1
|
Liu L, Wang B, Ma Y, Sun K, Wang P, Li M, Dong J, Qin M, Li M, Wei C, Tan Y, He J, Guo K, Yu XA. A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front Pharmacol 2024; 15:1443667. [PMID: 39185304 PMCID: PMC11341462 DOI: 10.3389/fphar.2024.1443667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria.
Collapse
Affiliation(s)
- Linhua Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yibo Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Junlin Dong
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingshun Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Jinsong He
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keying Guo
- Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Xie-an Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| |
Collapse
|
2
|
Li N, Feng X, An C, Liu G, Liu C. Metabolites from traditional Chinese botanical drugs with anti-hepatitis B virus activity - a review. Front Pharmacol 2024; 15:1331967. [PMID: 39070799 PMCID: PMC11272473 DOI: 10.3389/fphar.2024.1331967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.
Collapse
Affiliation(s)
| | | | - Cheng An
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Ogbole OO, Akinleye TE, Nkumah AO, Awogun AO, Attah AF, Adewumi MO, Adeniji AJ. In vitro antiviral activity of peptide-rich extracts from seven Nigerian plants against three non-polio enterovirus species C serotypes. Virol J 2021; 18:161. [PMID: 34348755 PMCID: PMC8335448 DOI: 10.1186/s12985-021-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/22/2021] [Indexed: 08/30/2023] Open
Abstract
Background As frequent viral outbreaks continue to pose threat to public health, the unavailability of antiviral drugs and challenges associated with vaccine development underscore the need for antiviral drugs discovery in emergent moments (endemic or pandemic). Plants in response to microbial and pest attacks are able to produce defence molecules such as antimicrobial peptides as components of their innate immunity, which can be explored for viral therapeutics. Methods In this study, partially purified peptide-rich fraction (P-PPf) were obtained from aqueous extracts of seven plants by reverse-phase solid-phase extraction and cysteine-rich peptides detected by a modified TLC method. The peptide-enriched fractions and the aqueous (crude polar) were screened for antiviral effect against three non-polio enterovirus species C members using cytopathic effect reduction assay. Results In this study, peptide fraction obtained from Euphorbia hirta leaf showed most potent antiviral effect against Coxsackievirus A13, Coxsackievirus A20, and Enterovirus C99 (EV-C99) with IC50 < 2.0 µg/mL and selective index ≥ 81. EV-C99 was susceptible to all partially purified peptide fractions except Allamanda blanchetii leaf. Conclusion These findings establish the antiviral potentials of plants antimicrobial peptides and provides evidence for the anti-infective use of E. hirta in ethnomedicine. This study provides basis for further scientific investigation geared towards the isolation, characterization and mechanistic pharmacological study of the detected cysteine-rich peptides.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham O Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aminat O Awogun
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle J Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,WHO Polio National Laboratory, Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Din M, Ali F, Waris A, Zia F, Ali M. Phytotherapeutic options for the treatment of COVID-19: A concise viewpoint. Phytother Res 2020; 34:2431-2437. [PMID: 32815574 PMCID: PMC7461328 DOI: 10.1002/ptr.6786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Misbahud Din
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Fawad Ali
- Department of PharmacyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Abdul Waris
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Fatima Zia
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Muhammad Ali
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| |
Collapse
|
5
|
Tan SP, Tan ENY, Lim QY, Nafiah MA. Phyllanthus acidus (L.) Skeels: A review of its traditional uses, phytochemistry, and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112610. [PMID: 31991202 DOI: 10.1016/j.jep.2020.112610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels is not only used for its edible fruits but also used to treat a wide spectrum of diseases such as inflammatory, rheumatism, bronchitis, asthma, respiratory disorder, hepatic diseases and diabetes in India, Asia, the Caribbean region, and Central and South America. This paper aims to discuss the current understanding regarding the traditional uses, phytochemical and pharmacological studies of P. acidus, and their possible research opportunities. MATERIALS AND METHODS All information on P. acidus was collected from various electronic database (ACS, PubMed, Scopus, Web of Science, SciFinder, Science Direct, Google Scholar, Springer, Wiley, Taylor and Mendeley) and also from those published materials (Ph.D. and M.Sc. dissertations and books) by using a combination of various meaningful keywords. RESULTS Phytochemical analyses on barks, leaves, roots and fruits of P. acidus identified triterpene, diterpene, sesquiterpene, and glycosides as predominant classes of bioactive substances found in this plant. P. acidus was reported with various pharmacological activities such as in vivo hepatoprotective and hypoglycemic, in vitro anti-oxidant, α-glucosidase inhibitory, anti-inflammatory and antimicrobial activities. However, none of these studies are with clinical research. Some of the studies were performed with only a single set of experiments or with a high dose of extract, and thus the validity of the experimental data may be questionable. In addition, most of the studies described were without identifying the effective components. Some of the assays were even without a positive control for comparison which makes results questionable. CONCLUSION Although P. acidus has been proven as a valuable medicinal source from its traditional uses. However, the pharmacological experiments conducted were not sufficient to verify its traditional uses. More investigation is required to confirm the traditional claims such as bioassay-guided isolation of bioactive compounds, detailed pharmacological investigations, clinical studies, and its toxicity investigation. Additionally, an experimental design with sufficient data replication, the use of controls and authenticated research materials, and the selection of a rationale dose or concentration for the analysis are keys to providing reproducible experimental data.
Collapse
Affiliation(s)
- Siow-Ping Tan
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Eric Nyak-Yong Tan
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Qian-Yu Lim
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia.
| |
Collapse
|
6
|
3,4,5-Tri-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. Flower buds facilitates hepatitis B virus replication in HepG2.2.15 cells. Food Chem Toxicol 2020; 138:111250. [PMID: 32156566 DOI: 10.1016/j.fct.2020.111250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
Caffeoylquinic acids are well known for their prominent antiviral activities. Beyond our expectations, we initially found 3,4,5-Tri-O-caffeoylquinic acid methyl ester (3,4,5-CQME) from L. japonica can facilitate HBV DNA and antigens secretion. This study aimed to investigate its underlying molecular mechanism. The results indicate that 3,4,5-CQME signally increased intracellular and secreted HBsAg levels by more than two times in HepG2.2.15 cells and HepAD38 cells. Furthermore, levels of HBeAg, HBV DNA and RNA were significantly enhanced by 3-day 3,4,5-CQME treatment; it didn't directly affect intracellular cccDNA amount, although it slightly increased cccDNA accumulation as a HBV DNA replication feedback. In addition, treatment with 3,4,5-CQME significantly induced HBx protein expression for viral replication. We utilized a phospho-antibody assay to profile the signal transduction change by 3,4,5-CQME to illuminate its molecular mechanism. The results indicate that treatment with 3,4,5-CQME activated AKT/mTOR, MAPK and NF-κB pathways verified by immunoblot. Moreover, 3,4,5-CQME upregulated the expression of nuclear transcriptional factors PGC1α and PPARα. In short, 3,4,5-CQME promotes HBV transcription and replication by upregulating HBx expression and activating HBV transcriptional regulation-related signals. As caffeoylquinic acids are widely present in traditional Chinese medicines, the risk of intaking caffeoylquinic acids-containing herbs for hepatitis B treatment requires more evaluation and further research.
Collapse
|
7
|
Xie D, Xie H, Liu L, Feng G, Jiang W, Huang W, Xie D. Qizhufang (ZSF) Ameliorates Hepatic Iron Overload via Signal Transducer and Activator of Transcription 3 (STAT3) Pathway. Med Sci Monit 2019; 25:7836-7844. [PMID: 31628297 PMCID: PMC6820337 DOI: 10.12659/msm.916595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Iron overload is a prominent characteristic of liver injury, but there is no effective treatment at present. Qizhufang (ZSF) is a Chinese herbal formula showed anti-HBV activities, improved liver function, and anti-fibrosis effect. ZSF showed a series of liver-protection functions, but whether ZSF can relieve hepatic iron overload is still unclear. Material/Methods Ferric ammonium citrate (FAC) was used to construct iron-overloaded LO2 cells. The cell apoptosis and proliferation were measured by flow cytometry and CCK-8 assay, respectively. ROS level was analyzed by fluorescence probe. RNA and protein expressions were assessed by real-time PCR and Western blot. Results FAC upregulated apoptosis rate, ROS level, and expression of hepcidin and p-STAT3, but suppressed proliferation and expression of DMT1, FPN1, and CP in LO2 cells. However, Qizhufang (ZSF) reversed the effect of FAC. We also found that hepcidin overexpression suppressed the expressions of DMT1, FPN1, and CP, which were reversed by ZSF. Additionally, STAT3 inhibitor AG490 suppressed hepcidin expression. Moreover, exogenous IL-6 reversed the effect of ZSF on apoptosis rate, ROS level, and the expression of hepcidin, DMT1, FNP1, CP, and p-STAT3. Conclusions Qizhufang (ZSF) can ameliorate iron overload-induced injury by suppressing hepcidin via the STAT3 pathway in LO2 cells.
Collapse
Affiliation(s)
- Dongyu Xie
- Department of Spleen-Stomach, Zhenjiang Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China (mainland).,Department of Spleen-Stomach, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, Jiangsu, China (mainland)
| | - Haina Xie
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Lin Liu
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Guangwei Feng
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Wenjing Jiang
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Wei Huang
- Department of Traditional Chinese Medicine, Dahua Hospital, Shanghai, China (mainland)
| | - Donghao Xie
- Department of Pharmacy, Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China (mainland).,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
8
|
Gimbun J, Nguang SL, Pang SF, Yeong YL, Kee KL, Chin SC. Assessment of Phenolic Compounds Stability and Retention during Spray Drying of Phyllanthus niruri Extracts. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jolius Gimbun
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Gambang, 26300, Pahang, Malaysia
| | - Suok Ling Nguang
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Gambang, 26300, Pahang, Malaysia
| | - Sook Fun Pang
- Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Yi Ling Yeong
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Keing Lee Kee
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Siew Choo Chin
- Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| |
Collapse
|
9
|
Siddiqui MH, Alamri SA, Al-Whaibi MH, Hussain Z, Ali HM, El-Zaidy ME. A mini-review of anti-hepatitis B virus activity of medicinal plants. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1240593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Al-Whaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Hussain
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed E. El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Hong M, Li S, Tan HY, Wang N, Tsao SW, Feng Y. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects. Int J Mol Sci 2015; 16:28705-45. [PMID: 26633388 PMCID: PMC4691073 DOI: 10.3390/ijms161226126] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study.
Collapse
Affiliation(s)
- Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Jung J, Kim NK, Park S, Shin HJ, Hwang SG, Kim K. Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro. Altern Ther Health Med 2015. [PMID: 26220282 PMCID: PMC4518506 DOI: 10.1186/s12906-015-0792-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene. The Phyllanthus extract has anti-HBV activity; however, its antiviral activity against lamivudine (LMV)-resistant mutants has not been examined. METHODS HBV harboring LMV-resistant mutations (rtM204I, rtM204V, and rtM204S) in the P gene at the YMDD ((203)tyrosine-methionine-aspartate-aspartate(206)) reverse transcriptase (RT) active site were generated and their sensitivity to Phyllanthus urinaria koreanis extract examined. Southern blotting and real-time PCR were used to determine the concentration of plant extract required to inhibit HBV DNA synthesis by 50 and 90% (EC50 and EC90, respectively). An enzyme-linked immunosorbent assay was used to measure the EC50 of HBV surface antigen (HBsAg) and HBV core antigen (HBcAg) secretion, and the 50% cytotoxic concentration of the extract was measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time RT-PCR was used to measure mRNA expression levels. RESULTS The expression of intracellular HBV DNAs in HBV WT- or mutant-transfected HepG2 cells decreased upon treatment with Phyllanthus extract. The secretion of HBsAg and HBcAg also fell in a dose-dependent manner. Phyllanthus extract induced interferon-beta (IFN-β), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) mRNA expression in HBV WT-transfected HepG2 cells, possibly via activation of extracellular signal-regulated kinases and c-jun N-terminal kinases and the induction of retinoic acid inducible gene-I, toll-like receptor 3, myeloid differentiation primary response gene 88, and/or tumor necrosis factor receptor-associated factor 6 gene expression. HBV transfection in the absence of extract or exposure of cells to extract alone did not trigger these signaling cascades. CONCLUSIONS Phyllanthus extract inhibited HBV DNA synthesis and HBsAg and HBcAg secretion by replicating cells harboring HBV wild-type and LMV-resistant mutants, likely by inducing the expression of IFN-β, COX-2, and IL-6. These data indicate that Phyllanthus extract may be useful as an alternative therapeutic agent for the treatment of drug-resistant CHB patients.
Collapse
|
12
|
Suresh V, Krishnakumar K, Asha V. A new fluorescent based screening system for high throughput screening of drugs targeting HBV-core and HBsAg interaction. Biomed Pharmacother 2015; 70:305-16. [DOI: 10.1016/j.biopha.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/08/2015] [Indexed: 12/28/2022] Open
|
13
|
Qi W, Hua L, Gao K. Chemical constituents of the plants from the genus Phyllanthus. Chem Biodivers 2014; 11:364-95. [PMID: 24634068 DOI: 10.1002/cbdv.201200244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Weiyan Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | | | | |
Collapse
|
14
|
Tang YQ, Jaganath IB, Manikam R, Sekaran SD. Inhibition of MAPKs, Myc/Max, NFκB, and hypoxia pathways by Phyllanthus prevents proliferation, metastasis and angiogenesis in human melanoma (MeWo) cancer cell line. Int J Med Sci 2014; 11:564-77. [PMID: 24782645 PMCID: PMC4003541 DOI: 10.7150/ijms.7704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells. METHODS The ten cancer-related pathways reporter array was performed by transfection of plasmid construct of transcription factor-responsive reporter of each pathway in MeWo cells. The affected pathways in MeWo cells after treatment of Phyllanthus extracts were determined using luciferase assay. Western blot, 2D gel electrophoresis and mass spectrometry analysis were performed to identity and confirm the affected proteins and signalling molecules in treated cells. RESULTS The ten-pathway reporter array revealed five different cancer-related signalling pathways were altered by Phyllanthus species in MeWo cells; NFκB, Myc/Max, Hypoxia, MAPK/ERK and MAPK/JNK (p<0.05). Western blot revealed that their intracellular signalling molecules including pan-Ras, c-Raf, RSK, phospho-Elk1, c-myc, Akt, HIF-1α, Bcl-2, and VEGF were down-regulated with concurrent of up-regulation; Bax, phospho-JNK-1/2 and phospho-GSK3β, in MeWo cells upon Phyllanthus treatment (p<0.05). Proteomics-based approach was performed and MS/MS results revealed that 52 differential expressed proteins were identified (p<0.05) and involved in tumour growth, metastasis, apoptosis, glycogenesis and glycolysis, angiogenesis, protein synthesis and energy metabolism. CONCLUSION This study provides insight into the regulation on multiple survival signalling pathways by Phyllanthus in melanoma and might be a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yin-Quan Tang
- 1. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Indu Bala Jaganath
- 2. Biotechnology Centre, Malaysia Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
| | - Rishya Manikam
- 3. Department of Trauma and Emergency Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- 1. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Pourianfar HR, Palombo E, Grollo L. Global Impact of Heparin on Gene Expression Profiles in Neural Cells Infected by Enterovirus 71. Intervirology 2013; 57:93-100. [DOI: 10.1159/000355872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
|
16
|
HD-03/ES: A Herbal Medicine Inhibits Hepatitis B Surface Antigen Secretion in Transfected Human Hepatocarcinoma PLC/PRF/5 Cells. HEPATITIS RESEARCH AND TREATMENT 2013; 2013:125398. [PMID: 23691296 PMCID: PMC3639642 DOI: 10.1155/2013/125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/05/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022]
Abstract
HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000 μg/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380 μg/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.
Collapse
|
17
|
Xia Y, Luo H, Liu JP, Gluud C. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection. Cochrane Database Syst Rev 2013:CD009004. [PMID: 23633363 DOI: 10.1002/14651858.cd009004.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists. When compared with placebo or no intervention, we were unable to identify convincing evidence that phyllanthus species are beneficial in patients with chronic hepatitis B. Some randomised clinical trials have compared phyllanthus species versus antiviral drugs. OBJECTIVES To evaluate the benefits and harms of phyllanthus species compared with antiviral drugs for patients with chronic HBV infection. SEARCH METHODS Searches were performed in The Cochrane Hepato-Biliary Gorup Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expended, and the Chinese Biomedical CD Database, China Network Knowledge Information, Chinese Science Journal Database, TCM Online, and Wanfang Database. Conference proceedings in Chinese were handsearched. All searches were conducted until 31st October 2012. SELECTION CRITERIA Randomised clinical trials comparing phyllanthus species with antiviral drugs for patients with chronic HBV infection. We included trials irrespective of blinding, publication status, or language. DATA COLLECTION AND ANALYSIS Two authors selected the trials and extracted the data independently. The RevMan software was used for statistical analysis of dichotomous data with risk ratio (RR) with 95% confidence intervals (CI). We assessed the risk of bias to control for systematic errors. We calculated the number of patients needed (required information size) to be randomised in order to make reliable conclusions. We assessed the cumulative findings with trial sequential analysis to control for random errors. MAIN RESULTS We identified five randomised clinical trials with 290 patients. All trials were considered to have high risk of bias. Patients in the experimental group received compound phyllanthus for three months to 12 months. Patients in the antiviral drug group received lamivudine, interferon alpha, thymosin, or thymosin alpha 1. None of the trials reported mortality, hepatitis B-related morbidity, quality of life, or liver histology. Phyllanthus seemed to have a superior effect on clearance of serum HBeAg at the end of treatment in conventional meta-analysis (RR 0.76; 95% CI 0.64 to 0.91, P = 0.002; I(2) = 0%), but not when trial sequential analysis was applied. Phyllanthus had no significant effect on clearance of serum HBsAg (RR 1.00; 95% CI 0.93 to 1.08, P = 0.92; I(2) = 0%) or HBV DNA (RR 0.83; 95% CI 0.53 to 1.31, P = 0.43; I(2) = 70%) when compared with antiviral drugs. Data on HBeAg seroconversion was reported in one trial and no significant difference was found comparing phyllanthus versus lamivudine (RR 0.89; 95% CI 0.71 to 1.11). No data were reported on adverse events in the five trials. AUTHORS' CONCLUSIONS There is currently insufficient evidence to support or refute the use of phyllanthus for patients with chronic hepatitis B virus infection. Researchers who are interested in conducting further randomised clinical trials on phyllanthus ought to monitor both beneficial and harmful effects and should primarily test the herb against placebo in addition to antiviral drugs that are known to offer more benefit than harm. Only in this way new interventions can be assessed without compromising personal ethical considerations.
Collapse
Affiliation(s)
- Yun Xia
- Centre for Evidence-Based ChineseMedicine, Beijing University of ChineseMedicine, Beijing, China
| | | | | | | |
Collapse
|
18
|
Phyllanthus Suppresses Prostate Cancer Cell, PC-3, Proliferation and Induces Apoptosis through Multiple Signalling Pathways (MAPKs, PI3K/Akt, NFκB, and Hypoxia). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:609581. [PMID: 23690850 PMCID: PMC3652183 DOI: 10.1155/2013/609581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023]
Abstract
Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, β-catenin, Akt, HIF-1α, GSK3β, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.
Collapse
|
19
|
Qiu LP, Chen KP. Anti-HBV agents derived from botanical origin. Fitoterapia 2012; 84:140-57. [PMID: 23164603 DOI: 10.1016/j.fitote.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 01/16/2023]
Abstract
There are 350,000 hepatitis B virus (HBV) carriers all over the world. Chronic HBV infection is at a high risk of developing liver cirrhosis and hepatocelluar carcinoma (HCC), and heavily threatened people's health. Two kinds of drugs approved by FDA for anti-HBV therapy are immunomodulators (interferon α, pegylated-interferon α) and nucleos(t)ide analogues (lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate). These drugs have been proved to be far from being satisfactory due to their low specificity, side effects, and high rate of drug resistance. There is an urgent need to discover and develop novel effective anti-HBV drugs. With vast resources, various structures, diverse biological activities and action mechanisms, as well as abundant clinical experiences, botanical agents become a promising source of finding new anti-HBV drugs. This review summarizes the recent research and development of anti-HBV agents derived from botanical origin on their sources and active components, inhibitory effects and possible toxicities, as well as action targets and mechanisms, and also addresses the advantages and the existing shortcomings in the development of botanical inhibitors. This information may not only broaden the knowledge of anti-HBV therapy, and offer possible alternative or substitutive drugs for CHB patients, but also provides considerable information for developing new safe and effective anti-HBV drugs.
Collapse
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | | |
Collapse
|
20
|
Abstract
BACKGROUND Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists. OBJECTIVES To evaluate the benefits and harms of phyllanthus species for patients with chronic HBV infection. SEARCH STRATEGY Searches were performed in The Cochrane Hepato-Biliary Gorup Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and the Chinese Biomedical CD Database, China Network Knowledge Information, Chinese Science Journal Database, TCM Online, and Wanfang Database. Conference proceedings in Chinese were handsearched. All searches were conducted until October 2010. SELECTION CRITERIA Randomised clinical trials comparing phyllanthus species with placebo or no intervention for patients with chronic HBV infection. Co-interventions were allowed if all comparison groups had received the same co-interventions. We included trials irrespective of blinding, publication status, or language. DATA COLLECTION AND ANALYSIS Two authors selected the trials and extracted the data independently. The RevMan software was used for statistical analysis of dichotomous data with risk ratio (RR) with 95% confidence intervals (CI). Risk of bias was assessed to control for systematic errors. Trial sequential analysis was used in order to control for random errors. MAIN RESULTS A total of 16 randomised trials with 1326 patients were included. One trial with 42 participants compared phyllanthus with placebo. The trial found no significant difference in HBeAg seroconversion after the end of treatment (RR 0.9; 95% CI 0.73 to 1.25) or follow-up (RR 1.00; 95% CI 0.63 to 1.60). No other outcomes could be assessed. Fifteen trials compared phyllanthus plus an antiviral drug like interferon alpha, lamivudine, adefovir dipivoxil, thymosin, vidarabine, or conventional treatment with the same antiviral drug alone. Phyllanthus did significantly affect serum HBV DNA (RR 0.69; 95% CI 0.52 to 0.91, P = 0.008; I(2) = 71%), serum HBeAg (RR 0.70; 95% CI 0.60 to 0.81, P < 0.00001; I(2) = 68%), and HBeAg seroconversion (RR 0.77; 95% CI 0.63 to 0.92, P = 0.005; I(2) = 78%), but the heterogeneity was substantial. The result obtained regarding serum HBV DNA was not supported by trial sequential analysis. None of the trials reported mortality and hepatitis B-related morbidity, quality of life, or liver histology. Only two trials reported adverse events with numbers without significant differences. No serious adverse events were reported. AUTHORS' CONCLUSIONS There is no convincing evidence that phyllanthus compared with placebo benefits patients with chronic HBV infection. Phyllanthus plus an antiviral drug may be better than the same antiviral drug alone. However, heterogeneity, systematic errors, and random errors question the validity of the results. Clinical trials with large sample size and low risk of bias are needed to confirm our findings. Species of phyllanthus should be reported in future trials, and a dose-finding design is warranted.
Collapse
Affiliation(s)
- Yun Xia
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | |
Collapse
|
21
|
Xia Y, Liu JP, Gluud C. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd009004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Villarreal S, Rojas LB, Usubillaga A, Ramírez I, Solórzano M. Volatile Constituents from the Leaves of Phyllanthus Salviaefolius H. B. K. from the Venezuelan Andes. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The essential oil from the leaves of Phyllanthus salviaefolius H. B. K. (Euphorbiaceae) collected in February 2007 at Mucurubá (Mérida State) was analyzed by GC/MS. The yield of oil extracted by hydrodistillation was 0.005%. Sixteen components were identified, which represent 94.6% of the oil. Phytol (21.5%), β-citronellol (17.7%), trans-geraniol (13.5%), cis-3-hexenol (12.6%) and 1-hexanol (11.3%) were the most abundant components.
Collapse
Affiliation(s)
- Silvana Villarreal
- Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Luis B. Rojas
- Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Alfredo Usubillaga
- Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Irama Ramírez
- Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Mariana Solórzano
- Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| |
Collapse
|
23
|
Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res 2007; 131:111-20. [PMID: 17981353 PMCID: PMC7114233 DOI: 10.1016/j.virusres.2007.09.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 01/12/2023]
Abstract
Medicinal plants have been widely used to treat a variety of infectious and non-infectious ailments. According to one estimate, 25% of the commonly used medicines contain compounds isolated from plants. Several plants could offer a rich reserve for drug discovery of infectious diseases, particularly in an era when the latest separation techniques are available on one hand, and the human population is challenged by a number of emerging infectious diseases on the other hand. Among several other ailments, viral infections, particularly infections associated with human immunodeficiency virus type 1 (HIV-1) and 2 (HIV-2), and newly emerging infectious viruses have challenged mankind survival. Of importance, a variety of medicinal plants have shown promise to treat a number of viral infections, and some of them possess broad-spectrum antiviral activity. In the past, exploration into the antiviral activity of various promising medicinal plants was limited due to: (a) highly infectious nature of viruses and (b) lack of appropriate separation techniques for the identification of antiviral components from plants. Development of vector-based strategies, in which non-infectious molecular clone of a virus could be used for antiviral screening purposes, and advancement in separation technologies offers promise for medicinal plants usage in modern drug discovery. This article describes potential antiviral properties of medicinal plants against a diverse group of viruses, and suggests screening the potential of plants possessing broad-spectrum antiviral effects against emerging viral infections.
Collapse
Affiliation(s)
- Muhammad Mukhtar
- University of Arid Agriculture Rawalpindi, Murree Road, Rawalpindi 46300, Pakistan
| | | | | | | | | | | |
Collapse
|
24
|
Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem Biol Interact 2007; 171:1-14. [PMID: 17996228 DOI: 10.1016/j.cbi.2007.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 02/01/2023]
Abstract
Smilax glabra Roxb. (SGR) is the root of a traditional Chinese herb, referred to as tu fu ling in Chinese medicine. It is an inexpensive traditional Chinese medicine commonly used for the treatment of liver diseases, and a few studies have indicated that SGR has anti-hepatocarcinogenic and anti-cancer growth activities. In the current study, raw SGR plant was extracted with Accelerate Solvent Extractor, and the molecular mechanism by which S. glabra Roxb. extract (SGRE) has an anti-proliferative effect on the human hepatoma cell lines, HepG2 and Hep3B, was determined. We showed that SGRE inhibited HepG2 and Hep3B cell growth by causing cell-cycle arrest at either S phase or S/G2 transition and induced apoptosis, as evidenced by a DNA fragmentation assay. SGRE-induced apoptosis by alternation of mitochondrial transmembrane depolarization, release of mitochondrial cytochrome c, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. The SGRE-mediated mitochondria-caspase dependent apoptotic pathway also involved activation of p38, JNK, and ERK mitogen-activated protein kinase signaling. Isometric compounds of astilbin (flavonoids) and smilagenin (saponin) have been identified as the main chemical constituents in SGRE by HPLC-MS/MS. These results have identified, for the first time, the biological activity of SGRE in HepG2 and Hep3B cells and should lead to further development of SGR for liver disease therapy.
Collapse
|
25
|
Wu LL, Yang XB, Huang ZM, Liu HZ, Wu GX. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol Sin 2007; 28:404-9. [PMID: 17303004 DOI: 10.1111/j.1745-7254.2007.00510.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To assess the anti-hepatitis B virus (HBV) effect of hyperoside extracted from Abelmoschus manihot (L) medik. METHODS The human hepatoma Hep G2.2.15 cell culture system and duck hepatitis B virus (DHBV) infection model were used as in vivo and in vitro models to evaluate the anti-HBV effects. RESULTS In the cell model, the 50% toxic concentration of hyperoside was 0.115 g/L; the maximum nontoxic concentration was 0.05 g/L. On the maximum nontoxic concentrations, the inhibition rates of hyperoside on HBeAg and HBsAg in the 2.2.15 cells were 86.41% and 82.27% on d 8, respectively. In the DHBV infection model, the DHBV-DNA levels decreased significantly in the treatment of 0.05 g x kg(-1 ) x d(-1 ) and 0.10 g x kg(-1) x d(-1) dosage groups of hyperoside (P<0.01). The inhibition of the peak of viremia was at the maximum at the dose of 0.10 g x kg(-1 ) x d(-1) and reached 60.79% on d 10 and 69.78% on d 13, respectively. CONCLUSION These results suggested that hyperoside is a strong inhibitor of HBsAg and HBeAg secretion in 2.2.15 cells and DHBV-DNA levels in the HBV-infected duck model.
Collapse
Affiliation(s)
- Lin-Lin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|
26
|
Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW, Yue PYK, Kwan YW, Leung AYH, Wang YT, Lee SMY. The angiogenic effects ofAngelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem 2007; 103:195-211. [PMID: 17497682 DOI: 10.1002/jcb.21403] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis plays an important role in a wide range of physiological processes such as wound healing and fetal development. Many diseases are associated with imbalances in regulation of angiogenesis, in which it is either excessive or there is insufficient blood vessel formation. Angelica sinensis (AS), commonly used in the prescriptions of Chinese medicine, is a potential candidate for curing such diseases. However, biological effects of AS on angiogenesis and underlying mechanisms are yet to be fully elucidated. This investigation describes the angiogenic effects of AS extract on human endothelial cells (HUVEC) in vitro and zebrafish in vivo. The extract was demonstrated, by XTT assay and microscopic cell counting, to stimulate the proliferation of HUVEC; in addition, flow cytometry analysis indicated that the extract increased the percentage of HUVEC in the S phase. The wound healing migration assay illustrated that a dramatic increase in migration could be measured in AS extract-treated HUVEC. Meanwhile, the number of invaded cells and the mean tube length were significantly increased in AS extract treatment groups. The extract was also demonstrated to promote changes in subintestinal vessels (SIVs) in zebrafish, one feature of angiogenesis. In addition, AS extract was found by real-time PCR to enhance vascular endothelial growth factor (VEGF) mRNA expression. In a bead-based immunoassay, higher levels of p38 and JNK 1/2 expression were also observed in effusions compared with control cells. All results suggest that Angelica sinensis extract can promote angiogenesis, and that the angiogenic effects involve p38 and JNK 1/2 phosphorylation.
Collapse
Affiliation(s)
- Hio-Wa Lam
- Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomás Pereira S.J., Taipa, Macao, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|