1
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
2
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
3
|
Lateef Al-Awsi GR, Arshed U, Arif A, Ramírez-Coronel AA, Alhassan MS, Mustafa YF, Rahman FF, Zabibah RS, Gupta J, Iqbal MS, Iswanto AH, Farhood B. The Chemoprotective Potentials of Alpha-lipoic Acid against Cisplatin-induced Ototoxicity: A Systematic Review. Curr Med Chem 2024; 31:3588-3603. [PMID: 37165582 DOI: 10.2174/0929867330666230509162513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects. METHODS Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study. RESULTS The findings of in-vitro experiments showed that cisplatin treatment significantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes. CONCLUSION The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inflammatory activities, and regulation of cell cycle progression.
Collapse
Affiliation(s)
| | - Uzma Arshed
- Gujranwala Medical College, Gujranwala, Pakistan
| | - Anam Arif
- Gujranwala Medical College, Gujranwala, Pakistan
| | | | - Muataz S Alhassan
- Division of Advanced Nanomaterial Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Ferry Fadzlul Rahman
- Public Health Department, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Acim Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Liquid Crystalline Nanoparticles Conjugated with Dexamethasone Prevent Cisplatin Ototoxicity In Vitro. Int J Mol Sci 2022; 23:ijms232314881. [PMID: 36499206 PMCID: PMC9741167 DOI: 10.3390/ijms232314881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The conjugation of drugs with nanoparticles represents an innovative approach for controlled and targeted administration of therapeutic agents. Nanoparticle-based systems have been tested for the inner ear therapy, increasing the drug diffusion and being detected in all parts of the cochlea when locally applied near the round window. In this study, glycerol monooleate liquid crystalline NanoParticles were conjugated with Dexamethasone (NPD), a hydrophobic drug already used for inner ear treatments but defective in solubility and bioavailability. NPD has been tested in vitro in the cell line OC-k3, a model of sensory cells of the inner ear, and the therapeutic efficacy has been evaluated against cisplatin, a chemotherapeutic compound known to induce ototoxicity. After comparing the physical chemical characteristics of NPD to the equivalent naïve nanoparticles, an initial investigation was carried out into the nanoparticle's uptake in OC-k3 cells, which takes place within a few hours of treatment without causing toxic damage up to a concentration of 50 µg/mL. The NPD delivered the dexamethasone inside the cells at a significantly increased rate compared to the equivalent free drug administration, increasing the half-life of the therapeutic compound within the cell. Concerning the co-treatment with cisplatin, the NPD significantly lowered the cisplatin cytotoxicity after 48 h of administration, preventing cell apoptosis. To confirm this result, also cell morphology, cell cycle and glucocorticoids receptor expression were investigated. In conclusion, the NPD system has thus preliminarily shown the potential to improve the therapeutic efficacy of treatments delivered in the inner ear and prevent drug-induced ototoxicity.
Collapse
|
5
|
Ito S, Fuwa N, Nomura M, Daimon T, Ota S, Morishima T, Ii N, Miyati T. Intratumor hemodynamics using contrast-enhanced MRI in intra-arterial chemotherapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:706-715. [PMID: 35033464 DOI: 10.1016/j.oooo.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The objectives of the study were to estimate the perfusion of tumors by drugs used in intra-arterial chemotherapy for head and neck cancer with magnetic resonance imaging and to establish the factors involved in determining the optimal dose. STUDY DESIGN Contrast agent was administered intra-arterially into either the lingual or maxillary artery in 43 patients. Triple-phase continuous fast spin echo magnetic resonance imaging was performed. Changes in blood water longitudinal relaxation rate (⊿R1) were measured in relation to imaging phase, type of artery, measurement site, and tumor size. RESULTS ⊿R1 was significantly higher at the tumor margin than at the center for both arteries, except in the first phase for the lingual artery. ⊿R1 was greatest in the third phase for the lingual artery and in the second phase for the maxillary artery. For both arteries, as the tumor size increased, there was a significant decrease in ⊿R1 at the center of the tumor compared with the margin. CONCLUSIONS The factors associated with ⊿R1 were imaging phase, type of artery, measurement site, and tumor size. When determining a drug's optimal dose, the type of artery and tumor size must be taken into consideration.
Collapse
Affiliation(s)
- Shintaro Ito
- Department of Medical Technology, Ise Red Cross Hospital, Mie, Japan; Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Nobukazu Fuwa
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan; Department of Radiation Oncology, Central Japan International Medical Center, Gifu, Japan
| | - Miwako Nomura
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo College of Medicine, Hyogo, Japan
| | - Suguru Ota
- Department of Medical Technology, Ise Red Cross Hospital, Mie, Japan
| | | | - Noriko Ii
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
6
|
c-Myb protects cochlear hair cells from cisplatin-induced damage via the PI3K/Akt signaling pathway. Cell Death Dis 2022; 8:78. [PMID: 35210433 PMCID: PMC8873213 DOI: 10.1038/s41420-022-00879-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
Abstract
The transcription factor c-Myb is vital for cell survival, proliferation, differentiation, and apoptosis. We have previously reported that c-Myb knockdown exacerbates neomycin-induced damage to cochlea cells. However, the function and regulation of c-Myb in the mammalian inner ear remains unclear. Here, we first found that the expression of c-Myb in cochlear HCs was downregulated after cisplatin damage in vivo. Next, to investigate the role of c-Myb in HCs treated with cisplatin, the recombinant virus AAV-ie-CAG-Myb-HA (AAV-c-Myb) that overexpresses c-Myb was constructed and transfected into HCs. The protein expression of c-Myb was effectively up-regulated in cultured cochlear HCs after the virus transfection, which increased cochlear HC viability, decreased HC apoptosis and reduced intracellular reactive oxygen species (ROS) levels after cisplatin injury in vitro. The overexpression of c-Myb in HCs after AAV-c-Myb transfection in vivo also promoted HC survival, improved the hearing function of mice and reduced HC apoptosis after cisplatin injury. Furthermore, c-Myb-HC conditional knockout mice (Prestin; c-Myb-cKO) in which c-Myb expression is downregulated only in cochlear OHCs were generated and the cisplatin-induced HCs loss, apoptosis and hearing deficit were all exacerbated in Prestin; c-Myb-cKO mice treated with cisplatin in vivo. Finally, mechanistic studies showed that upregulation of the PI3K/Akt signaling pathway by c-Myb contributed to the increased HC survival after cisplatin exposure in vitro. The findings from this work suggest that c-Myb might serve as a new target for the prevention of cisplatin-induced HC damage and hearing loss.
Collapse
|
7
|
Gentilin E, Cani A, Simoni E, Chicca M, Di Paolo ML, Martini A, Astolfi L. Hydrogen peroxide toxicity on auditory cells: An in vitro study. Chem Biol Interact 2021; 345:109575. [PMID: 34228970 DOI: 10.1016/j.cbi.2021.109575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
In recent decades, interest has increased in the role of reactive oxygen species (ROS) in health and disease. The ROS are key causative factors in several hearing loss pathologies including ototoxicity, noise trauma, cochlear ageing and ischemic injury. In order to investigate ROS effects on inner ear cells and counteract them, we developed an in vitro model of oxidative stress by exposing the inner ear cell line OC-k3 to hydrogen peroxide (H2O2) at concentrations able to affect in vivo cellular components but allowing cell survival. The treatment with high concentrations (20 and 30 μM) resulted in reduction of cell viability, activation of apoptosis/necrosis and alteration of morphology, cell cycle progression and antioxidant defences. The ROS effects in inner ear cells are difficult to assess in vivo. Organocultures may provide preservation of tissue architecture but involve ethical issues and can be used only for a limited time. An in vitro model that could be commercially available and easy to handle is necessary to investigate inner ear oxidative stress and the ways to counteract it. The OC-k3 line is a suitable in vitro model to study ROS effects on inner ear cells because the observed cell alterations and damages were similar to those reported in studies investigating ROS effects of ototoxic drugs, noise trauma and cochlear ageing.
Collapse
Affiliation(s)
- Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Alice Cani
- Department of Woman and Children's Health, University of Padua, Padua, Italy.
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | - Alessandro Martini
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| |
Collapse
|
8
|
Kuijpers T, Blom B. Homo and heterobimetallic palladium and platinum complexes bearing μ-diphosphane bridges involved in biological studies. Eur J Med Chem 2021; 223:113651. [PMID: 34214843 DOI: 10.1016/j.ejmech.2021.113651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 02/03/2023]
Abstract
Given the increasing reports of well-defined bimetallic molecular complexes as potential anticancer agents in the last decades, along with the prevalence of platinum in anticancer therapy, we report here a detailed survey of bimetallic platinum and palladium complexes investigated as potential anticancer agents. Specifically, we will concentrate on the synthesis, characterisation and biological (anticancer) studies of a sub-class of these agents, namely homo and heterobimetallic complexes bearing a bridging phosphane ligand of the type: [LnM1(μ-R2P(CH2)nPR2)M2Lm] (where M1 is platinum or palladium, M2 is any other transition metal, R = alkyl or aryl substituents, Ln or Lm are co-ligands, n = 1-6). We will review the in vitro and in vivo activities and any mechanistic anticancer studies of these complexes with a view of trying to delineate patterns in biological activity and structure-activity relationships (SAR). We do not include the review of bimetallic complexes in this class that have not undergone any anticancer testing, nor those that have been involved in other biological investigations unrelated to cancer studies.
Collapse
Affiliation(s)
- Talita Kuijpers
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, PO Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Liu W, Xu L, Wang X, Zhang D, Sun G, Wang M, Wang M, Han Y, Chai R, Wang H. PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage. Autophagy 2021; 17:4159-4181. [PMID: 33749526 PMCID: PMC8726717 DOI: 10.1080/15548627.2021.1905466] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are auditory neurons that relay sound signals from the inner ear to the brainstem. The ototoxic drug cisplatin can damage SGNs and thus lead to sensorineural hearing loss (SNHL), and there are currently no methods for preventing or treating this. Macroautophagy/autophagy plays a critical role in SGN development, but the effect of autophagy on cisplatin-induced SGN injury is unclear. Here, we first found that autophagic flux was activated in SGNs after cisplatin damage. The SGN apoptosis and related hearing loss induced by cisplatin were alleviated after co-treatment with the autophagy activator rapamycin, whereas these were exacerbated by the autophagy inhibitor 3-methyladenine, indicating that instead of inducing SGN death, autophagy played a neuroprotective role in SGNs treated with cisplatin both in vitro and in vivo. We further demonstrated that autophagy attenuated reactive oxygen species (ROS) accumulation and alleviated cisplatin-induced oxidative stress in SGNs to mediate its protective effects. Notably, the role of the antioxidant enzyme PRDX1 (peroxiredoxin 1) in modulating autophagy in SGNs was first identified. Deficiency in PRDX1 suppressed autophagy and increased SGN loss after cisplatin exposure, while upregulating PRDX1 pharmacologically or by adeno-associated virus activated autophagy and thus inhibited ROS accumulation and apoptosis and attenuated SGN loss induced by cisplatin. Finally, we showed that the underlying mechanism through which PRDX1 triggers autophagy in SGNs was, at least partially, through activation of the PTEN-AKT signaling pathway. These findings suggest potential therapeutic targets for the amelioration of drug-induced SNHL through autophagy activation. Abbreviations: 3-MA: 3-methyladenine; AAV : adeno-associated virus; ABR: auditory brainstem responses; AKT/protein kinase B: thymoma viral proto-oncogene; Baf: bafilomycin A1; CAP: compound action potential; COX4I1: cytochrome c oxidase subunit 4I1; Cys: cysteine; ER: endoplasmic reticulum; H2O2: hydrogen peroxide; HC: hair cell; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; NAC: N-acetylcysteine; PRDX1: peroxiredoxin 1; PTEN: phosphatase and tensin homolog; RAP: rapamycin; ROS: reactive oxygen species; SGNs: spiral ganglion neurons; SNHL: sensorineural hearing loss; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling; WT: wild type.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingming Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Ibrahim MA, Albahlol IA, Wani FA, Abd-Eltawab Tammam A, Kelleni MT, Sayeed MU, Abd El-Fadeal NM, Mohamed AA. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem Biol Interact 2021; 338:109402. [PMID: 33587916 DOI: 10.1016/j.cbi.2021.109402] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/02/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin is an important antineoplastic drug used in multiple chemotherapeutic regimens but unfortunately causes serious toxic effects as ovarian and uterine toxicity. This study aimed to investigate the potential protective effect of resveratrol (RSV) against cisplatin-induced ovarian and uterine toxicity in female rats. Thirty-two female Wistar rats were divided randomly into four groups (n = 8 in each). Control group received oral normal saline for 28 days; RSV group received RSV (10 mg/kg; daily) via oral gavage; CIS group received a single dose of CIS (7 mg/kg; i.p.) on the 21st day; (CIS + RSV) group received both RSV and CIS by the same schedules and doses of RSV and CIS groups, respectively. Results demonstrated a significant decrease in MDA level and a significant increase in both glutathione content and activity of the antioxidant enzymes GPx, SOD, and CAT in the tissues of the ovary and uterus of CIS + RSV group in comparison to that of CIS group (P<0.05), also there are significantly decreased tissue levels of the proinflammatory cytokines and enzymes (NF-κB, IL-1β, IL-6, TNF-α, COX-2, and iNOS), increased estradiol, progesterone, prolactin and decreased FSH serum levels in CIS + RSV group compared to CIS group (P < 0.05). Moreover, there is downregulation of tissues Cleaved Caspase-3, NF-κB and Cox-2 proteins as shown in Western blot analysis, also apoptosis was significantly inhibited, evidenced by downregulation of Bax and upregulation of Bcl-2 proteins, and the ovarian and uterine histological architecture and integrity were maintained in CIS + RSV group compared to CIS group. In conclusion, these findings indicate that RSV has beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the ovarian and uterine tissues of female rats.
Collapse
Affiliation(s)
- Mahrous Abdelbasset Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia, 41522, Egypt.
| | - Ibrahim Abdelkhalek Albahlol
- Obstetrics and Gynecology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Obstetrics and Gynecology Department, Faculty of Medicine, Mansoura University, Egypt.
| | - Farooq Ahmed Wani
- Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia.
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Mina Thabet Kelleni
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University (SCU), Ismailia, Egypt.
| | - Alaa Abdelhamid Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
11
|
Fetoni AR, Astolfi L. Cisplatin ototoxicity and role of antioxidant on its prevention. HEARING, BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2020.1810962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Simoni E, Valente F, Boge L, Eriksson M, Gentilin E, Candito M, Cazzador D, Astolfi L. Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. Int J Pharm 2019; 572:118788. [DOI: 10.1016/j.ijpharm.2019.118788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
|
13
|
Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-Induced Ototoxicity: Updates on Molecular Targets. Trends Mol Med 2019; 25:1123-1132. [DOI: 10.1016/j.molmed.2019.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
|
14
|
Tropitzsch A, Müller M, Paquet-Durand F, Mayer F, Kopp HG, Schrattenholz A, Müller A, Löwenheim H. Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Front Cell Neurosci 2019; 13:406. [PMID: 31551715 PMCID: PMC6746891 DOI: 10.3389/fncel.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Mayer
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Andrea Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
15
|
Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci Rep 2019; 9:2410. [PMID: 30787404 PMCID: PMC6382871 DOI: 10.1038/s41598-019-38634-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Spread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin. Following local round window application, dose-dependent effects of AGs on outer hair cell survival and compound action potentials showed gentamicin C1a and apramycin as the least toxic. Strikingly, although no changes were observed in compound action potential thresholds and outer hair cell survival following treatment with low concentrations of neomycin, gentamicin and paromomycin, the number of inner hair cell synaptic ribbons and the compound action potential amplitudes were reduced. This indication of hidden hearing loss was not observed with gentamicin C1a or apramycin at such concentrations. These findings identify the inner hair cells as the most vulnerable element to AG treatment, indicating that gentamicin C1a and apramycin are promising bases for the development of clinically useful antibiotics.
Collapse
|
16
|
Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J Neurosci 2016; 36:3962-77. [PMID: 27053204 PMCID: PMC4821909 DOI: 10.1523/jneurosci.3111-15.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 01/19/2023] Open
Abstract
Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R-phenylisopropyladenosine (R-PIA) and showed that it reduced cisplatin-induced inflammation and apoptosis in the rat cochlea and preserved hearing. The mechanism of protection involves suppression of the NOX3 NADPH oxidase enzyme, a major target of cisplatin-induced reactive oxygen species (ROS) generation in the cochlea. ROS initiates an inflammatory and apoptotic cascade in the cochlea by activating STAT1 transcription factor, which is attenuated byR-PIA. Therefore, trans-tympanic delivery of A1AR agonists could effectively treat cisplatin ototoxicity.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | | | | | - Kelly Sheehan
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | | | | | | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Leonard P Rybak
- Department of Pharmacology and Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | |
Collapse
|
17
|
Astolfi L, Simoni E, Martini A. OC-k3 cells, anin vitromodel for cochlear implant biocompatibility. HEARING BALANCE AND COMMUNICATION 2015. [DOI: 10.3109/21695717.2015.1063232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Callejo A, Sedó-Cabezón L, Juan ID, Llorens J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. TOXICS 2015; 3:268-293. [PMID: 29051464 PMCID: PMC5606684 DOI: 10.3390/toxics3030268] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Cisplatin is a highly effective chemotherapeutic agent that is widely used to treat solid organ malignancies. However, serious side effects have been associated with its use, such as bilateral, progressive, irreversible, dose-dependent neurosensory hearing loss. Current evidence indicates that cisplatin triggers the production of reactive oxygen species in target tissues in the inner ear. A variety of agents that protect against cisplatin-induced ototoxicity have been successfully tested in cell culture and animal models. However, many of them interfere with the therapeutic effect of cisplatin, and therefore are not suitable for systemic administration in clinical practice. Consequently, local administration strategies, namely intratympanic administration, have been developed to achieve otoprotection, without reducing the antitumoral effect of cisplatin. While a considerable amount of pre-clinical information is available, clinical data on treatments to prevent cisplatin ototoxicity are only just beginning to appear. This review summarizes clinical and experimental studies of cisplatin ototoxicity, and focuses on understanding its toxicity mechanisms, clinical repercussions and prevention strategies.
Collapse
Affiliation(s)
- Angela Callejo
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
| | - Lara Sedó-Cabezón
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Ivan Domènech Juan
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
- Servei d'Otorrinolaringologia, Hospital Universitario de Bellvitge, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| |
Collapse
|
19
|
Kim J, Cho HJ, Sagong B, Kim SJ, Lee JT, So HS, Lee IK, Kim UK, Lee KY, Choo YS. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Biochem Biophys Res Commun 2014; 449:183-9. [DOI: 10.1016/j.bbrc.2014.04.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 12/20/2022]
|
20
|
Tropitzsch A, Arnold H, Bassiouni M, Müller A, Eckhard A, Müller M, Löwenheim H. Assessing cisplatin-induced ototoxicity and otoprotection in whole organ culture of the mouse inner ear in simulated microgravity. Toxicol Lett 2014; 227:203-12. [PMID: 24709139 DOI: 10.1016/j.toxlet.2014.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/20/2022]
Abstract
Cisplatin is a widely used anti-cancer drug. Ototoxicity is a major dose-limiting side-effect. A reproducible mammalian in-vitro model of cisplatin ototoxicity is required to screen and validate otoprotective drug candidates. We utilized a whole organ culture system of the postnatal mouse inner ear in a rotating wall vessel bioreactor under "simulated microgravity" culture conditions. As previously described this system allows whole organ culture of the inner ear and quantitative assessment of ototoxic effects of aminoglycoside induced hair cell loss. Here we demonstrate that this model is also applicable to the assessment of cisplatin induced ototoxicity. In this model cisplatin induced hair cell loss was dose and time dependent. Increasing exposure time of cisplatin led to decreasing EC50 concentrations. Outer hair cells were more susceptible than inner hair cells, and hair cells in the cochlear base were more susceptible than hair cells in the cochlear apex. Initial cisplatin dose determined the final extent of hair cell loss irrespective if the drug was withdrawn or continued. Dose dependant otoprotection was demonstrated by co-administration of the antioxidant agent N-acetyl l-cysteine. The results support the use of this inner ear organ culture system as an in vitro assay and validation platform for inner ear toxicology and the search for otoprotective compounds.
Collapse
Affiliation(s)
- Anke Tropitzsch
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Heinz Arnold
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Mohamed Bassiouni
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Andrea Müller
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Andreas Eckhard
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Marcus Müller
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| | - Hubert Löwenheim
- University of Tübingen Medical School, Department of Otorhinolaryngology - Head & Neck Surgery, Hearing Research Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
| |
Collapse
|
21
|
Choi S, Kim S, Lee J, Lim H, Kim Y, Tian C, So H, Park R, Choung Y.H. Gingko biloba extracts protect auditory hair cells from cisplatin-induced ototoxicity by inhibiting perturbation of gap junctional intercellular communication. Neuroscience 2013; 244:49-61. [DOI: 10.1016/j.neuroscience.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 12/23/2022]
|
22
|
Abujamra AL, Escosteguy JR, Dall'Igna C, Manica D, Cigana LF, Coradini P, Brunetto A, Gregianin LJ. The use of high-frequency audiometry increases the diagnosis of asymptomatic hearing loss in pediatric patients treated with cisplatin-based chemotherapy. Pediatr Blood Cancer 2013; 60:474-8. [PMID: 22744939 DOI: 10.1002/pbc.24236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cisplatin may cause permanent cochlear damage by changing cochlear frequency selectivity and can lead to irreversible sensorineural hearing loss. High-frequency audiometry (HFA) is able to assess hearing frequencies above 8,000 Hz; hence, it has been considered a high-quality method to monitor and diagnose early and asymptomatic signs of ototoxicity in patients receiving cisplatin. PROCEDURE Forty-two pediatric patients were evaluated for hearing loss induced by cisplatin utilizing HFA, and its diagnostic efficacy was compared to that of standard pure-tone audiometry and distortion-product otoacoustic emissions (DPOAEs). The patient population consisted of those who signed an informed consent form and had received cisplatin chemotherapy between 1991 and 2008 at the Hospital de Clínicas de Porto Alegre Pediatric Unit, Brazil. RESULTS Forty-two patients were evaluated. The median age at study assessment was 14.5 years (range 4-37 years). Hearing loss was detected in 24 patients (57%) at conventional frequencies. Alterations of DPOAEs were found in 64% of evaluated patients and hearing loss was observed in 36 patients (86%) when high-frequency test was added. The mean cisplatin dose was significantly higher (P = 0.046) for patients with hearing impairment at conventional frequencies. CONCLUSION The results suggest that HFA is more effective than pure-tone audiometry and DPOAEs in detecting hearing loss, particularly at higher frequencies. It may be a useful tool for testing new otoprotective agents, beside serving as an early diagnostic method for detecting hearing impairment.
Collapse
|
23
|
Astolfi L, Ghiselli S, Guaran V, Chicca M, Simoni E, Olivetto E, Lelli G, Martini A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: a retrospective evaluation. Oncol Rep 2013; 29:1285-92. [PMID: 23404427 PMCID: PMC3621656 DOI: 10.3892/or.2013.2279] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/05/2012] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is the most common antineoplastic drug used for the therapy of solid tumours. To date, researchers have focused on the dosage to be administered for each specific tumour, mainly considering the local adverse effects. The aim of this study was to correlate the severity of the adverse effects with: i) the dosage of cisplatin; ii) the specific site of the tumour; iii) the association with other drugs; and iv) the symptoms. We analysed data from 123 patients with 11 different tumour classes undergoing therapy from 2007 to 2008 at St. Anna Hospital (Ferrara, Italy), using the Spearman non-parametric correlation index. Even though significant correlations were found among the variables, the overall results showed that the main factor influencing the severity of the adverse effects was the dosage of cisplatin administered.
Collapse
Affiliation(s)
- Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, I-35129 Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shin YS, Song SJ, Kang S, Hwang HS, Jung YS, Kim CH. Novel synthetic protective compound, KR-22335, against cisplatin-induced auditory cell death. J Appl Toxicol 2013; 34:191-204. [DOI: 10.1002/jat.2852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Yoo Seob Shin
- Department of Otolaryngology, School of Medicine; Ajou University; Suwon Korea
- Center for Cell Death Regulating Biodrug, School of Medicine; Ajou University; Suwon Korea
| | - Suk Jin Song
- Bio-organic Science Division; Korea Research Institute of Chemical Technology; Yuseong Daejeon Korea
| | - SungUn Kang
- Department of Otolaryngology, School of Medicine; Ajou University; Suwon Korea
- Center for Cell Death Regulating Biodrug, School of Medicine; Ajou University; Suwon Korea
| | - Hye Sook Hwang
- Department of Otolaryngology, School of Medicine; Ajou University; Suwon Korea
- Center for Cell Death Regulating Biodrug, School of Medicine; Ajou University; Suwon Korea
| | - Young-Sik Jung
- Bio-organic Science Division; Korea Research Institute of Chemical Technology; Yuseong Daejeon Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine; Ajou University; Suwon Korea
- Center for Cell Death Regulating Biodrug, School of Medicine; Ajou University; Suwon Korea
| |
Collapse
|
25
|
Lee J, Kang S, Hwang H, Pyun J, Choung Y, Kim C. Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK. Toxicol Lett 2010; 199:308-16. [DOI: 10.1016/j.toxlet.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/18/2010] [Accepted: 09/20/2010] [Indexed: 12/20/2022]
|
26
|
Astolfi L, Simoni E, Ciorba A, Martini A. In vitro protective effects of Ginkgo biloba against cisplatin toxicity in mouse cell line OCk3. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860802527930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci 2009; 29:3843-51. [PMID: 19321781 DOI: 10.1523/jneurosci.5842-08.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a chemotherapy drug that frequently causes auditory impairment due to the death of mechanosensory hair cells. Cisplatin ototoxicity may result from oxidative stress, DNA damage, and inflammatory cytokines. The transcription factor STAT1, an important mediator of cell death, can regulate all of these processes in other cell types. We used cultured utricles from mature Swiss Webster mice to investigate the role of STAT1 in cisplatin-induced hair cell death. We show that STAT1 phosphorylation is an early event in both hair cells and support cells after exposure of utricles to cisplatin. STAT1 phosphorylation peaked after 4 h of cisplatin exposure and returned to control levels by 8 h of exposure. The STAT1 inhibitor epigallocatechin gallate (EGCG) attenuated STAT1 phosphorylation in cisplatin-treated utricles and resulted in concentration-dependent increases in hair cell survival at 24 h postexposure. Furthermore, we show that utricular hair cells from STAT1-deficient mice are resistant to cisplatin toxicity. EGCG failed to provide additional protection from cisplatin in STAT1-deficient mice, further supporting the hypothesis that the protective effects of EGCG are due to its inhibition of STAT1. Treatment with IFN-gamma, which also causes STAT1 activation, also induced hair cell death in wild-type but not STAT1-deficient mice. These results show that STAT1 is required for maximal cisplatin-induced hair cell death in the mouse utricle and suggest that treatment with EGCG may be a useful strategy for prevention of cisplatin ototoxicity.
Collapse
|
28
|
Egger AE, Rappel C, Jakupec MA, Hartinger CG, Heffeter P, Keppler BK. Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2009; 24:51-61. [PMID: 22723721 PMCID: PMC3378211 DOI: 10.1039/b810481f] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cellular uptake is being widely investigated in the context of diverse biological activities of metal compounds on the cellular level. However, the applied techniques differ considerably, and a validated methodology is not at hand. Therefore, we have varied numerous aspects of sample preparation of the human colon carcinoma cell line SW480 exposed in vitro to the tumor-inhibiting metal complexes cisplatin and indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)] (KP1019) prior to analysis with ICP-MS, and the results were found to be tremendously influenced by adsorption to the culture dishes. Adsorption to culture plates increases linearly with the concentration of KP1019, depends on the protein content of the medium, the duration of contact to protein-containing medium prior to drug addition and the hydrophilicity/lipophilicity of the compound. For varying degrees of cell confluence, adsorption of Ru hardly differs from cell-free experiments. Desorption from the plates contributes to total Ru detected in dependence on the cell harvesting method. Desorption kinetics for lysis in HNO(3) and tetramethylammonium hydroxide (TMAH) are comparable, but TMAH is a more potent desorbant. Sample storage conditions prior to analysis influence significantly the recovery of analyte. Protocols using cell lysis in the culture plate without proper corrections run the risk of producing artefacts resulting from metal adsorption/desorption to an extent comparable with the actual cellular content. However, experimental protocols reported in the literature frequently do not contain information whether adsorption or blank correction were performed and should be regarded with caution, especially if lysis was performed directly in the culture dishes.
Collapse
Affiliation(s)
- Alexander E. Egger
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Christina Rappel
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
- *; ; Fax: +43 1-4277-9526; Tel: +43 1-4277-52600
| | - Christian G. Hartinger
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Petra Heffeter
- Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
- *; ; Fax: +43 1-4277-9526; Tel: +43 1-4277-52600
| |
Collapse
|
29
|
Sodium Azide Induced Neuronal Damage In Vitro: Evidence for Non-Apoptotic Cell Death. Neurochem Res 2008; 34:909-16. [DOI: 10.1007/s11064-008-9852-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/05/2008] [Indexed: 11/25/2022]
|
30
|
ERK-like MAPK signaling and cytochrome c response to oleic acid in two-liquid-phase suspension cultures of Taxus cuspidata. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhuo XL, Wang Y, Zhuo WL, Zhang YS, Wei YJ, Zhang XY. Adenoviral-mediated up-regulation of Otos, a novel specific cochlear gene, decreases cisplatin-induced apoptosis of cultured spiral ligament fibrocytes via MAPK/mitochondrial pathway. Toxicology 2008; 248:33-8. [PMID: 18403086 DOI: 10.1016/j.tox.2008.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 12/20/2022]
Abstract
Previous reports have implicated Otos, a novel specific gene expressed by spiral ligament fibrocytes (SLFs) with unclear functions, as a protective gene for cochlea. However, whether Otos gene could protect SLFs against cisplatin (DDP)-induced apoptosis remains largely unknown. In the present study, we utilized Adenoviral-mediated gene transfection to up-regulate Otos expression in cultured SLFs and further assessed the cell viability and apoptosis as well as possible MAPK and mitochondrial pathways. As expected, the data showed that Otos up-regulation significantly decreased apoptosis of SLFs induced by DDP possibly through activation of ERK and partial inhibition of JNK and mitochondrial pathway but not p-38 pathway, suggesting Otos as a potential protective gene for cochlea and raising the possibility of Otos up-regulation as a promising approach to DDP-induced deafness therapy.
Collapse
Affiliation(s)
- Xian-Lu Zhuo
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|