1
|
Ecdysone-Induced 3D Chromatin Reorganization Involves Active Enhancers Bound by Pipsqueak and Polycomb. Cell Rep 2020; 28:2715-2727.e5. [PMID: 31484080 PMCID: PMC6754745 DOI: 10.1016/j.celrep.2019.07.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.
Collapse
|
2
|
Li J, Su X, Wang Y, Yang W, Pan Y, Su C, Zhang X. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genomics 2017; 40:1-15. [PMID: 29892895 DOI: 10.1007/s13258-017-0604-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
BTB (broad-complex, tramtrack, and bric-a-brac) family proteins are characterized by the presence of a protein-protein interaction BTB domain. BTB proteins have diverse functions, including transcriptional regulation, protein degradation, chromatin remodeling, and cytoskeletal regulation. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species. In this study, 38 BTB genes were identified based on tomato whole-genome sequence. Phylogenetic analysis of BTB proteins in tomato revealed that SlBTB proteins could be divided into at least 4 subfamilies. The SlBTB proteins contains 1-3 BTB domains, and several other types of functional domains, including KCTD (Potassium channel tetramerization domain-containing), the MATH (meprin and TRAF homology), ANK (Ankyrin repeats), NPR1 (nonexpressor of pathogenesis-related proteins1), NPH3 (Nonphototropic Hypocotyl 3), TAZ zinc finger, C-terminal Kelch, Skp1 and Arm (Armadillo/beta-catenin-like repeat) domains are also found in some tomato BTB proteins. Moreover, their expression patterns in tissues/stages, in response to different abiotic stress treatments and hormones were also investigated. This study provides the first comprehensive analysis of BTB gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of BTB genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiaoxing Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Chenggang Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
3
|
Chen J, Tambalo M, Barembaum M, Ranganathan R, Simões-Costa M, Bronner ME, Streit A. A systems-level approach reveals new gene regulatory modules in the developing ear. Development 2017; 144:1531-1543. [PMID: 28264836 PMCID: PMC5399671 DOI: 10.1242/dev.148494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/23/2023]
Abstract
The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition from progenitor to committed precursor, integrating known and novel molecular players. Our results not only characterize the otic transcriptome in unprecedented detail, but also identify new gene interactions responsible for inner ear development and for the segregation of the otic lineage from epibranchial progenitors. By recapitulating the embryonic programme, the genes and genetic sub-circuits discovered here might be useful for reprogramming naïve cells towards otic identity to restore hearing loss. Summary: Transcriptome analysis and knock down of select transcription factors reveals a genetic hierarchy as cells become committed to inner ear fate.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Meyer Barembaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ramya Ranganathan
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
4
|
Chaharbakhshi E, Jemc JC. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis 2016; 54:505-518. [DOI: 10.1002/dvg.22964] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Edwin Chaharbakhshi
- Department of Biology; Loyola University Chicago; Chicago IL
- Stritch School of Medicine; Loyola University Chicago; Maywood IL
| | | |
Collapse
|
5
|
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 2016; 34:277-87. [DOI: 10.1002/stem.2270] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/21/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Tong Ming Liu
- Cancer Stem Cell Biology, Genome Institute of Singapore; Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery; National University of Singapore; Singapore
- NUS Tissue Engineering Program (NUSTEP); National University of Singapore; Singapore
| | - Bing Lim
- Cancer Stem Cell Biology, Genome Institute of Singapore; Singapore
| | - Ng Shyh-Chang
- Stem Cell and Regenerative Biology; Genome Institute of Singapore; Singapore
| |
Collapse
|
6
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
7
|
Maeng O, Son W, Chung J, Lee KS, Lee YH, Yoo OJ, Cha GH, Paik SG. The BTB/POZ-ZF transcription factor dPLZF is involved in Ras/ERK signaling during Drosophila wing development. Mol Cells 2012; 33:457-63. [PMID: 22544070 PMCID: PMC3887728 DOI: 10.1007/s10059-012-2179-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/29/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022] Open
Abstract
In Drosophila, broad complex, tramtrack, bric à brac (BTB)/poxvirus and zinc finger (POZ) transcription factors are essential regulators of development. We searched the Drosophila genome for BTB/POZ-ZF domains and discovered an unknown Drosophila gene, dPLZF, which encodes an orthologue of human PLZF. We then characterized the biological function of the dPLZF via genetic interaction analysis. Ectopic expression of dPLZF in the wing induced extra vein formation during wing development in Drosophila. Genetic interactions between dPLZF and Ras or extracellular signal-regulated kinase (ERK) significantly enhanced the formation of vein cells. On the other hand, loss-of-function mutations in dPLZF resulted in a dramatic suppression of the extra and ectopic vein formation induced by elevated Ras/ERK signaling. Moreover, dPLZF activity upregulated the expression of rhomboid (rho) and spitz, which perform crucial functions in vein cell formation in the developing wing. These results indicate that dPLZF is a transcription factor controlled by the Ras/ERK signaling pathway, which is a prominent regulator of vein cell formation during wing development in Drosophila.
Collapse
Affiliation(s)
- Oky Maeng
- Department of Infection Biology, College of Medicine and Brain Korea 21 Program for Medical Science, Chungnam National University, Daejeon 301-131,
Korea
| | - Wonseok Son
- Graduate School of Medical Science and Engineering, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jongkyeong Chung
- School of Biological Science, Seoul National University, Seoul 151-742,
Korea
| | - Kyu-Sun Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine and Brain Korea 21 Program for Medical Science, Chungnam National University, Daejeon 301-131,
Korea
| | - Ook-Joon Yoo
- Graduate School of Medical Science and Engineering, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine and Brain Korea 21 Program for Medical Science, Chungnam National University, Daejeon 301-131,
Korea
| | - Sang-Gi Paik
- Department of Biology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
8
|
Roberts EA. Using metalloproteomics to investigate the cellular physiology of copper in hepatocytes. Metallomics 2012; 4:633-40. [DOI: 10.1039/c2mt20019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Funke-Kaiser H, Zollmann FS, Schefe JH, Unger T. Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens Res 2009; 33:98-104. [PMID: 20010781 DOI: 10.1038/hr.2009.206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The (pro)renin receptor ((P)RR) not only represents a novel component of the renin-angiotensin system but is also a promising novel drug target because of its crucial involvement in the pathogenesis of renal and cardiac end-organ damage. This review discusses the signal transduction of the (P)RR with its adapter protein promyelocytic zinc-finger protein, the impact of this receptor, especially on cardiovascular disease, and its putative interaction with renin inhibitors such as aliskiren. Furthermore, the increasing complexity regarding the cellular function of the (P)RR is addressed, which arises by the intimate link with proton pumps and the phosphatase PRL-1, as well as by the presence of different subcellular localizations and of a soluble isoform of the (P)RR. Finally, the rationale and strategy for the development of small-molecule antagonists of the (P)RR, called renin/prorenin receptor blockers, are presented.
Collapse
Affiliation(s)
- Heiko Funke-Kaiser
- Center for Cardiovascular Research/Institute of Pharmacology, Charité-University Medicine Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|
11
|
Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience 2008; 159:69-82. [PMID: 19141316 DOI: 10.1016/j.neuroscience.2008.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
Abstract
While the development of cerebellar granule and Purkinje neurons has been extensively studied, little is known about the developmental mechanisms that lead to the generation and diversification of inhibitory GABAergic interneurons of the cerebellar cortex. To address this issue, we compared gene expression in complete, early postnatal murine cerebella to that in cerebella from which immature inhibitory interneurons and their precursors had been stripped based on their expression of green fluorescent protein (GFP) from the Pax2 locus. We identified some 300 candidate genes selectively enriched within immature cerebellar cortical inhibitory interneurons and/or their precursors, many of which were also expressed in their adult descendants and/or the embryonic cerebellar ventricular epithelium that gives rise to these cells. None of the genes identified, among them Tcfap2alpha, Tcfap2beta, Lbxcor1 and Lbx1, was cell-type specific. Rather, gene expression, and also splicing, changed dynamically during development and rather reflects stage of differentiation than lineage. Consistently, cluster analysis of transcriptional regulators and genes specific for adult cerebellar GABAergic cells does not suggest a hierarchical lineage relationship or an early commitment of subtypes of cerebellar cortical inhibitory interneurons. Together, these data support the notion that diversification of cerebellar inhibitory interneurons is highly regulative and subject to local signaling to postmigratory precursors.
Collapse
|
12
|
Muller PA, Klomp LW. Novel perspectives in mammalian copper metabolism through the use of genome-wide approaches. Am J Clin Nutr 2008; 88:821S-5S. [PMID: 18779301 DOI: 10.1093/ajcn/88.3.821s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transition metal copper plays an essential role in many biological processes but is highly toxic in excess. Recent studies have characterized a highly conserved set of proteins that mediate cellular copper import, distribution, sequestration, utilization, and export. Nevertheless, the pathogenesis of copper overload and copper deficiency disorders is not well understood, and we are only beginning to comprehend the results of mild copper overload or deficiency in relation to nutritional uptake and common diseases at the population level. Technological advances open the possibility to dissect the complete genome for genetic variants predisposing to copper overload or depletion and for variations in gene expression generated by either reduced or excessive copper intake. We discuss the potential of integrated genome-wide applications to advance our knowledge of copper homeostasis and to develop molecular biomarker profiles as indicators of copper status.
Collapse
Affiliation(s)
- Patricia Aj Muller
- Laboratory for Metabolic and Endocrine Diseases, UMC Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
13
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
14
|
de Bie P, Muller P, Wijmenga C, Klomp LWJ. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 2007; 44:673-88. [PMID: 17717039 PMCID: PMC2752173 DOI: 10.1136/jmg.2007.052746] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper-induced trafficking, post-translational modifications and protein-protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
Collapse
Affiliation(s)
- P de Bie
- Laboratory of Metabolic and Endocrine Diseases, Room KC.02.069.1, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
15
|
La Fontaine S, Mercer JFB. Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 2007; 463:149-67. [PMID: 17531189 DOI: 10.1016/j.abb.2007.04.021] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 01/05/2023]
Abstract
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
| | | |
Collapse
|