine-induced pathways regulating gonadotropin gene transcription.
Collapse
Affiliation(s)
- P Melamed
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117542, Singapore.
| | | | | | | |
Collapse
|
10
|
Abstract
The human and mouse genomes each contain at least 12 genes encoding LIM homeodomain (LIM-HD) transcription factors. These gene regulatory proteins feature two LIM domains in their amino termini and a characteristic DNA binding homeodomain. Studies of mouse models and human patients have established that the LIM-HD factors are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. In this article, we review the roles of the LIM-HD proteins in mammalian development and their involvement in human diseases.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Biology and The Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202-5132, USA
| | | |
Collapse
|