1
|
Wu M, Ma W, Lv G, Wang X, Li C, Chen X, Peng X, Tang C, Pan Z, Liu R, Chen G, Zhang R. DDR1 is identified as an immunotherapy target for microsatellite stable colon cancer by CRISPR screening. NPJ Precis Oncol 2024; 8:253. [PMID: 39511298 PMCID: PMC11544160 DOI: 10.1038/s41698-024-00743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The role of collagen and its receptor, discoidin domain receptor 1 (DDR1) in immune response of colorectal cancer (CRC) remains unclear. We identified DDR1 as a promising target of immunotherapy resistance using a pooled in vivo CRISPR/sgRNA screening in microsatellite stable (MSS) CRC mouse models. Our findings demonstrated that knockdown or inhibition of DDR1 could enhance infiltration of CD8+ T cells and sensitize MSS CRC to PD-1 blockade. Furthermore, DDR1 was found to facilitate kinase domain phosphorylation, upregulate EZH2, consequently elevating H3K27me3 levels at the CXCL10 promotor, which led to the suppression of CXCL10 transcription once bound to collagen in ECM. Lastly, DDR1 was found positively correlated with collagen I expression in MSS CRC specimens. These findings indicated that targeting DDR1 or its inhibitor 7rh might be potential strategy for overcoming immunotherapy resistance in MSS CRC.
Collapse
Affiliation(s)
- Miaoqing Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wenjuan Ma
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
| | - Guangzhao Lv
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, QingYuan, Guangdong, China
| | - Cong Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xiang Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, QingYuan, Guangdong, China
| | - Xiaofei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, QingYuan, Guangdong, China
| | - Chaoming Tang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, QingYuan, Guangdong, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Ranyi Liu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Gong Chen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, PR China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Gong H, Xu HM, Zhang DK. Focusing on discoidin domain receptors in premalignant and malignant liver diseases. Front Oncol 2023; 13:1123638. [PMID: 37007062 PMCID: PMC10050580 DOI: 10.3389/fonc.2023.1123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Discoidin domain receptors (DDRs) are receptor tyrosine kinases on the membrane surface that bind to extracellular collagens, but they are rarely expressed in normal liver tissues. Recent studies have demonstrated that DDRs participate in and influence the processes underlying premalignant and malignant liver diseases. A brief overview of the potential roles of DDR1 and DDR2 in premalignant and malignant liver diseases is presented. DDR1 has proinflammatory and profibrotic benefits and promotes the invasion, migration and liver metastasis of tumour cells. However, DDR2 may play a pathogenic role in early-stage liver injury (prefibrotic stage) and a different role in chronic liver fibrosis and in metastatic liver cancer. These views are critically significant and first described in detail in this review. The main purpose of this review was to describe how DDRs act in premalignant and malignant liver diseases and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for cancer treatment and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
| | | | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Silva ME, Hernández-Andrade M, Abasolo N, Espinoza-Cruells C, Mansilla JB, Reyes CR, Aranda S, Esteban Y, Rodriguez-Calvo R, Martorell L, Muntané G, Rivera FJ, Vilella E. DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation. Int J Mol Sci 2023; 24:ijms24021742. [PMID: 36675255 PMCID: PMC9866737 DOI: 10.3390/ijms24021742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs.
Collapse
Affiliation(s)
- Maria Elena Silva
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Matías Hernández-Andrade
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Nerea Abasolo
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
| | - Cristóbal Espinoza-Cruells
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Josselyne B. Mansilla
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina R. Reyes
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Selena Aranda
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, “Sant Joan” University Hospital, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Ricardo Rodriguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, “Sant Joan” University Hospital, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Translational Regenerative Neurobiology Group, Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: or (F.J.R.); (E.V.); Tel.: +358-50-598-8142 or +56-63-229-3011 (F.J.R.); +34-658-513-138 (E.V.)
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: or (F.J.R.); (E.V.); Tel.: +358-50-598-8142 or +56-63-229-3011 (F.J.R.); +34-658-513-138 (E.V.)
| |
Collapse
|
4
|
Wang Y, Han B, Liu K, Wang X. Effects of DDR1 on migration and adhesion of periodontal ligament cells and the underlying mechanism. J Periodontal Res 2022; 57:568-577. [PMID: 35297053 DOI: 10.1111/jre.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE As one of the widely expressed cell surface receptors binding to collagen, the most abundant component of the extracellular matrix (ECM), knowledge of the expression, functions, and mechanisms underlying the role of discoidin domain receptor 1 (DDR1) in human periodontal ligament cells (hPDLCs) is incomplete. This study determined the expression of DDR1 in hPDLCs and the effect of DDR1 upon migration and adhesion to hPDLCs, as well as the related regulatory mechanisms. MATERIALS AND METHODS The expression of DDR1 and the DDR1 isoforms in hPDLCs from six donors were tested. The migratory ability (horizontal and vertical) and adhesive capacity of hPDLCs with or without specific knockdown of DDR1 were evaluated. After treatment with MEK-ERK1/2 inhibitors (PD98059 and U0126) with or without RNAi, the migratory and adhesive capacity of hPDLCs were re-tested. Western blotting was performed to verify p-MEK1/2 and p-ERK1/2, the key factors of the MEK-ERK1/2 signaling pathways. RESULTS DDR1 was detected in hPDLCs in the mRNA and protein level; DDR1b was the dominant isoform. Knockdown of DDR1 almost halved the migratory capacity and significantly downregulated the adhesive capacity of hPDLCs. The use of MEK-ERK1/2 inhibitors caused declined migratory and adhesive capacity of hPDLCs as well. After DDR1 was knocked down, the expression of p-MEK and p-ERK protein declined significantly while total MEK and ERK showed no obvious change, which means the ratio of p-MEK/MEK and p-ERK/ERK was markedly reduced. CONCLUSIONS DDR1 plays an important role in the migration and adhesion of hPDLCs and might be regulated via the MEK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Zhang Y, Liang H, Zhuo Z, Fan P, Chen Y, Zhang Z, Zhang W. Serum N-terminal DDR1: A Novel Diagnostic Marker of Liver Fibrosis Severity. J Clin Transl Hepatol 2021; 9:702-710. [PMID: 34722185 PMCID: PMC8516844 DOI: 10.14218/jcth.2021.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS The expression of discoidin domain receptor 1 (DDR1) is commonly up-regulated and undergoes collagen-induced ectodomain (N-terminal) shedding during the progression of liver fibrosis. This study aimed to evaluate the clinical utility of N-terminal DDR1 as a diagnostic biomarker for liver fibrosis. METHODS N-terminal DDR1 shedding was evaluated using cell lines, liver fibrosis mouse models, clinical data of 298 patients collected from February 2019 to June 2020. The clinical data were divided into test and validation cohorts to evaluate the diagnostic performance of serum N-terminal DDR1. RESULTS Time- and dosage-dependent N-terminal DDR1 shedding stimulated by collagen I was observed in a hepatocyte cell line model. The type I collagen deposition and serum N-terminal DDR1 levels concurrently increased in the development of liver fibrosis in mouse models. Clinical data demonstrated a significant diagnostic power of serum N-terminal DDR1 levels as an accurate biomarker of liver fibrosis and cirrhosis. The diagnostic performance was further increased when applying N-DDR1/albumin ratio, achieving area under the curve of 0.790, 0.802, 0.879, and 0.865 for detecting histological fibrosis stages F ≥2, F ≥3, F 4 with liver biopsy as a reference method, and cirrhosis according to imaging techniques, respectively. With a cut-off of 55.6, a sensitivity, specificity, positive predictive value, and negative predictive value of 82.7%,76.6%, 67.4%, and 88.3% were achieved for the detection of cirrhosis. CONCLUSIONS Serum N-terminal DDR1 appears to be a novel diagnostic marker for liver fibrosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeng Zhuo
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pan Fan
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yifa Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| |
Collapse
|
6
|
Wasinski B, Sohail A, Bonfil RD, Kim S, Saliganan A, Polin L, Bouhamdan M, Kim HRC, Prunotto M, Fridman R. Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts. Sci Rep 2020; 10:2309. [PMID: 32047176 PMCID: PMC7012844 DOI: 10.1038/s41598-020-59028-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.
Collapse
Affiliation(s)
- Benjamin Wasinski
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - R Daniel Bonfil
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Pathology, College of Medical Sciences and Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen Saliganan
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Mohamad Bouhamdan
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Marco Prunotto
- Hoffmann-La Roche, Basel, Switzerland.,School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Chen EA, Lin YS. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118458. [DOI: 10.1016/j.bbamcr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
8
|
The Expanding Role of MT1-MMP in Cancer Progression. Pharmaceuticals (Basel) 2019; 12:ph12020077. [PMID: 31137480 PMCID: PMC6630478 DOI: 10.3390/ph12020077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
For over 20 years, membrane type 1 matrix metalloproteinase (MT1-MMP) has been recognized as a key component in cancer progression. Initially, the primary roles assigned to MT1-MMP were the activation of proMMP-2 and degradation of fibrillar collagen. Proteomics has revealed a great array of MT1-MMP substrates, and MT1-MMP selective inhibitors have allowed for a more complete mapping of MT1-MMP biological functions. MT1-MMP has extensive sheddase activities, is both a positive and negative regulator of angiogenesis, can act intracellularly and as a transcription factor, and modulates immune responses. We presently examine the multi-faceted role of MT1-MMP in cancer, with a consideration of how the diversity of MT1-MMP behaviors impacts the application of MT1-MMP inhibitors.
Collapse
|
9
|
Vilella E, Gas C, Garcia-Ruiz B, Rivera FJ. Expression of DDR1 in the CNS and in myelinating oligodendrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118483. [PMID: 31108116 DOI: 10.1016/j.bbamcr.2019.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by fibrillar collagens. Here, we review the expression and role of DDR1 in the central nervous system (CNS). In a murine model, DDR1 is expressed in oligodendrocytes in the developing brain and during remyelination. In human adult brain tissue, DDR1 is detected in a similar pattern as other classical myelin proteins such as myelin basic protein (MBP). Up to 50 transcripts of DDR1 have been detected in human tissues, of which 5 isoforms have been identified. In the human brain, all 5 isoforms are detectable, but DDR1b is the most highly expressed, and DDR1c is coexpressed with myelin genes. DDR1 sequence variants have been associated with psychiatric disorders, and upregulation of this gene occurs in gliomas. Moreover, mutations in DDR1 have been found in tumors of Schwann cells, which are the myelinating cells of the peripheral nervous system. All these data suggest that DDR1 plays a role in myelination and is relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n, 43206 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Avda. Josep Laporte, 1, 43204 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain; Centro de investigaciòn biomedical en red en Salud Mental (CIBERSAM), Spain.
| | - Cinta Gas
- Institut d'Investigació Sanitària Pere Virgili, Avda. Josep Laporte, 1, 43204 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain.
| | - Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n, 43206 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain.
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, 5090000 Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
10
|
Moll S, Desmoulière A, Moeller MJ, Pache JC, Badi L, Arcadu F, Richter H, Satz A, Uhles S, Cavalli A, Drawnel F, Scapozza L, Prunotto M. DDR1 role in fibrosis and its pharmacological targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118474. [PMID: 30954571 DOI: 10.1016/j.bbamcr.2019.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/28/2023]
Abstract
Discoidin domain receptor1 (DDR1) is a collagen activated receptor tyrosine kinase and an attractive anti-fibrotic target. Its expression is mainly limited to epithelial cells located in several organs including skin, kidney, liver and lung. DDR1's biology is elusive, with unknown downstream activation pathways; however, it may act as a mediator of the stromal-epithelial interaction, potentially controlling the activation state of the resident quiescent fibroblasts. Increased expression of DDR1 has been documented in several types of cancer and fibrotic conditions including skin hypertrophic scars, idiopathic pulmonary fibrosis, cirrhotic liver and renal fibrosis. The present review article focuses on: a) detailing the evidence for a role of DDR1 as an anti-fibrotic target in different organs, b) clarifying DDR1 tissue distribution in healthy and diseased tissues as well as c) exploring DDR1 protective mode of action based on literature evidence and co-authors experience; d) detailing pharmacological efforts attempted to drug this subtle anti-fibrotic target to date.
Collapse
Affiliation(s)
- Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland; Department of Pathology, Lausanne University Hospital, Switzerland
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges, Limoges, France
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | | | - Laura Badi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Filippo Arcadu
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Alexander Satz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Li T, Liu J, Cai H, Wang B, Feng Y, Liu J. Incorporation of DDR2 clusters into collagen matrix via integrin-dependent posterior remnant tethering. Int J Biol Sci 2018; 14:654-666. [PMID: 29904280 PMCID: PMC6001655 DOI: 10.7150/ijbs.24765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-matrix interactions play critical roles in cell adhesion, tissue remodeling and cancer metastasis. Discoidin domain receptor 2 (DDR2) is a collagen receptor belonging to receptor tyrosine kinase (RTK) family. It is a powerful regulator of collagen deposition in the extracellular matrix (ECM). Although the oligomerization of DDR extracellular domain (ECD) proteins can affect matrix remodeling by inhibiting fibrillogenesis, it is still unknown how cellular DDR2 is incorporated into collagen matrix. Using 3-dimentional (3D) imaging for migrating cells, we identified a novel mechanism that explains how DDR2 incorporating into collagen matrix, which we named as posterior remnant tethering. We followed the de novo formation of these remnants and identified that DDR2 clusters formed at the retracting phase of a pseudopodium, then these clusters were tethered to fibrillar collagen and peeled off from the cell body to generate DDR2 containing posterior remnants. Inhibition of β1-integrin or Rac1 activity abrogated the remnant formation. Thus, our findings unveil a special cellular mechanism for DDR2 clusters incorporating into collagen matrix in an integrin-dependent manner.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jin'e Liu
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cai
- Research Center for High Altitude Medicine, Qing Hai University, Xining 810001, China
| | - Baomei Wang
- Institute of Virology, Wenzhou University, Wenzhou, 325000, China
| | | | - Jun Liu
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Tonniges JR, Albert B, Calomeni EP, Roy S, Lee J, Mo X, Cole SE, Agarwal G. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:599-611. [PMID: 27329311 PMCID: PMC5174982 DOI: 10.1017/s1431927616000787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson's trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.
Collapse
Affiliation(s)
- Jeffrey R. Tonniges
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Albert
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
| | - Edward P. Calomeni
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Shuvro Roy
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Joan Lee
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E. Cole
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gunjan Agarwal
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Reyes-Uribe E, Serna-Marquez N, Perez Salazar E. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Shitomi Y, Thøgersen IB, Ito N, Leitinger B, Enghild JJ, Itoh Y. ADAM10 controls collagen signaling and cell migration on collagen by shedding the ectodomain of discoidin domain receptor 1 (DDR1). Mol Biol Cell 2014; 26:659-73. [PMID: 25540428 PMCID: PMC4325837 DOI: 10.1091/mbc.e14-10-1463] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Collagen receptor DDR1 is shed upon collagen binding by ADAM10 metalloproteinase. This shedding controls the half-life of DDR1 signaling and cell migration on the collagen matrix. This event may be a part of a regulatory mechanism of microenvironment signaling. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1–dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices.
Collapse
Affiliation(s)
- Yasuyuki Shitomi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Noriko Ito
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
17
|
Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:39-87. [PMID: 24725424 DOI: 10.1016/b978-0-12-800180-6.00002-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors that are members of the receptor tyrosine kinase family. Both DDRs bind a number of different collagen types and play important roles in embryo development. Dysregulated DDR function is associated with progression of various human diseases, including fibrosis, arthritis, and cancer. By interacting with key components of the extracellular matrix and displaying distinct activation kinetics, the DDRs form a unique subfamily of receptor tyrosine kinases. DDR-facilitated cellular functions include cell migration, cell survival, proliferation, and differentiation, as well as remodeling of extracellular matrices. This review summarizes the current knowledge of DDR-ligand interactions, DDR-initiated signal pathways and the molecular mechanisms that regulate receptor function. Also discussed are the roles of DDRs in development and disease progression.
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Rudra-Ganguly N, Lowe C, Mattie M, Chang MS, Satpayev D, Verlinsky A, An Z, Hu L, Yang P, Challita-Eid P, Stover DR, Pereira DS. Discoidin domain receptor 1 contributes to tumorigenesis through modulation of TGFBI expression. PLoS One 2014; 9:e111515. [PMID: 25369402 PMCID: PMC4219757 DOI: 10.1371/journal.pone.0111515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family. The receptor is activated upon binding to its ligand, collagen, and plays a crucial role in many fundamental processes such as cell differentiation, adhesion, migration and invasion. Although DDR1 is expressed in many normal tissues, upregulated expression of DDR1 in a variety of human cancers such as lung, colon and brain cancers is known to be associated with poor prognosis. Using shRNA silencing, we assessed the oncogenic potential of DDR1. DDR1 knockdown impaired tumor cell proliferation and migration in vitro and tumor growth in vivo. Microarray analysis of tumor cells demonstrated upregulation of TGFBI expression upon DDR1 knockdown, which was subsequently confirmed at the protein level. TGFBI is a TGFβ-induced extracellular matrix protein secreted by the tumor cells and is known to act either as a tumor promoter or tumor suppressor, depending on the tumor environment. Here, we show that exogenous addition of recombinant TGFBI to BXPC3 tumor cells inhibited clonogenic growth and migration, thus recapitulating the phenotypic effect observed from DDR1 silencing. BXPC3 tumor xenografts demonstrated reduced growth with DDR1 knockdown, and the same xenograft tumors exhibited an increase in TGFBI expression level. Together, these data suggest that DDR1 expression level influences tumor growth in part via modulation of TGFBI expression. The reciprocal expression of DDR1 and TGFBI may help to elucidate the contribution of DDR1 in tumorigenesis and TGFBI may also be used as a biomarker for the therapeutic development of DDR1 specific inhibitors.
Collapse
Affiliation(s)
- Nandini Rudra-Ganguly
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
- * E-mail:
| | - Christine Lowe
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Michael Mattie
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Mi Sook Chang
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | | | - Alla Verlinsky
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Zili An
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Liping Hu
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Peng Yang
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Pia Challita-Eid
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - David R. Stover
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| | - Daniel S. Pereira
- Agensys Inc., an affiliate of Astellas Pharma Inc, Santa Monica, CA, United States of America
| |
Collapse
|
19
|
Xu H, Abe T, Liu JKH, Zalivina I, Hohenester E, Leitinger B. Normal activation of discoidin domain receptor 1 mutants with disulfide cross-links, insertions, or deletions in the extracellular juxtamembrane region: mechanistic implications. J Biol Chem 2014; 289:13565-74. [PMID: 24671415 PMCID: PMC4036362 DOI: 10.1074/jbc.m113.536144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters.
Collapse
Affiliation(s)
- Huifang Xu
- From the National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom and
| | | | | | | | | | | |
Collapse
|
20
|
Fu HL, Sohail A, Valiathan RR, Wasinski BD, Kumarasiri M, Mahasenan KV, Bernardo MM, Tokmina-Roszyk D, Fields GB, Mobashery S, Fridman R. Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem 2013; 288:12114-29. [PMID: 23519472 DOI: 10.1074/jbc.m112.409599] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that upon binding to collagens undergo receptor phosphorylation, which in turn activates signal transduction pathways that regulate cell-collagen interactions. We report here that collagen-dependent DDR1 activation is partly regulated by the proteolytic activity of the membrane-anchored collagenases, MT1-, MT2-, and MT3-matrix metalloproteinase (MMP). These collagenases cleave DDR1 and attenuate collagen I- and IV-induced receptor phosphorylation. This effect is not due to ligand degradation, as it proceeds even when the receptor is stimulated with collagenase-resistant collagen I (r/r) or with a triple-helical peptide harboring the DDR recognition motif in collagens. Moreover, the secreted collagenases MMP-1 and MMP-13 and the glycosylphosphatidylinositol-anchored membrane-type MMPs (MT4- and MT6-MMP) have no effect on DDR1 cleavage or activation. N-terminal sequencing of the MT1-MMP-mediated cleaved products and mutational analyses show that cleavage of DDR1 takes place within the extracellular juxtamembrane region, generating a membrane-anchored C-terminal fragment. Metalloproteinase inhibitor studies show that constitutive shedding of endogenous DDR1 in breast cancer HCC1806 cells is partly mediated by MT1-MMP, which also regulates collagen-induced receptor activation. Taken together, these data suggest a role for the collagenase of membrane-type MMPs in regulation of DDR1 cleavage and activation at the cell-matrix interface.
Collapse
Affiliation(s)
- Hsueh-Liang Fu
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 2013; 288:7430-7437. [PMID: 23335507 DOI: 10.1074/jbc.r112.444158] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors.
Collapse
Affiliation(s)
- Hsueh-Liang Fu
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Rajeshwari R Valiathan
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Richard Arkwright
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Anjum Sohail
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Cosmin Mihai
- Davis Heart and Lung Research Institute and Biomedical Engineering Department, Ohio State University, Columbus, Ohio 43210
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul Huang
- Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom
| | - Gunjan Agarwal
- Davis Heart and Lung Research Institute and Biomedical Engineering Department, Ohio State University, Columbus, Ohio 43210
| | - Rafael Fridman
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201.
| |
Collapse
|
22
|
Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 2012; 31:295-321. [PMID: 22366781 DOI: 10.1007/s10555-012-9346-z] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Rajeshwari R Valiathan
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
23
|
Song S, Shackel NA, Wang XM, Ajami K, McCaughan GW, Gorrell MD. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1134-44. [PMID: 21356365 DOI: 10.1016/j.ajpath.2010.11.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/06/2010] [Accepted: 11/15/2010] [Indexed: 12/24/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell-collagen interactions in chronic liver injury.
Collapse
Affiliation(s)
- Sunmi Song
- Centenary Institute and the A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital and the Sydney Medical School, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Castro-Sanchez L, Soto-Guzman A, Guaderrama-Diaz M, Cortes-Reynosa P, Salazar EP. Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clin Exp Metastasis 2011; 28:463-77. [PMID: 21461859 DOI: 10.1007/s10585-011-9385-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/21/2011] [Indexed: 12/11/2022]
Abstract
Discoidin domain receptors (DDRs) are receptor tyrosine kinases that get activated by collagens in its native triple-helical form. In mammalian cells, DDR family consists of two members, namely DDR1 and DDR2, which mediates migration and proliferation of several cell types. DDR1 is activated by native type IV collagen and overexpressed in human breast cancer. Type IV collagen is the main component of basement membrane (BM), and the ability to degrade and penetrate BM is related with an increased potential for invasion and metastasis. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that collectively are capable of degrading all components of the extracellular matrix, including the BM. In breast cancer cells, denatured type IV collagen induces MMP-9 secretion and invasion. However, the role of DDR1 in the regulation of gelatinases (MMP-2 and -9) secretion and invasion in breast cancer cells remains to be studied. We demonstrate here that native type IV collagen induces MMP-2 and -9 secretions and invasion through a DDR1 and Src-dependent pathway, together with an increase of MMP-2 and -9-cell surface levels. MMP-2 and -9 secretions require PKC kinase activity, epidermal growth factor receptor (EGFR) activation, arachidonic acid (AA) production and AA metabolites in MDA-MB-231 breast cancer cells. In summary, our data demonstrate, for the first time, that DDR1 mediates MMP-2 and -9 secretions and invasion induced by native type IV collagen in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Luis Castro-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360, Mexico, DF, Mexico
| | | | | | | | | |
Collapse
|
25
|
Lu KK, Trcka D, Bendeck MP. Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovasc Pathol 2011; 20:71-6. [DOI: 10.1016/j.carpath.2009.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/06/2009] [Accepted: 12/24/2009] [Indexed: 10/19/2022] Open
|
26
|
Roig B, Franco-Pons N, Martorell L, Tomàs J, Vogel WF, Vilella E. Expression of the tyrosine kinase discoidin domain receptor 1 (DDR1) in human central nervous system myelin. Brain Res 2010; 1336:22-9. [PMID: 20380825 DOI: 10.1016/j.brainres.2010.03.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 12/11/2022]
Abstract
During development of the mouse brain, the protein kinase discoidin domain receptor 1 (DDR1) is present prenatally in neurons of the proliferative areas, and postnatally, DDR1 expression is no longer detected in neurons, but a spatial-temporal expression pattern in oligodendrocytes that overlaps with the dynamics of the myelination process is detected. Notably, oligodendrocytic DDR1 expression is upregulated in mice during experimentally induced remyelination. Recently, we demonstrated that DDR1 expression is high in human brain and that there is an association between the gene and schizophrenia in a case-control study. However, data regarding expression of DDR1 in the human brain are scarce. Here, we describe the expression pattern of DDR1 in the human adult cerebral cortex. Using several immunohistological techniques and in situ hybridization, we identified DDR1 in the following: a) myelin, b) capillary endothelial cells in the gray as well as white matter, and c) in the soma of some oligodendrocytes and astrocytes in the white matter. The most important overall finding in this study was that DDR1 is present in myelin and is expressed by oligodendrocyte cells. We detected the presence of DDR1 mRNA and protein in myelin and observed that DDR1 co-localized with the classical myelin basic protein (MBP). Moreover, we found a strong positive correlation between expression levels of DDR1 and two myelin-associated genes, myelin-associated glycoprotein (MAG) and oligodendrocyte transcription factor 2 (OLIG2). These observations suggest that DDR1 could be an important constituent of myelin. Because defects in myelination are linked to several mental disorders such as schizophrenia, the function of DDR1 in the process of myelination warrants further investigation.
Collapse
Affiliation(s)
- Bàrbara Roig
- Hospital Psiquiàtric Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Flynn LA, Blissett AR, Calomeni EP, Agarwal G. Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2. J Mol Biol 2009; 395:533-43. [PMID: 19900459 DOI: 10.1016/j.jmb.2009.10.073] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/22/2009] [Accepted: 10/31/2009] [Indexed: 11/18/2022]
Abstract
Collagen fiber assembly affects many physiological processes and is tightly controlled by collagen-binding proteins. However, to what extent membrane-bound versus cell-secreted collagen-binding proteins affect collagen fibrillogenesis is not well understood. In our previous studies, we had demonstrated that the membrane-anchored extracellular domain (ECD) of the collagen receptor discoidin domain receptor 2 (DDR2) inhibits fibrillogenesis of collagen endogenously secreted by the cells. These results led to a novel functional role of the DDR2 ECD. However, since soluble forms of DDR1 and DDR2 containing its ECD are known to naturally exist in the extracellular matrix, in this work we investigated if these soluble DDR ECDs may have a functional role in modulating collagen fibrillogenesis. For this purpose, we created mouse osteoblast cell lines stably secreting DDR1 or DDR2 ECD as soluble proteins. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays were used to demonstrate that DDR ECD expression reduced the rate and quantity of collagen deposition and induced significant changes in fiber morphology and matrix mineralization. Collectively, our studies advance our understanding of DDR receptors as powerful regulators of collagen deposition in the ECM and elucidate their multifaceted role in ECM remodeling.
Collapse
Affiliation(s)
- Lisa A Flynn
- Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Agarwal G, Mihai C, Iscru DF. Interaction of discoidin domain receptor 1 with collagen type 1. J Mol Biol 2007; 367:443-55. [PMID: 17275838 DOI: 10.1016/j.jmb.2006.12.073] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/19/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is a widely expressed tyrosine kinase receptor which binds to and gets activated by collagens including collagen type 1. Little is understood about the interaction of DDR1 with collagen and its possible functional implications. Here, we elucidate the binding pattern of the DDR1 extracellular domain (ECD) to collagen type 1 and its impact on collagen fibrillogenesis. Our in vitro assays utilized DDR1-Fc fusion proteins, which contain only the ECD of DDR1. Using surface plasmon resonance, we confirmed that further oligomerization of DDR1-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Single-molecule imaging by means of atomic force microscopy revealed that DDR1 oligomers bound at overlapping or adjacent collagen molecules and were nearly absent on isolated collagen molecules. Interaction of DDR1 oligomers with collagen was found to modulate collagen fibrillogenesis both in vitro and in cell-based assays. Collagen fibers formed in the presence of DDR1 had a larger average diameter, were more cross-linked and lacked the native banded structure. The presence of DDR1 ECD resulted in "locking" of collagen molecules in an incomplete fibrillar state both in vitro and on surfaces of cells overexpressing DDR1. Our results signify an important functional role of the DDR1 ECD, which occurs naturally in kinase-dead isoforms of DDR1 and as a shedded soluble protein. The modulation of collagen fibrillogenesis by the DDR1 ECD elucidates a novel mechanism of collagen regulation by DDR1.
Collapse
Affiliation(s)
- Gunjan Agarwal
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
30
|
Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ. The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 2006; 1:15. [PMID: 17062143 PMCID: PMC1635701 DOI: 10.1186/1750-1326-1-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/24/2006] [Indexed: 01/11/2023] Open
Abstract
More than a decade has passed since apolipoprotein E4 (APOE-ε4) was identified as a primary risk factor for Alzheimer 's disease (AD), yet researchers are even now struggling to understand how the apolipoprotein system integrates into the puzzle of AD etiology. The specific pathological actions of apoE4, methods of modulating apolipoprotein E4-associated risk, and possible roles of apoE in normal synaptic function are still being debated. These critical questions will never be fully answered without a complete understanding of the life cycle of the apolipoprotein receptors that mediate the uptake, signaling, and degradation of apoE. The present review will focus on apoE receptors as modulators of apoE actions and, in particular, explore the functions of soluble apoE receptors, a field almost entirely overlooked until now.
Collapse
Affiliation(s)
- G William Rebeck
- Department of Neuroscience, Georgetown University, Washington DC, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, Lexington, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Guojun Bu
- Department of Pediatrics, Washington University, St. Louis, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, USA
- Hope Center for Neurological Disorders, Washington University, St. Louis, USA
| | - Edwin J Weeber
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Pharmacology, Vanderbilt University, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, USA
| |
Collapse
|
31
|
Avivi-Green C, Singal M, Vogel WF. Discoidin Domain Receptor 1–deficient Mice Are Resistant to Bleomycin-induced Lung Fibrosis. Am J Respir Crit Care Med 2006; 174:420-7. [PMID: 16690978 DOI: 10.1164/rccm.200603-333oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Discoidin domain receptor 1 (DDR1) is a tyrosine kinase activated by native collagens. Based on previous findings showing increased DDR1 expression in bronchoalveolar lavage cells from patients with idiopathic pulmonary fibrosis, we hypothesized that DDR1 mediates disease progression after lung injury. OBJECTIVES To investigate the inflammatory and fibrotic responses of DDR1 knockout and wild-type mice to bleomycin-induced lung injury. METHODS Age- and sex-matched DDR1 knockout and wild-type C57BL/6 mice received a single intratracheal instillation of 2 U/kg bleomycin or saline, respectively. After 2 wk, lung inflammation and fibrosis were assessed using immunohistochemistry, real-time polymerase chain reaction, TUNEL assay, ELISA, fluorescence-activated cell sorting, and Western blot analysis. MEASUREMENTS AND MAIN RESULTS Compared with wild-type animals, DDR1-null mice were largely protected against bleomycin-induced injury. Bleomycin-induced increases in collagen protein levels and tenascin-C mRNA levels were abrogated in knockout animals. Furthermore, myofibroblast expansion and apoptosis were much lower in these animals compared with their wild-type counterparts. Absence of inflammation in knockout mice was confirmed by lavage cell count and a cytokine ELISA. Western blot analysis of injured lung tissue revealed that DDR1-null mice failed to respond to the bleomycin insult with p38 MAPK activation, which was readily observed in wild-type mice. CONCLUSIONS DDR1 expression is a prerequisite for the development of lung inflammation and fibrosis. Blockade of DDR1 may therefore be a novel therapeutic intervention in patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Carmel Avivi-Green
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|