1
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Kondo H, Kondo M, Hayashi K, Kusafuka S, Hamamura K, Tanaka K, Kodama D, Hirai T, Sato T, Ariji Y, Miyazawa K, Ariji E, Goto S, Togari A. Orthodontic tooth movement-activated sensory neurons contribute to enhancing osteoclast activity and tooth movement through sympathetic nervous signalling. Eur J Orthod 2021; 44:404-411. [PMID: 34642757 DOI: 10.1093/ejo/cjab072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Orthodontic tooth movement (OTM) increases sympathetic and sensory neurological markers in periodontal tissue. However, the relationship between the sympathetic and sensory nervous systems during OTM remains unclear. Therefore, the present study investigated the relationship between the sympathetic and sensory nervous systems activated by OTM using pharmacological methods. MATERIALS AND METHODS We compared the effects of sympathectomy and sensory nerve injury during OTM in C57BL6/J mice. Capsaicin (CAP) was used to induce sensory nerve injury. Sympathectomy was performed using 6-hydroxydopamine. To investigate the effects of a β-agonist on sensory nerve injury, isoproterenol (ISO) was administered to CAP-treated mice. Furthermore, to examine the role of the central nervous system in OTM, the ventromedial hypothalamic nucleus (VMH) was ablated using gold thioglucose. RESULTS Sensory nerve injury and sympathectomy both suppressed OTM and decreased the percent of the alveolar socket covered with osteoclasts (Oc.S/AS) in periodontal tissue. Sensory nerve injury inhibited increases in OTM-induced calcitonin gene-related peptide (CGRP) immunoreactivity (IR), a marker of sensory neurons, and tyrosine hydroxylase (TH) IR, a marker of sympathetic neurons, in periodontal tissue. Although sympathectomy did not decrease the number of CGRP-IR neurons in periodontal tissue, OTM-induced increases in the number of TH-IR neurons were suppressed. The ISO treatment restored sensory nerve injury-inhibited tooth movement and Oc.S/AS. Furthermore, the ablation of VMH, the centre of the sympathetic nervous system, suppressed OTM-induced increases in tooth movement and Oc.S/AS. CONCLUSIONS The present results suggest that OTM-activated sensory neurons contribute to enhancements in osteoclast activity and tooth movement through sympathetic nervous signalling.
Collapse
Affiliation(s)
- Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Mayo Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kaori Hayashi
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Sae Kusafuka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Daisuke Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takao Hirai
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Yoshiko Ariji
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Eiichiro Ariji
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
3
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Keune JA, Branscum AJ, Wong CP, Iwaniec UT, Turner RT. Effect of Leptin Deficiency on the Skeletal Response to Hindlimb Unloading in Adult Male Mice. Sci Rep 2019; 9:9336. [PMID: 31249331 PMCID: PMC6597714 DOI: 10.1038/s41598-019-45587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
Based on body weight, morbidly obese leptin-deficient ob/ob mice have less bone than expected, suggesting that leptin plays a role in the skeletal response to weight bearing. To evaluate this possibility, we compared the skeletal response of wild type (WT) and ob/ob mice to hindlimb unloading (HU). Mice were individually housed at 32 °C (thermoneutral) from 4 weeks of age (rapidly growing) to 16 weeks of age (approaching skeletal maturity). Mice were then randomized into one of 4 groups (n = 10/group): (1) WT control, (2) WT HU, (3) ob/ob control, and (4) ob/ob HU and the results analyzed by 2-way ANOVA. ob/ob mice pair-fed to WT mice had normal cancellous bone volume fraction (BV/TV) in distal femur, lower femur length and total bone area, mineral content (BMC) and density (BMD), and higher cancellous bone volume fraction in lumbar vertebra (LV). HU resulted in lower BMC and BMD in total femur, and lower BV/TV in distal femur and LV in both genotypes. Cancellous bone loss in femur in both genotypes was associated with increases in osteoclast-lined bone perimeter. In summary, leptin deficiency did not attenuate HU-induced osteopenia in male mice, suggesting that leptin is not required for bone loss induced by unweighting.
Collapse
Affiliation(s)
- Jessica A. Keune
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Adam J. Branscum
- 0000 0001 2112 1969grid.4391.fBiostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Carmen P. Wong
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Urszula T. Iwaniec
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| | - Russell T. Turner
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
5
|
Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, Jain A, Gao B, Chai Y, Yang M, Wang X, Deng R, Wang L, Cao Y, Ni S, Liu S, Yuan W, Chen H, Dong X, Guan Y, Yang H, Cao X. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun 2019; 10:181. [PMID: 30643142 PMCID: PMC6331599 DOI: 10.1038/s41467-018-08097-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Whether sensory nerve can sense bone density or metabolic activity to control bone homeostasis is unknown. Here we found prostaglandin E2 (PGE2) secreted by osteoblastic cells activates PGE2 receptor 4 (EP4) in sensory nerves to regulate bone formation by inhibiting sympathetic activity through the central nervous system. PGE2 secreted by osteoblasts increases when bone density decreases as demonstrated in osteoporotic animal models. Ablation of sensory nerves erodes the skeletal integrity. Specifically, knockout of the EP4 gene in the sensory nerves or cyclooxygenase-2 (COX2) in the osteoblastic cells significantly reduces bone volume in adult mice. Sympathetic tone is increased in sensory denervation models, and propranolol, a β2-adrenergic antagonist, rescues bone loss. Furthermore, injection of SW033291, a small molecule to increase PGE2 level locally, significantly boostes bone formation, whereas the effect is obstructed in EP4 knockout mice. Thus, we show that PGE2 mediates sensory nerve to control bone homeostasis and promote regeneration.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bo Hu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiao Lv
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Amit Jain
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Bo Gao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mi Yang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shen Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Wen Yuan
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Huajiang Chen
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xinzhong Dong
- Howard Hughes Medical Institute and The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Huilin Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, P. R. China.
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Bone Marrow Adipose Tissue Deficiency Increases Disuse-Induced Bone Loss in Male Mice. Sci Rep 2017; 7:46325. [PMID: 28402337 PMCID: PMC5389344 DOI: 10.1038/srep46325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Bone marrow adipose tissue (MAT) is negatively associated with bone mass. Since osteoblasts and adipocytes are derived from the same precursor cells, adipocyte differentiation may occur at the expense of osteoblast differentiation. We used MAT-deficient KitW/W−v (MAT-) mice to determine if absence of MAT reduced bone loss in hindlimb-unloaded (HU) mice. Male MAT- and wild-type (WT) mice were randomly assigned to a baseline, control or HU group (n = 10 mice/group) within each genotype and HU groups unloaded for 2 weeks. Femurs were evaluated using micro-computed tomography, histomorphometry and targeted gene profiling. MAT- mice had a greater reduction in bone volume fraction after HU than did WT mice. HU MAT- mice had elevated cancellous bone formation and resorption compared to other treatment groups as well as a unique profile of differentially expressed genes. Adoptive transfer of WT bone marrow-derived hematopoietic stem cells reconstituted c-kit but not MAT in KitW/W−v mice. The MAT- WT → KitW/W−v mice lost cancellous bone following 2 weeks of HU. In summary, results from this study suggest that MAT deficiency was not protective, and was associated with exaggerated disuse-induced cancellous bone loss.
Collapse
|
7
|
Moriya S, Hayata T, Notomi T, Aryal S, Nakamaoto T, Izu Y, Kawasaki M, Yamada T, Shirakawa J, Kaneko K, Ezura Y, Noda M. PTH regulates β2-adrenergic receptor expression in osteoblast-like MC3T3-E1 cells. J Cell Biochem 2016; 116:142-8. [PMID: 25164990 DOI: 10.1002/jcb.24953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022]
Abstract
As the aged population is soaring, prevalence of osteoporosis is increasing. However, the molecular basis underlying the regulation of bone mass is still incompletely understood. Sympathetic tone acts via beta2 adrenergic receptors in bone and regulates the mass of bone which is the target organ of parathyroid hormone (PTH). However, whether beta2 adrenergic receptor is regulated by PTH in bone cells is not known. We therefore investigated the effects of PTH on beta2 adrenergic receptor gene expression in osteoblast-like MC3T3-E1 cells. PTH treatment immediately suppressed the expression levels of beta2 adrenergic receptor mRNA. This PTH effect was dose-dependent starting as low as 1 nM. PTH action on beta2 adrenergic receptor gene expression was inhibited by a transcriptional inhibitor, DRB, but not by a protein synthesis inhibitor, cycloheximide suggesting direct transcription control. Knockdown of beta2 adrenergic receptor promoted PTH-induced expression of c-fos, an immediate early response gene. With respect to molecular basis for this phenomenon, knockdown of beta2 adrenergic receptor enhanced PTH-induced transcriptional activity of cyclic AMP response element-luciferase construct in osteoblasts. Knockdown of beta2 adrenergic receptors also enhanced forskolin-induced luciferase expression, revealing that adenylate cyclase activity is influenced by beta2 adrenergic receptor. As for phosphorylation of transcription factor, knockdown of beta2 adrenergic receptor enhanced PTH-induced phosphorylation of cyclic AMP response element binding protein (CREB). These data reveal that beta2 adrenergic receptor is one of the targets of PTH and acts as a suppressor of PTH action in osteoblasts.
Collapse
Affiliation(s)
- Shuichi Moriya
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Japan; Department of Orthopaedic Surgery, Juntendo University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Katsumura S, Ezura Y, Izu Y, Shirakawa J, Miyawaki A, Harada K, Noda M. Beta Adrenergic Receptor Stimulation Suppresses Cell Migration in Association with Cell Cycle Transition in Osteoblasts-Live Imaging Analyses Based on FUCCI System. J Cell Physiol 2015; 231:496-504. [PMID: 26192605 DOI: 10.1002/jcp.25096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023]
Abstract
Osteoporosis affects over 20 million patients in the United States. Among those, disuse osteoporosis is serious as it is induced by bed-ridden conditions in patients suffering from aging-associated diseases including cardiovascular, neurological, and malignant neoplastic diseases. Although the phenomenon that loss of mechanical stress such as bed-ridden condition reduces bone mass is clear, molecular bases for the disuse osteoporosis are still incompletely understood. In disuse osteoporosis model, bone loss is interfered by inhibitors of sympathetic tone and adrenergic receptors that suppress bone formation. However, how beta adrenergic stimulation affects osteoblastic migration and associated proliferation is not known. Here we introduced a live imaging system, fluorescent ubiquitination-based cell cycle indicator (FUCCI), in osteoblast biology and examined isoproterenol regulation of cell cycle transition and cell migration in osteoblasts. Isoproterenol treatment suppresses the levels of first entry peak of quiescent osteoblastic cells into cell cycle phase by shifting from G1 /G0 to S/G2 /M and also suppresses the levels of second major peak population that enters into S/G2 /M. The isoproterenol regulation of osteoblastic cell cycle transition is associated with isoproterenol suppression on the velocity of migration. This isoproterenol regulation of migration velocity is cell cycle phase specific as it suppresses migration velocity of osteoblasts in G1 phase but not in G1 /S nor in G2 /M phase. Finally, these observations on isoproterenol regulation of osteoblastic migration and cell cycle transition are opposite to the PTH actions in osteoblasts. In summary, we discovered that sympathetic tone regulates osteoblastic migration in association with cell cycle transition by using FUCCI system.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jumpei Shirakawa
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Kondo M, Kondo H, Miyazawa K, Goto S, Togari A. Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone 2013; 52:39-47. [PMID: 23000507 DOI: 10.1016/j.bone.2012.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 01/03/2023]
Abstract
Experimental tooth movement (ETM) changes the distribution of sensory nerve fibers in periodontal ligament and the bone architecture through the stimulation of bone remodeling. As the sympathetic nervous system is involved in bone remodeling, we examined whether ETM is controlled by sympathetic signaling or not. In male mice, elastic rubber was inserted between upper left first molar (M1) and second molar (M2) for 3 or 5 days. Nerve fibers immunoreactive for not only sensory neuromarkers, such as calcitonin gene-related peptide (CGRP), but also sympathetic neuromarkers, such as tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were increased in the periodontal ligament during ETM. To elucidate the effect of the sympathetic signal mediated by ETM, mice were intraperitoneally injected with a β-antagonist, propranolol (PRO: 20 μg/g/day), or a β-agonist, isoproterenol (ISO: 5 μg/g/day) from 7 days before ETM. PRO treatment suppressed the amount of tooth movement by 12.9% in 3-day ETM and by 32.2% in 5-day ETM compared with vehicle treatment. On the other hand, ISO treatment increased it. Furthermore, ETM remarkably increased the osteoclast number on the bone surface (alveolar socket) (Oc.N/BS) in all drug treatments. PRO treatment suppressed Oc.N/BS by 39.4% in 3-day ETM, while ISO treatment increased it by 32.1% in 3-day ETM compared with vehicle treatment. Chemical sympathectomy using 6-hydroxydopamine (6-OHDA: 250 μg/g) showed results similar to those for PRO treatment in terms of both the amount of tooth movement and osteoclast parameters. Our data showed that blockade of sympathetic signaling inhibited the tooth movement and osteoclast increase induced by ETM, and stimulation of sympathetic signaling accelerated these responses. These data suggest that the mechano-adaptive response induced by ETM is controlled by sympathetic signaling through osteoclast activation.
Collapse
Affiliation(s)
- Mayo Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | | | | | | | | |
Collapse
|
10
|
Swift JM, Swift SN, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA. Cancellous bone formation response to simulated resistance training during disuse is blunted by concurrent alendronate treatment. J Bone Miner Res 2011; 26:2140-50. [PMID: 21509821 DOI: 10.1002/jbmr.407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to assess the effectiveness of simulated resistance training (SRT) exercise combined with alendronate (ALEN) in mitigating or preventing disuse-associated losses in cancellous bone microarchitecture and formation. Sixty male Sprague-Dawley rats (6 months old) were randomly assigned to either cage control (CC), hind limb unloading (HU), HU plus either ALEN (HU + ALEN), SRT (HU + SRT), or a combination of ALEN and SRT (HU + SRT/ALEN) for 28 days. HU + SRT and HU + SRT/ALEN rats were anesthetized and subjected to muscle contractions once every 3 days during HU (four sets of five repetitions, 1000 ms isometric + 1000 ms eccentric). Additionally, HU + ALEN and HU + SRT/ALEN rats received 10 µg/kg of body weight of ALEN three times per week. HU reduced cancellous bone-formation rate (BFR) by 80%, with no effect of ALEN treatment (-85% versus CC). SRT during HU significantly increased cancellous BFR by 123% versus CC, whereas HU + SRT/ALEN inhibited the anabolic effect of SRT (-70% versus HU + SRT). SRT increased bone volume and trabecular thickness by 19% and 9%, respectively, compared with CC. Additionally, osteoid surface (OS/BS) was significantly greater in HU + SRT rats versus CC (+32%). Adding ALEN to SRT during HU reduced Oc.S/BS (-75%), Ob.S/BS (-72%), OS/BS (-61%), and serum TRACP5b (-36%) versus CC. SRT and ALEN each independently suppressed a nearly twofold increase in adipocyte number evidenced with HU and inhibited increases in osteocyte apoptosis. These results demonstrate the anabolic effect of a low volume of high-intensity muscle contractions during disuse and suggest that both bone resorption and bone formation are suppressed when SRT is combined with bisphosphonate treatment.
Collapse
Affiliation(s)
- Joshua M Swift
- Departments of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 2008; 216:47-53. [DOI: 10.1002/jcp.21374] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|