1
|
Shuangshuang H, Mengmeng S, Lan Z, Fang Z, Yu L. Maimendong decoction regulates M2 macrophage polarization to suppress pulmonary fibrosis via PI3K/Akt/FOXO3a signalling pathway-mediated fibroblast activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117308. [PMID: 37865276 DOI: 10.1016/j.jep.2023.117308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mai Men Dong decoction (MMDD), a traditional Chinese medicine formula, is relevant to ethnopharmacology due to its constituents and therapeutic properties. The formula contains herbs like Ophiopogon japonicus (Thunb.) Ker Gawl., Pinellia ternata (Thunb.) Makino, Panax ginseng C.A.Mey, Glycyrrhiza uralensis Fisch, and Ziziphus jujuba Mill, Oryza sativa L., which have been used for centuries in Chinese medicine. These herbs provide a comprehensive approach to treating respiratory conditions by addressing dryness, cough, and phlegm. Ethnopharmacological studies have explored the scientific basis of these herbs and identified active compounds that contribute to their medicinal effects. The traditional usage of MMDD by different ethnic groups reflects their knowledge and experiences. Examining this formula contributes to the understanding and development of ethnopharmacology. AIM OF THE STUDY In the case of pulmonary fibrosis (PF), treating it can be challenging due to the limited treatment options available. This study aimed to assess the potential of MMDD as a treatment for PF by targeting macrophages and the PI3K/Akt/FOXO3a signaling pathway. MATERIALS AND METHODS In a mouse model of PF, we investigated the effects of MMDD on inflammation, fibrosis, and M2 macrophage infiltration in lung tissue. Additionally, we examined the modulation of pro-fibrotic factors and key proteins in the PI3K/Akt/FOXO3a pathway. In vitro experiments involved inducing M2-type macrophages and assessing the impact of MMDD on fibroblast activation and the PI3K/Akt/FOXO3a pathway. RESULTS Results demonstrated that MMDD improved weight, reduced inflammation, and inhibited M2 macrophage infiltration in mouse lung tissue. It downregulated pro-fibrotic factors, such as TGF-β1 and PDGF-RB, as well as markers of fibroblast activation. MMDD also exhibited regulatory effects on key proteins in the PI3K/Akt/FOXO3a signaling pathway. CONCLUSIONS MMDD inhibited M2 macrophage polarization and released profibrotic factors that inhibited pulmonary fibrosis. As a result, the PI3K/Akt/FOXO3a signaling pathway is suppressed. MMDD is proving to be a successful treatment for PF. However, further research is needed to validate its effectiveness in clinical practice.
Collapse
Affiliation(s)
- He Shuangshuang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Shen Mengmeng
- School of Chinese North China University of Science and Technology, China
| | - Zhang Lan
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Zhang Fang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Li Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
2
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Extracellular matrix turnover in salivary gland disorders and regenerative therapies: Obstacles and opportunities. J Oral Biol Craniofac Res 2023; 13:693-703. [PMID: 37719063 PMCID: PMC10502366 DOI: 10.1016/j.jobcr.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Salivary gland (SG) extracellular matrix (ECM) has a major influence on tissue development, homeostasis, and tissue regeneration after injury. During aging, disease, and physical insult, normal remodeling of the SG microenvironment (i.e. ECM) becomes dysregulated, leading to alterations in matrix composition which disrupt tissue architecture/structure, alter cell activity, and negatively impact gland function. Matrix metalloproteinases (MMPs) are a large and diverse family of metalloendopeptidases which play a major role in matrix degradation and are intimately involved in regulating development and cell function; dysregulation of these enzymes leads to the production of a fibrotic matrix. In the SG this altered fibrotic ECM (or cell microenvironment) negatively impacts normal cell function and the effectiveness of gene and stem cell therapies which serve as a foundation for many SG regenerative therapies. For this reason, prospective regenerative strategies should prioritize the maintenance and/or restoration of a healthy SG ECM. Mesenchymal stem cells (MSCs) have great potential for mitigating damage to the SG microenvironment by ameliorating inflammation, reducing fibrosis, and repairing the damaged milieu of extracellular regulatory cues, including the matrix. This review addresses our current understanding of the impact of aging and disease on the SG microenvironment and suggests critical deficiencies and opportunities in ECM-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - Olivia N. Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - David D. Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| |
Collapse
|
3
|
Klee S, Picart-Armada S, Wenger K, Birk G, Quast K, Veyel D, Rist W, Violet C, Luippold A, Haslinger C, Thomas M, Fernandez-Albert F, Kästle M. Transcriptomic and proteomic profiling of young and old mice in the bleomycin model reveals high similarity. Am J Physiol Lung Cell Mol Physiol 2023; 324:L245-L258. [PMID: 36625483 DOI: 10.1152/ajplung.00253.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The most common preclinical, in vivo model to study lung fibrosis is the bleomycin-induced lung fibrosis model in 2- to 3-mo-old mice. Although this model resembles key aspects of idiopathic pulmonary fibrosis (IPF), there are limitations in its predictability for the human disease. One of the main differences is the juvenile age of animals that are commonly used in experiments, resembling humans of around 20 yr. Because IPF patients are usually older than 60 yr, aging appears to play an important role in the pathogenesis of lung fibrosis. Therefore, we compared young (3 months) and old mice (21 months) 21 days after intratracheal bleomycin instillation. Analyzing lung transcriptomics (mRNAs and miRNAs) and proteomics, we found most pathways to be similarly regulated in young and old mice. However, old mice show imbalanced protein homeostasis as well as an increased inflammatory state in the fibrotic phase compared to young mice. Comparisons with published human transcriptomic data sets (GSE47460, GSE32537, and GSE24206) revealed that the gene signature of old animals correlates significantly better with IPF patients, and it also turned human healthy individuals better into "IPF patients" using an approach based on predictive disease modeling. Both young and old animals show similar molecular hallmarks of IPF in the bleomycin-induced lung fibrosis model, although old mice more closely resemble several features associated with IPF in comparison to young animals.
Collapse
Affiliation(s)
- Stephan Klee
- Department Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sergio Picart-Armada
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kathrin Wenger
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald Birk
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Karsten Quast
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Veyel
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wolfgang Rist
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Coralie Violet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Luippold
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Haslinger
- Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthew Thomas
- Department Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Francesc Fernandez-Albert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Marc Kästle
- Department Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
4
|
Zhang W, Zhang J, Huang H. Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res 2022; 420:113332. [PMID: 36084668 DOI: 10.1016/j.yexcr.2022.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Acute renal damage presents a significant danger to kidney health. Previous research has found that acute kidney injury shows high levels of oxidative stress and inflammation caused by sepsis. Although mesenchymal stem cells (MSCs) can repair acute kidney injury. However, involvement of MSCs exosomes generated from adipose tissue and bone marrow in lipopolysaccharide-induced acute kidney damage is not clear. LPS (7.5 mg/kg) intraperitoneal injection was used to produce AKI, and 30 min before the LPS administration, adipose-derived MSCs (ADSCs) exosomes (1 × 105 and 5 × 105) and bone marrow-derived MSCs(BMSCs) exosomes (1 × 105 and 5 × 105) were delivered individually. The function of the rat kidney was explored. Inflammation, oxidative stress, and autophagy levels were further investigated. Both adipose-derived and bone marrow-derived MSCs can enhance renal function and structural damage, such as BUN, Creatinine, and cystatin C levels, as well as tubular damage scores. These findings indicate that both adipose-derived MSCs exosomes and bone marrow-derived MSCs exosomes decrease oxidative stress and inflammation, as well as make a substantial influence on kidney tissue in autophagy levels. Furthermore, compared to bone marrow-derived MSCs exosomes, adipose-derived MSCs exosomes improved kidney function and structure more significantly. We discovered that adipose-derived MSCs exosomes protect against LPS-induced AKI by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology the First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
5
|
Nassar SZ, Abdelmonsif DA, Ali RG, Badae NM. Sodium hydrosulfide and bone marrow derived mesenchymal stem cells combined therapy for bleomycin induced pulmonary fibrosis in rats: Implication of micro RNA-21 and Lnc GAS5. Life Sci 2022; 309:120988. [PMID: 36155181 DOI: 10.1016/j.lfs.2022.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
AIMS Pulmonary fibrosis (PF) is considered as an end stage for many lung diseases. Mesenchymal stem cells (MSC) as regenerative therapy have become a remarkably valuable therapeutic strategy in different diseases. Hydrogen sulfide has been recently introduced into the medical field for its antifibrotic properties in addition to enhancement of MSC stemness and function. The aim of the present study was to investigate the ability of BM-MSC in combination with NaHS to attenuate Bleomycin induced pulmonary fibrosis was studied in rats. A special emphasis was given to miR-21 and GAS5 as important players in the development of PF. MAIN METHODS PF was induced in 32 Wistar male rats by single endotracheal injection of bleomycin, those were randomly divided into four groups (8 rats each): (untreated PF group) - (PF + MSC) treated group- (PF + NaHS treated group) - PF + combined (NAHS + MSC) treated group. KEY FINDINGS Induction of PF was associated with increased miR-21 and decreased lncRNA-GAS5 expression. Treatment with either NaHS or BM-MSC leads to an inhibitory effect on pulmonary fibrosis as evidenced by improvement of histopathological studies, pulmonary function tests, reduction of inflammatory and fibrotic markers like Hydroxyproline, TNF α, TGF-β and caspase -3 together with downregulation miR-21 and increase lncRNA-GAS5 expression. SIGNIFICANCE The current work revealed the inhibitory effect of combined NaHS and BM-MSC on pulmonary fibrosis with concomitant modulation of miR-21 and lncRNA-GAS5 expression.
Collapse
Affiliation(s)
- Seham Z Nassar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research & Applications, University of Alexandria, Alexandria, Egypt
| | - Rania Gaber Ali
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
6
|
Ritzenthaler JD, Torres-Gonzalez E, Zheng Y, Zelko IN, van Berkel V, Nunley DR, Kidane B, Halayko AJ, Summer R, Watson WH, Roman J. The profibrotic and senescence phenotype of old lung fibroblasts is reversed or ameliorated by genetic and pharmacological manipulation of Slc7a11 expression. Am J Physiol Lung Cell Mol Physiol 2022; 322:L449-L461. [PMID: 34984918 PMCID: PMC8917919 DOI: 10.1152/ajplung.00593.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased senescence and expression of profibrotic genes in old lung fibroblasts contribute to disrepair responses. We reported that primary lung fibroblasts from old mice have lower expression and activity of the cystine transporter Slc7a11/xCT than cells from young mice, resulting in changes in both the intracellular and extracellular redox environments. This study examines the hypothesis that low Slc7a11 expression in old lung fibroblasts promotes senescence and profibrotic gene expression. The levels of mRNA and protein of Slc7a11, senescence markers, and profibrotic genes were measured in primary fibroblasts from the lungs of old (24 mo) and young (3 mo) mice. In addition, the effects of genetic and pharmacological manipulation of Slc7a11 were investigated. We found that decreased expression of Slc7a11 in old cells was associated with elevated markers of senescence (p21, p16, p53, and β-galactosidase) and increased expression of profibrotic genes (Tgfb1, Smad3, Acta2, Fn1, Col1a1, and Col5a1). Silencing of Slc7a11 in young cells replicated the aging phenotype, whereas overexpression of Slc7a11 in old cells decreased expression of senescence and profibrotic genes. Young cells were induced to express the senescence and profibrotic phenotype by sulfasalazine, a Slc7a11 inhibitor, whereas treatment of old cells with sulforaphane, a Slc7a11 inducer, decreased senescence without affecting profibrotic genes. Like aging cells, idiopathic pulmonary fibrosis fibroblasts show decreased Slc7a11 expression and increased profibrotic markers. In short, old lung fibroblasts manifest a profibrotic and senescence phenotype that is modulated by genetic or pharmacological manipulation of Slc7a11.
Collapse
Affiliation(s)
- Jeffrey D. Ritzenthaler
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Edilson Torres-Gonzalez
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Yuxuan Zheng
- 2Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Igor N. Zelko
- 3Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Victor van Berkel
- 4Department of Thoracic Surgery, Lung Transplantation Program, University of Louisville, Louisville, Kentucky
| | - David R. Nunley
- 5Department of Medicine, Lung Transplantation Program, Ohio State University, Columbus, Ohio
| | - Biniam Kidane
- 6Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- 7Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ross Summer
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Walter H. Watson
- 2Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky,8Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Jesse Roman
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Venkata-Subramani M, Nunley DR, Roman J. Donor factors and risk of primary graft dysfunction and mortality post lung transplantation: A proposed conceptual framework. Clin Transplant 2021; 35:e14480. [PMID: 34516007 DOI: 10.1111/ctr.14480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Lung transplantation remains a therapeutic option in end-stage lung disease. However, despite advances in the field, early allograft function can be compromised by the development of primary graft dysfunction (PGD); this being the leading cause of morbidity and mortality immediately following the lung transplant procedure. Several recipient factors have been associated with increased risk of PGD, but less is known about donor factors. Aging, tobacco, and chronic alcohol use are donor factors implicated, but how these factors promote PGD remains unclear. Herein, we discuss the available clinical data that link these donor factors with outcomes after lung transplantation, and how they might render the recipient susceptible to PGD through a two-hit process.
Collapse
Affiliation(s)
- Mrinalini Venkata-Subramani
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R Nunley
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lung Transplantation Program, The Ohio State University, Columbus, Ohio, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|
9
|
Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol 2019; 101:104-110. [PMID: 31879264 DOI: 10.1016/j.semcdb.2019.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease characterized by progressive scarring of the lung tissue, leading to respiratory failure. There is no cure for IPF, and current anti-fibrotic treatments modestly arrest its further progression. IPF prevalence and incidence increase with age, which is a recognized risk factor. Intense clinical and basic research over the last fifteen years has shown that hallmarks of accelerated aging are present in the lungs of patients with IPF. Different cell types in IPF lungs exhibit premature hallmarks of aging, including telomere attrition and cellular senescence. In this Review, we discuss recent insights into the mechanisms behind these age-related alterations and their contribution to the development of lung fibrosis. We focus on the genetic and molecular basis of telomere attrition in alveolar type II epithelial cells, which promote cellular senescence and lung fibrosis. Mechanistically, senescent cells secrete pro-fibrotic factors that activate scar-forming myofibroblasts. Ultimately, senescent alveolar epithelial cells lose their regenerative capacity, impeding fibrosis resolution. In addition, mitochondrial dysfunction is strongly associated with the appearance of senescent epithelial cells and senescent myofibroblasts in IPF, which persist in the fibrotic tissue by adapting their metabolic pathways and becoming resistant to apoptosis. We discuss emerging novel therapeutic strategies to treat IPF by targeting cellular senescence with the so-called senotherapeutics.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Bueno
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Lee SH, Yeo Y, Kim TH, Lee HL, Lee JH, Park YB, Park JS, Kim YH, Song JW, Jhun BW, Kim HJ, Park J, Uh ST, Kim YW, Kim DS, Park MS. Korean Guidelines for Diagnosis and Management of Interstitial Lung Diseases: Part 2. Idiopathic Pulmonary Fibrosis. Tuberc Respir Dis (Seoul) 2019; 82:102-117. [PMID: 30841014 PMCID: PMC6435928 DOI: 10.4046/trd.2018.0091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia, which presents with a progressive worsening dyspnea, and thus a poor outcome. The members of the Korean Academy of Tuberculosis and Respiratory Diseases as well as the participating members of the Korea Interstitial Lung Disease Study Group drafted this clinical practice guideline for IPF management. This guideline includes a wide range of topics, including the epidemiology, pathogenesis, risk factors, clinical features, diagnosis, treatment, prognosis, and acute exacerbation of IPF in Korea. Additionally, we suggested the PICO for the use of pirfenidone and nintendanib and for lung transplantation for the treatment of patients with IPF through a systemic literature review using experts' help in conducting a meta-analysis. We recommend this guideline to physicians, other health care professionals, and government personnel in Korea, to facilitate the treatment of patients with IPF.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yoomi Yeo
- Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Tae Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Hong Lyeol Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Jin Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yong Bum Park
- Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Lung Research Institute of Hallym University College of Medicine, Seoul, Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Jinkyeong Park
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Taek Uh
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong Soon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | | |
Collapse
|
11
|
Walraven M, Hinz B. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biol 2018; 71-72:205-224. [DOI: 10.1016/j.matbio.2018.02.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
|
12
|
Cárdenes N, Álvarez D, Sellarés J, Peng Y, Corey C, Wecht S, Nouraie SM, Shanker S, Sembrat J, Bueno M, Shiva S, Mora AL, Rojas M. Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Res Ther 2018; 9:257. [PMID: 30257725 PMCID: PMC6158816 DOI: 10.1186/s13287-018-0970-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease for which age is the most important risk factor. Different mechanisms associated with aging, including stem cell dysfunction, have been described to participate in the pathophysiology of IPF. We observed an extrapulmonary effect associated with IPF: increase in cell senescence of bone marrow-derived mesenchymal stem cells (B-MSCs). Methods B-MSCs were obtained from vertebral bodies procured from IPF patients and age-matched normal controls. Cell senescence was determined by cell proliferation and expression of markers of cell senescence p16INK4A, p21, and β-galactosidase activity. Mitochondrial function and DNA damage were measured. Paracrine induction of senescence and profibrotic responses were analyzed in vitro using human lung fibroblasts. The reparative capacity of B-MSCs was examined in vivo using the bleomycin-induced lung fibrosis model. Results In our study, we demonstrate for the first time that B-MSCs from IPF patients are senescent with significant differences in mitochondrial function, with accumulation of DNA damage resulting in defects in critical cell functions when compared with age-matched controls. Senescent IPF B-MSCs have the capability of paracrine senescence by inducing senescence in normal-aged fibroblasts, suggesting a possible link between senescent B-MSCs and the late onset of the disease. IPF B-MSCs also showed a diminished capacity to migrate and were less effective in preventing fibrotic changes observed in mice after bleomycin-induced injury, increasing illness severity and proinflammatory responses. Conclusions We describe extrapulmonary alterations in B-MSCs from IPF patients. The consequences of having senescent B-MSCs are not completely understood, but the decrease in their ability to respond to normal activation and the risk of having a negative impact on the local niche by inducing inflammation and senescence in the neighboring cells suggests a new link between B-MSC and the onset of the disease. Electronic supplementary material The online version of this article (10.1186/s13287-018-0970-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nayra Cárdenes
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diana Álvarez
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacobo Sellarés
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Interstitial Lung Disease Program, Hospital Clinic, Barcelona, Spain
| | - Yating Peng
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Research Unit of Respiratory Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Catherine Corey
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Vascular Medicine Institute of the University of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sophie Wecht
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Swaroop Shanker
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Vascular Medicine Institute of the University of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sruti Shiva
- Vascular Medicine Institute of the University of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Vascular Medicine Institute of the University of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Vascular Medicine Institute of the University of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Li X, Yue S, Luo Z. Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget 2017; 8:102600-102616. [PMID: 29254275 PMCID: PMC5731985 DOI: 10.18632/oncotarget.18126] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a major cause of respiratory failure in critically ill patients and common outcome of various lung interstitial diseases. Its mortality remains high, and no effective pharmacotherapy, in addition to artificial ventilation and transplantation, exists. As such, the administration of mesenchymal stem or stromal cells (MSCs) is currently investigated as a new therapeutic method for pulmonary fibrosis. Clinical trials on MSC-based therapy as a potential treatment for lung injury and fibrosis are also performed. MSCs can migrate to injured sites and secrete multiple paracrine factors and then regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. In this review, recent studies on stem cells, particularly MSCs, involved in alleviating lung inflammation and fibrosis and their potential MSC-induced mechanisms, including migration and differentiation, soluble factor and extracellular vesicle secretion, and endogenous regulatory functions, were summarized.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shaojie Yue
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
14
|
Zhang J, Shao Y, He D, Zhang L, Xu G, Shen J. Evidence that bone marrow-derived mesenchymal stem cells reduce epithelial permeability following phosgene-induced acute lung injury via activation of wnt3a protein-induced canonical wnt/β-catenin signaling. Inhal Toxicol 2016; 28:572-579. [PMID: 27644345 DOI: 10.1080/08958378.2016.1228720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Yiru Shao
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Daikun He
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Lin Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Guoxiong Xu
- Department of Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| |
Collapse
|
15
|
Differential Regulation of the Extracellular Cysteine/Cystine Redox State (EhCySS) by Lung Fibroblasts from Young and Old Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1561305. [PMID: 27642492 PMCID: PMC5014973 DOI: 10.1155/2016/1561305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022]
Abstract
Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed as EhCySS. Cultured cells condition their media to reproduce physiological EhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the media EhCySS before and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellular EhCySS than young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment.
Collapse
|
16
|
Abstract
Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell-based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell-ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders.
Collapse
|
17
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
18
|
Lee SH, Kim DS, Kim YW, Chung MP, Uh ST, Park CS, Jeong SH, Park YB, Lee HL, Song JS, Shin JW, Yoo NS, Lee EJ, Lee JH, Jegal Y, Lee HK, Park MS. Association between occupational dust exposure and prognosis of idiopathic pulmonary fibrosis: a Korean national survey. Chest 2015; 147:465-474. [PMID: 25275573 DOI: 10.1378/chest.14-0994] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Previous studies have investigated the relationship between occupational and environmental agents and idiopathic pulmonary fibrosis (IPF). However, there have been few studies regarding the prognosis of patients with IPF according to patient occupation. METHODS We investigated whether occupational dust exposure was associated with clinically decreased lung function and poor prognosis. The Korean Interstitial Lung Disease Research Group conducted a national survey to evaluate the clinical, physiologic, radiologic, and survival characteristics of patients with IPF. A total of 1,311 patients with IPF were stratified into five groups according to their occupation: (1) unemployed or homemakers (n = 628); (2) farmers, fishers, or ranchers (n = 230); (3) sales or service personnel (n = 131); (4) clerical or professional personnel (n = 151); and (5) specific dust-exposed workers (n = 171). RESULTS The mean age of subjects at diagnosis, was 67.5 ± 9.7 years. Current smokers were 336 patients, 435 were exsmokers, and 456 were never smokers. Dust-exposed workers showed early onset of IPF (61.3 ± 8.6 years; P < .001) and a longer duration of symptoms at diagnosis (17.0 ± 28.2 months; P = .004). Aging (P = .001; hazard ratio [HR], 1.034; 95% CI, 1.014-1.054), FVC % predicted at diagnosis (P = .004; HR, 0.984; 95% CI, 0.974-0.995), and dust-exposure occupation (P = .033; HR, 1.813; 95% CI, 1.049-3.133) were associated with mortality. CONCLUSIONS These findings indicate that occupational dust may be an aggravating factor associated with a poor prognosis in IPF.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Yonsei University, College of Medicine, Yonsei University Health Service, Seoul
| | - Dong Soon Kim
- Division of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute, Seoul National University College of Medicine, Seoul
| | - Man Pyo Chung
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Soo Taek Uh
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon
| | - Sung Hwan Jeong
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon
| | - Yong Bum Park
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul
| | - Hong Lyeol Lee
- Pulmonary Division, Department of Internal Medicine, Inha University Hospital, Incheon
| | - Jeong Sup Song
- Pulmonary Division, Department of Internal Medicine, St. Mary's Hospital, Catholic University College of Medicine, Seoul
| | - Jong Wook Shin
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Ang University College of Medicine, Seoul
| | - Nam Soo Yoo
- Division of Pulmonary Medicine, National Medical Center, Seoul
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul
| | - Jin Hwa Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul
| | - Yangin Jegal
- Division of Pulmonary Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan
| | - Hyun Kyung Lee
- Division of Critical Care and Pulmonary Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Busan
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
| |
Collapse
|
19
|
Álvarez D, Levine M, Rojas M. Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:61-5. [PMID: 25926746 PMCID: PMC4403512 DOI: 10.2147/sccaa.s49801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible disease of the lung that has no lasting option for therapy other than transplantation. It is characterized by replacement of the normal lung tissue by fibrotic scarring, honeycombing, and increased levels of myofibroblasts. The underlying causes of IPF are still largely unknown. The focus of the current review is the possible use of stem cell therapy, specifically mesenchymal stem cells (MSCs), a multipotent stromal cell population, which have demonstrated promising data in multiple animal models of pulmonary fibrosis (PF). The most studied source of MSCs is the bone marrow, although they can be found also in the adipose tissue and umbilical cord, as well as in the placenta. MSCs have immunomodulatory and tissue-protective properties that allow them to manipulate the local environment of the injured tissue, ameliorating the inflammation and promoting repair. Because IPF primarily affects older patients, the issue of aging is intrinsically linked to many aspects of the disease, including the age of the stem cells. Animal models have shown the success of MSC therapy in mitigating the fibrotic effects of bleomycin-induced PF. However, bleomycin, the most commonly used model for PF, is imperfect in mimicking IPF as it presents in humans, as the duration of the illness is not parallel or reversible, and honeycombing is not produced. Furthermore, the time of MSC dosage has proven to be critical in determining whether the cells will ultimately have a positive or negative effect on disease progression, since it has been demonstrated that the maximal beneficial effect of MSCs occurs during the early inflammatory phase of the disease and that there is no or negative effect during the late fibrotic phase. Therefore, all the current clinical trials of MSCs and IPF, though promising, should proceed with caution as we move toward true stem cell therapy for this disease.
Collapse
Affiliation(s)
- Diana Álvarez
- Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA ; Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melanie Levine
- Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA ; Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Huang K, Kang X, Wang X, Wu S, Xiao J, Li Z, Wu X, Zhang W. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol Med Rep 2014; 11:1685-92. [PMID: 25411925 PMCID: PMC4270324 DOI: 10.3892/mmr.2014.2981] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022] Open
Abstract
Pulmonary fibrosis is an irreversible chronic progressive fibroproliferative lung disease, which usually has a poor prognosis. Previous studies have confirmed that the transplantation of bone marrow mesenchymal stem cells (MSCs) significantly reduces lung damage in a number of animal models. However, the underlying mechanism involved in this process remains to be elucidated. In the present study, a bleomycin (BLM)-induced female Wister rat model of fibrosis was established. At 0 or 7 days following BLM administration, rats were injected into the tail vein with 5-bromo-2-deoxyuridine-labeled MSCs extracted from male Wistar rats. The lung tissue of the rats injected with MSCs expressed the sex-determining region Y gene. The level surfactant protein C (SP-C), a marker for type II alveolar epithelial cells (AEC II), was higher in the group injected with MSCs at day 0 than that in the group injected at day 7. Furthermore, SP-C mRNA, but not aquaporin 5 mRNA, a marker for type I alveolar epithelial cells, was expressed in fresh bone marrow aspirates and the fifth generation of cultured MSCs. In addition, superoxide dismutase activity and total antioxidative capability, specific indicators of oxidative stress, were significantly increased in the lung tissue of the MSC-transplanted rats (P<0.05). In conclusion, to alleviate pulmonary fibrosis, exogenous MSCs may be transplanted into damaged lung tissue where they differentiate into AEC II and exert their effect, at least in part, through blocking oxidative stress.
Collapse
Affiliation(s)
- Kun Huang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaowen Kang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinyan Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shijie Wu
- Department of Respiratory Medicine, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163316, P.R. China
| | - Jinling Xiao
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaoguo Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaomei Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
21
|
Gazdhar A, Grad I, Tamò L, Gugger M, Feki A, Geiser T. The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 2014; 5:123. [PMID: 25384638 PMCID: PMC4445988 DOI: 10.1186/scrt513] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. Methods IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. Results iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and α-smooth muscle actin (α-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. Conclusion iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/scrt513) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Yin L, Zheng D, Limmon GV, Leung NH, Xu S, Rajapakse JC, Yu H, Chow VT, Chen J. Aging exacerbates damage and delays repair of alveolar epithelia following influenza viral pneumonia. Respir Res 2014; 15:116. [PMID: 25265939 PMCID: PMC4189598 DOI: 10.1186/s12931-014-0116-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/15/2014] [Indexed: 11/15/2022] Open
Abstract
Background Influenza virus infection causes significantly higher levels of morbidity and mortality in the elderly. Studies have shown that impaired immunity in the elderly contributes to the increased susceptibility to influenza virus infection, however, how aging affects the lung tissue damage and repair has not been completely elucidated. Methods Aged (16–18 months old) and young (2–3 months old) mice were infected with influenza virus intratracheally. Body weight and mortality were monitored. Different days after infection, lung sections were stained to estimate the overall lung tissue damage and for club cells, pro-SPC+ bronchiolar epithelial cells, alveolar type I and II cells to quantify their frequencies using automated image analysis algorithms. Results Following influenza infection, aged mice lose more weight and die from otherwise sub-lethal influenza infection in young mice. Although there is no difference in damage and regeneration of club cells between the young and the aged mice, damage to alveolar type I and II cells (AT1s and AT2s) is exacerbated, and regeneration of AT2s and their precursors (pro-SPC-positive bronchiolar epithelial cells) is significantly delayed in the aged mice. We further show that oseltamivir treatment reduces virus load and lung damage, and promotes pulmonary recovery from infection in the aged mice. Conclusions These findings show that aging increases susceptibility of the distal lung epithelium to influenza infection and delays the emergence of pro-SPC positive progenitor cells during the repair process. Our findings also shed light on possible approaches to enhance the clinical management of severe influenza pneumonia in the elderly. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0116-z) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 2014; 189:787-98. [PMID: 24559482 DOI: 10.1164/rccm.201306-1043oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Aging is characterized by functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. With age, there is an increase in the incidence and severity of chronic and acute lung diseases. However, the relationship between age and the lung's reduced ability to repair is far from established and necessitates further research in the field. OBJECTIVES Little is currently known about age-related phenomena in mesenchymal stem cells (MSCs). On account of their ability to protect the endothelium and the alveolar epithelium through multiple paracrine mechanisms, we looked for adverse effects that aging might cause in MSC biology. Such age-related changes might partly account for the increased susceptibility of the aging lung to injury. MEASUREMENTS AND MAIN RESULTS We demonstrated that old mice have more inflammation in response to acute lung injury. To investigate the causes, we compared the global gene expression of aged and young bone marrow-derived MSCs (B-MSCs). Our results revealed that the expression levels of inflammatory response genes depended on the age of the B-MSCs. We demonstrated that the age-dependent decrease in expression of several cytokine and chemokine receptors is important for the migration and activation of B-MSCs. Finally, we showed by adoptive transfer of aged B-MSCs to young endotoxemic mice that aged cells lacked the antiinflammatory protective effect of their young counterparts. CONCLUSIONS Taken together, the decreased expression of cytokine and chemokine receptors in aged B-MSCs compromises their protective role by perturbing the potential of B-MSCs to become activated and mobilize to the site of injury.
Collapse
Affiliation(s)
- Martha L Bustos
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sueblinvong V, Neveu WA, Neujahr DC, Mills ST, Rojas M, Roman J, Guidot DM. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury. ACTA ACUST UNITED AC 2014; 5:19-30. [PMID: 24596659 PMCID: PMC3939026 DOI: 10.4236/abb.2014.51004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrotic lung diseases increase with age. Previously we determined that senescence increases tissue expression of fibronectin EDA (Fn-EDA) and decreases fibroblast expression of Thy-1, and that fibrocytes contribute to fibrosis following bleomycin-induced lung injury in mice. In this study we hypothesized that fibroblasts lacking Thy-1 expression produce an extracellular matrix that promotes fibrocyte retention and myofibroblast transdifferentiation, thereby promoting fibrogenesis. Young and old mice were treated with bleomycin intratracheally; fibrocytes in the bone marrow, blood, and lungs were quantified, and lung fibroblast Thy-1 expression assessed. Bone marrow-derived fibrocytes were cultured on matrices derived from Thy-1(+) or Thy-1(-) fibroblasts ± the pro-fibrotic cytokine TGFβ1. Older mice had more fibrocytes in their bone marrows at baseline and more fibrocytes in their lungs following bleomycin treatment. In parallel, lung fibroblasts in older mice had lower expression of Thy-1 at baseline that increased transiently 7 days after bleomycin treatment but then rapidly waned such that 14 days after bleomycin treatment Thy-1 expression was again markedly lower. Fibrocytes cultured on matrices derived from Thy-1(-) fibroblasts + TGFβ1 had increased gene expression for collagen type 1, fibronectin, Fn-EDA, and α-smooth muscle actin. In parallel, whereas the matrices derived from Thy-1(-) fibroblasts stimulated phosphorylation of Akt in cultured fibrocytes, the matrices derived from Thy-1(+) fibroblasts induced apoptosis. These findings suggest that senescence increases fibrocyte recruitment to the lung following injury and that loss of Thy-1 expression by lung fibroblasts promotes fibrocyte retention and myofibroblast trans-differentiation that renders the "aging lung" susceptible to fibrosis.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wendy A Neveu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA ; McKelvey Lung Transplantation Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen T Mills
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesse Roman
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Louisville, Louisville, KY, USA
| | - David M Guidot
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA ; Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
25
|
Paxson JA, Gruntman AM, Davis AM, Parkin CM, Ingenito EP, Hoffman AM. Age dependence of lung mesenchymal stromal cell dynamics following pneumonectomy. Stem Cells Dev 2013; 22:3214-25. [PMID: 23895415 DOI: 10.1089/scd.2012.0477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aging is a critical determinant of regenerative capacity in many organ systems, but it remains unresolved in the lung. This study examines murine lung cell dynamics during age-dependent lung regeneration. Proliferation of lung progenitor cells (EpCAM(neg)/Sca-1(high) lung mesenchymal stromal cells - LMSCs, EpCAM(pos)/Sca-1(low) epithelial progenitor cells, proSP-C(pos) alveolar type II epithelial cells - AECII, and CD31(pos) - endothelial cells) was tracked to day 3 or 7 after pneumonectomy (PNX) or SHAM surgery in 3, 9, and 17 month mice. In 3 month mice, post-PNX LMSC proliferation peaked early (3 days), with 50%-80% more BrdU-positive cells than the other cell types, which peaked later (4-7 days). In older mice (9 and 17 month), abundance and post-PNX proliferation of LMSCs at day 3 were reduced (40%-80%). In both young and old mice, LMSCs were isolated and compared phenotypically with whole lung non-LMSCs. Donor age had no qualitative effect on the phenotype (LMSC vs. non-LMSC), with increased expression of CD90/Thy1, CD105/Eng, CD106/Vcam, CD146/Mcam, and Pdgfrα, and up-regulation of mRNA encoding Fap, Eln, Col1a1, Col3a1, Aldh1a3, Arhgef25, Dner, Fgfr1, and Midkine. However, compared with LMSCs isolated from young mice, LMSCs from older mice exhibited reduced mRNA expression of retinoic acid (Aldh1a3, Rbp4), Fgf/Wnt (Fgfr1, Sfrp1, Wnt2, and Ctnnb1), and elastogenesis (Col1a1, Eln, Fbn1, and Sdc2) pathway genes. Isolated LMSCs from older mice also demonstrated lower colony-forming units (-67%), growth potential (-60% by day 7), ALDH activity (-49%), and telomerase activity (-47%). Therefore, age is associated with declining proliferative potential and regenerative functions of LMSCs in the lung.
Collapse
Affiliation(s)
- Julia A Paxson
- 1 Biology Department, College of the Holy Cross , Worcester, Massachusetts
| | | | | | | | | | | |
Collapse
|
26
|
Huleihel L, Levine M, Rojas M. The potential of cell-based therapy in lung diseases. Expert Opin Biol Ther 2013; 13:1429-40. [PMID: 23984902 DOI: 10.1517/14712598.2013.833603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Many lung diseases have high morbidity and mortality rates and there are no cures or treatments apart from mechanical ventilation or transplantation. Cell-based therapies are currently an area of intense research, and many groups are working to translate successful in vitro results into treatments that are safe for patients. AREAS COVERED This review discusses several types of stem and progenitor cells that have been proven likely candidates for cell therapies, as well as their applications so far in specific acute and chronic lung diseases, focusing on their mechanisms of action and how best they can be directed toward clinical aims. EXPERT OPINION The research on cell therapies for the lung, particularly regarding mesenchymal stem cells (MSCs), is promising, but there is still much uncertainty surrounding the mechanisms of MSC action and the factors relevant to clinical applications such as the optimal timing of dosage. Future studies will focus on the microenvironment of the stem cells, including the role of microRNAs and extracellular vesicles.
Collapse
Affiliation(s)
- Luai Huleihel
- University of Pittsburgh, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pulmonary, Allergy, and Critical Care Medicine , Pittsburgh, PA , USA
| | | | | |
Collapse
|
27
|
Manning CM, Johnston CJ, Hernady E, Miller JNH, Reed CK, Lawrence BP, Williams JP, Finkelstein JN. Exacerbation of lung radiation injury by viral infection: the role of Clara cells and Clara cell secretory protein. Radiat Res 2013; 179:617-29. [PMID: 23621375 DOI: 10.1667/rr3279.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viral infections have been associated with exacerbation of disease in human cases of idiopathic pulmonary fibrosis. Since pulmonary fibrosis is a common outcome after irradiation to the lung, we hypothesized that viral infection after radiation exposure would exacerbate radiation-induced lung injury. Epithelial injury, a frequent outcome after infection, has been hypothesized to contribute to the pathogenesis of pulmonary fibrosis and bronchiolar epithelial Clara cells participate in epithelial repair. Therefore, it was further hypothesized that altered responses after irradiation involve the bronchiolar epithelial Clara cells. C57BL/6J or CCSP(-/-) mice were irradiated with 0 (sham), 5, 10 or 15 Gy to the whole thorax. At ten weeks post-irradiation, animals were mock infected or infected with influenza A virus and body weight and survival were monitored. Pulmonary function was assessed by whole-body plethysmography. The Clara cell markers, CCSP and Cyp2f2, were measured in the lung by qRT-PCR, and protein expression was visualized in the lung by immunofluorescence. Following pulmonary function tests, mice were sacrificed and tissues were collected for pathological analysis. In 15 Gy irradiated animals infected with influenza A virus, accelerated respiratory rates, reduced pulmonary function, and exacerbated lung pathology occurred earlier post-irradiation than previously observed after irradiation alone, suggesting infection accelerates the development of radiation injury. After irradiation alone, CCSP and Cyp2f2 mRNA levels were reduced, correlating with reductions in the number of Clara cells lining the airways. When combined with infection, these markers further declined and an apparent delay in recovery of mRNA expression was observed, suggesting that radiation injury leads to a chronic reduction in the number of Clara cells that may potentiate the epithelial injury observed after influenza A virus infection. This novel finding may have considerable therapeutic implications with respect to both thoracic tumor patients and recipients of bone marrow transplants.
Collapse
Affiliation(s)
- Casey M Manning
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lung. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Abstract
PURPOSE OF REVIEW This review seeks to inform readers of evolving concepts of ageing-associated risks for developing interstitial lung disease (ILD) and current approaches to the diagnosis and management of ILD in elderly patients. RECENT FINDINGS Various aspects of cellular and immune senescence have been identified that may explain the increased susceptibility of the elderly to developing fibrotic lung disease. New guidelines have been recently published concerning the diagnosis and management of idiopathic pulmonary fibrosis (IPF), which is highly prevalent in elderly patients. Nontransplant therapies that can have a significant impact on disease progression for patients with IPF have yet to be identified. Additionally, evidence is accumulating that abnormal gastroesophageal reflux and microaspiration may play a role in IPF pathogenesis. SUMMARY High-resolution computed tomographic scanning of the thorax can play a key role in making a specific ILD diagnosis and be used to make a confident diagnosis of various forms of ILD, especially IPF, when combined with a consistent clinical presentation. Management of ILD in the elderly should be not only disease specific but potentially therapeutic, and supportive interventions should be tailored to each individual patient and not entail significant risk of adverse complications, especially for the frail elderly patient.
Collapse
Affiliation(s)
- Keith C Meyer
- Section of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-9988, USA.
| |
Collapse
|
30
|
Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev 2012; 22:193-203. [PMID: 23025629 DOI: 10.1089/scd.2012.0417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Not too long ago, several motivated and forward-looking articles were published describing the cellular and molecular properties of mesenchymal stem cells (MSCs), specially highlighting their potential for self-renewal, commitment, differentiation, and maturation into specific mesoderm-derived lineages. A very influential publication of that period entitled "Mesenchymal stem cells: No longer second class marrow citizens" [1] raised the point of view that "…challenges to harness MSC cell therapy to treat diseases … need to wait for the full comprehension that marrow is a rich source of mesenchyme-derived cells whose potential is still far from fully appreciated." Whether or not the prophecy of Gerson was fulfilled, in the last 8 years it has become evident that infusing MSCs into patients suffering a variety of disorders represents a viable option for medical treatment. Accordingly, a vast number of articles have explored the privileged cellular and molecular features of MSCs prepared from sources other than the canonical, represented by the bone marrow. This review will provide more information neither related to the biological attractiveness of MSCs nor to the success after their clinical use. Rather, we would like to underscore several "critical and tangential" issues, not always discussed in biomedical publications, but relevant to the clinical utilization of bone-marrow-derived MSCs.
Collapse
Affiliation(s)
- Jose J Minguell
- TCA Cellular Therapy, 101 Judge Tanner Boulevard, Covington, LA 70433, USA.
| | | | | |
Collapse
|
31
|
Nichols JE, Niles JA, Cortiella J. Design and development of tissue engineered lung: Progress and challenges. Organogenesis 2012; 5:57-61. [PMID: 19794900 DOI: 10.4161/org.5.2.8564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/27/2009] [Indexed: 11/19/2022] Open
Abstract
Before we can realize our long term goal of engineering lung tissue worthy of clinical applications, advances in the identification and utilization of cell sources, development of standardized procedures for differentiation of cells, production of matrix tailored to meet the needs of the lung and design of methods or techniques of applying the engineered tissues into the injured lung environment will need to occur. Design of better biomaterials with the capacity to guide stem cell behavior and facilitate lung lineage choice as well as seamlessly integrate with living lung tissue will be achieved through advances in the development of decellularized matrices and new understandings related to the influence of extracellular matrix on cell behavior and function. We have strong hopes that recent developments in the engineering of conducting airway from decellularized trachea will lead to similar breakthroughs in the engineering of distal lung components in the future.
Collapse
|
32
|
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a devastating progressive lung disease with an average survival of only 3 to 5 years. The mechanisms underlying the initiation and progression of IPF are poorly understood, and treatments available have only modest effect on disease progression. Interestingly, the incidence of IPF is approximately 60 times more common in individuals aged 75 years and older, but the mechanism by which aging promotes fibrosis is unclear. The authors hypothesized that aged lungs have a profibrotic phenotype that render it susceptible to disrepair after injury. METHODS Young and old mice were treated with bleomycin to examine disrepair in the aged lung. In addition, uninjured young and old mouse lungs were analyzed for transforming growth factor-beta 1 (TGF-β1) production, extracellular matrix composition and lung fibroblast phenotype. Lung fibroblasts were treated with a DNA methyltransferase inhibitor to examine the potential epigenetic mechanisms involved in age-associated phenotypic alterations. RESULTS The lungs of old mice showed worse fibrosis after bleomycin-induced injury compared with the lungs from young mice. At baseline, aged lungs expressed a profibrotic phenotype characterized by increased mRNA expression for fibronectin extracellular domain A (Fn-EDA) and the matrix metalloproteinases (MMPs) MMP-2 and MMP-9. Old lungs also expressed higher levels of TGF-β receptor 1 and TGF-β1 mRNA, protein and activity as determined by increased Smad3 expression, protein phosphorylation and DNA binding. Lung fibroblasts harvested from aged lungs showed reduced expression of the surface molecule Thy-1, a finding also implicated in lung fibrosis; the latter did not seem related to Thy-1 gene methylation. CONCLUSION Altogether, aged lungs manifest a profibrotic phenotype characterized by enhanced fibronectin extracellular domain A and MMP expression and increased TGF-β1 expression and signaling and are populated by Thy-1-negative fibroblasts, all implicated in the pathogenesis of lung fibrosis.
Collapse
|
33
|
Acuña-Castroviejo D, Carretero M, Doerrier C, López LC, García-Corzo L, Tresguerres JA, Escames G. Melatonin protects lung mitochondria from aging. AGE (DORDRECHT, NETHERLANDS) 2012; 34:681-692. [PMID: 21614449 PMCID: PMC3337938 DOI: 10.1007/s11357-011-9267-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/05/2011] [Indexed: 05/30/2023]
Abstract
We assessed whether melatonin administration would prevent the hyperoxidative status that occurs in lung mitochondria with age. Mitochondria from lungs of male and female senescent prone mice at 5 and 10 months of age were studied. Age-dependent mitochondrial oxidative stress was evaluated by measuring the levels of lipid peroxidation and nitrite, glutathione/glutathione disulfide ratio, and glutathione peroxidase and reductase activities. Mitochondrial respiratory chain and oxidative phosphorylation capability were also measured. Age induces a significant oxidative/nitrosative status in lung mitochondria, which exhibited a significantly reduced activity of the respiratory chain and ATP production. These manifestations of age were more pronounced in males than in females. After 9 months of melatonin administration in the drinking water, the hyperoxidative status and functional deficiency of aged lung mitochondria were totally counteracted, and had increased ATP production. The beneficial effects of melatonin were generally similar in both mice genders. Thus, melatonin administration, as a single therapy, maintained fully functioning lung mitochondria during aging, a finding with important consequences in the pathophysiology of lung aging. In view of these data melatonin, the production of which decreases with age, should be considered a preventive therapy against the hyperoxidative status of the aged lungs, and its use may lead to the avoidance of respiratory complications in the elderly.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Laboratorio de Análisis Clínicos, Hospital Universitario San Cecilio, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Miguel Carretero
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Carolina Doerrier
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Luis C. López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Laura García-Corzo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Jesús A. Tresguerres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| |
Collapse
|
34
|
Faner R, Rojas M, Macnee W, Agustí A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012; 186:306-13. [PMID: 22582162 DOI: 10.1164/rccm.201202-0282pp] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a natural process characterized by progressive functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. The incidence of two common chronic respiratory diseases (chronic obstructive pulmonary disease [COPD] and idiopathic pulmonary fibrosis [IPF]) increases with advanced age. It is plausible, therefore, that abnormal regulation of the mechanisms of normal aging may contribute to the pathobiology of both COPD and IPF. This review discusses the available evidence supporting a number of aging mechanisms, including oxidative stress, telomere length regulation, cellular and immunosenescence, as well as changes in a number of antiaging molecules and the extracellular matrix, which are abnormal in COPD and/or IPF. A better understanding of these abnormalities may help in the design of novel and better therapeutic interventions for these patients.
Collapse
Affiliation(s)
- Rosa Faner
- Fundación Investigación Sanitaria Illes Balears, Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Palma de Mallorca, and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Torres-González E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, Sorescu D, Lawson WE, Blackwell TS, Rojas M, Mora AL. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 2012; 46:748-56. [PMID: 22227563 DOI: 10.1165/rcmb.2011-0224oc] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The incidence of idiopathic pulmonary fibrosis (IPF) increases with age. The mechanisms that underlie the age-dependent risk for IPF are unknown. Based on studies that suggest an association of IPF and γherpesvirus infection, we infected young (2-3 mo) and old (≥18 mo) C57BL/6 mice with the murine γherpesvirus 68. Acute murine γherpesvirus 68 infection in aging mice resulted in severe pneumonitis and fibrosis compared with young animals. Progressive clinical deterioration and lung fibrosis in the late chronic phase of infection was observed exclusively in old mice with diminution of tidal volume. Infected aging mice showed higher expression of transforming growth factor-β during the acute phase of infection. In addition, aging, infected mice showed elevation of proinflammatory cytokines and the fibrocyte recruitment chemokine, CXCL12, in bronchoalveolar lavage. Analyses of lytic virus infection and virus reactivation indicate that old mice were able to control chronic infection and elicit antivirus immune responses. However, old, infected mice showed a significant increase in apoptotic responses determined by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling assay, levels of caspase-3, and expression of the proapoptotitc molecule, Bcl-2 interacting mediator. Apoptosis of type II lung epithelial cells in aging lungs was accompanied by up-regulation of endoplasmic reticulum stress marker, binding immunoglobulin protein, and splicing of X-box-binding protein 1. These results indicate that the aging lung is more susceptible to injury and fibrosis associated with endoplasmic reticulum stress, apoptosis of type II lung epithelial cells, and activation of profibrotic pathways.
Collapse
Affiliation(s)
- Edilson Torres-González
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bone marrow-derived mesenchymal stem cells enhance cryopreserved trachea allograft epithelium regeneration and vascular endothelial growth factor expression. Transplantation 2011; 92:620-6. [PMID: 21804442 DOI: 10.1097/tp.0b013e31822a4082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Epithelium regeneration and revascularization of tracheal implants are challenging issues to be solved in tracheal transplantation research. Bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to the damaged tissue and promote functional restoration. Here, we applied intravenous transplantation of BMSCs combined with a cryopreserved allograft to investigate the role of BMSCs in enhancing implant survival, tracheal epithelium regeneration and revascularization. METHODS After transplantation with cryopreserved allografts, PKH-26 labeled 3 to 5 passage BMSCs were injected into recipient rats through the tail vein. Rats in the control groups were injected with a comparable amount of phosphate-buffered saline. We observed the histology of the tracheal allograft and measured vascular endothelial growth factor (VEGF) protein levels in the epithelium to evaluate the effect of BMSCs on epithelium regeneration and revascularization. RESULTS Histologic observation of the rats from the BMSCs injection groups showed that the tracheal lumen was covered by pseudostriated ciliated columnar epithelium. The cartilage structure was intact. There were no signs of denaturation or necrosis. PKH-26 labeled BMSCs migrated to the implant site and exhibited red fluorescence, with the brightest red fluorescence at the anastomotic site. VEGF protein levels in the allograft epithelium of the BMSCs injection group were higher than the levels in the phosphate-buffered saline injection group. CONCLUSIONS Our results indicate that given systemic administration, BMSCs may enhance epithelium regeneration and revascularization by upregulating VEGF expression.
Collapse
|
37
|
Paxson JA, Gruntman A, Parkin CD, Mazan MR, Davis A, Ingenito EP, Hoffman AM. Age-dependent decline in mouse lung regeneration with loss of lung fibroblast clonogenicity and increased myofibroblastic differentiation. PLoS One 2011; 6:e23232. [PMID: 21912590 PMCID: PMC3166052 DOI: 10.1371/journal.pone.0023232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022] Open
Abstract
While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration.
Collapse
Affiliation(s)
- Julia A. Paxson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Alisha Gruntman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Christopher D. Parkin
- Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa R. Mazan
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Airiel Davis
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Edward P. Ingenito
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Andrew M. Hoffman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lung. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Castriotta RJ, Eldadah BA, Foster WM, Halter JB, Hazzard WR, Kiley JP, King TE, Horne FM, Nayfield SG, Reynolds HY, Schmader KE, Toews GB, High KP. Workshop on idiopathic pulmonary fibrosis in older adults. Chest 2010; 138:693-703. [PMID: 20822991 DOI: 10.1378/chest.09-3006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a heterogeneous disease with respect to clinical presentation and rates of progression, disproportionately affects older adults. The diagnosis of IPF is descriptive, based on clinical, radiologic, and histopathologic examination, and definitive diagnosis is hampered by poor interobserver agreement and lack of a consensus definition. There are no effective treatments. Cellular, molecular, genetic, and environmental risk factors have been identified for IPF, but the initiating event and the characteristics of preclinical stages are not known. IPF is predominantly a disease of older adults, and the processes underlying normal aging might significantly influence the development of IPF. Yet, the biology of aging and the principles of medical care for this population have been typically ignored in basic, translational, or clinical IPF research. In August 2009, the Association of Specialty Professors, in collaboration with the American College of Chest Physicians, the American Geriatrics Society, the National Institute on Aging, and the National Heart, Lung, and Blood Institute, held a workshop, summarized herein, to review what is known, to identify research gaps at the interface of aging and IPF, and to suggest priority areas for future research. Efforts to answer the questions identified will require the integration of geriatrics, gerontology, and pulmonary research, but these efforts have great potential to improve care for patients with IPF.
Collapse
|
40
|
Fischer SN, Johnson JK, Baran CP, Newland CA, Marsh CB, Lannutti JJ. Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments. Biomaterials 2010; 32:538-46. [PMID: 20875916 DOI: 10.1016/j.biomaterials.2010.08.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring. Collagen deposition, myofibroblast expansion, and the development of fibroblastic foci are the hallmark pathological events. The origin and mechanism of recruitment of myofibroblasts, the key cell contributing to these events, is unknown. We hypothesize that the fibrotic lung microenvironment causes differentiation of arriving bone marrow-derived cells into myofibroblasts. Therefore, a method of isolating the effects of fibrotic microenvironment components on various cell types was developed. Electrospun nanofibers were coated with lung extracts from fibrotic or non-fibrotic mice and used to determine effects on bone marrow cells from naïve mice. Varying moduli nanofibers were also employed to determine matrix stiffness effects on these cells. At structured time points, bone marrow cell morphology was recorded and changes in fibrotic gene expression determined by real-time PCR. Cells plated on extracts isolated from fibrotic murine lungs secreted larger amounts of extracellular matrix, adopted a fibroblastic morphology, and exhibited increased myofibroblast gene expression after 8 and 14 days; cells plated on extracts from non-fibrotic lungs did not. Similar results were observed when the nanofiber modulus was increased. This ex vivo system appears to recapitulate the three-dimensional fibrotic lung microenvironment.
Collapse
Affiliation(s)
- Sara N Fischer
- The Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
41
|
MenTara BJ, Avraham T, Soares M, Fernandez JG, Yan A, Zampell JC, Andrade VP, Cordeiro AP, Sorrento CM. p21
cιp/WAF
is a key regulator of long‐term radiation damage in mesenchyme‐derived tissues. FASEB J 2010. [DOI: 10.1096/fj.10.155762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Babak J. MenTara
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - Tomer Avraham
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - Marc Soares
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - John G. Fernandez
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - Alan Yan
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - Jamie C. Zampell
- Division of Plastic and Reconstructive Surgery New York New York USA
| | - Victor P. Andrade
- Division of Breast SurgeryDepartment of Surgery, Memorial Sloan‐Kettering Cancer Center New York New York USA
| | | | | |
Collapse
|
42
|
Mehrara BJ, Avraham T, Soares M, Fernandez JG, Yan A, Zampell JC, Andrade VP, Cordeiro AP, Sorrento CM. p21cip/WAF is a key regulator of long-term radiation damage in mesenchyme-derived tissues. FASEB J 2010; 24:4877-88. [PMID: 20720160 DOI: 10.1096/fj.10-155762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study aimed to determine the mechanisms responsible for long-term tissue damage following radiation injury. We irradiated p21-knockout (p21(-/-)) and wild-type (WT) mice and determined the long-term deleterious effects of this intervention on mesenchyme-derived tissues. In addition, we explored the mechanisms of radiation-induced mesenchymal stem cell (MSC) dysfunction in isolated bone marrow-derived cells. p21 expression was chronically elevated >200-fold in irradiated tissues. Loss of p21 function resulted in a >4-fold increase in the number of skin MSCs remaining after radiation. p21(-/-) mice had significantly less radiation damage, including 6-fold less scarring, 40% increased growth potential, and 4-fold more hypertrophic chondrocytes in the epiphyseal plate (P<0.01). Irradiated p21(-/-) MSCs had 4-fold increased potential for bone or fat differentiation, 4-fold greater proliferation rate, and nearly 7-fold lower senescence as compared to WT MSCs (P<0.01). Ectopic expression of p21 in knockout cells decreased proliferation and differentiation potential and recapitulated the WT phenotype. Loss of p21 function markedly decreases the deleterious effects of radiation injury in mesenchyme-derived tissues and preserves tissue-derived MSCs. In addition, p21 is a critical regulator of MSC proliferation, differentiation, and senescence both at baseline and in response to radiation.
Collapse
Affiliation(s)
- Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Andersson-Sjöland A, Erjefält JS, Bjermer L, Eriksson L, Westergren-Thorsson G. Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis. Respir Res 2009; 10:103. [PMID: 19878544 PMCID: PMC2774308 DOI: 10.1186/1465-9921-10-103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/30/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The aim of the present study was to explore the occurrence of fibrocytes in tissue and to investigate whether the appearance of fibrocytes may be linked to structural changes of the parenchyme and vasculature in the lungs of patients with obliterative bronchiolitis (OB) following lung or bone marrow transplantation. METHODS Identification of parenchyme, vasculature, and fibrocytes was done by histological methods in lung tissue from bone marrow or lung-transplanted patients with obliterative bronchiolitis, and from controls. RESULTS The transplanted patients had significantly higher amounts of tissue in the alveolar parenchyme (46.5 +/- 17.6%) than the controls (21.7 +/- 7.6%) (p < 0.05). The patients also had significantly increased numbers of fibrocytes identified by CXCR4/prolyl4-hydroxylase, CD45R0/prolyl4-hydroxylase, and CD34/prolyl4-hydroxylase compared to the controls (p < 0.01). There was a correlation between the number of fibrocytes and the area of alveolar parenchyma; CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.05) and CD34/prolyl 4-hydroxylase (p < 0.05). In the pulmonary vessels, there was an increase in the endothelial layer in patients (0.31 +/- 0.13%) relative to the controls (0.037 +/- 0.02%) (p < 0.01). There was a significant correlation between the number of fibrocytes and the total area of the endothelial layer CXCR4/prolyl 4-hydroxylase (p < 0.001), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). The percent areas of the lumen of the vessels were significant (p < 0.001) enlarged in the patient with OB compared to the controls. There was also a correlation between total area of the lumen and number of fibrocytes, CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). CONCLUSION Our results indicate that fibrocytes are associated with pathological remodelling processes in patients with OB and that tissue fibrocytes might be a useful biomarker in these processes.
Collapse
Affiliation(s)
- Annika Andersson-Sjöland
- Division of Medicine and Allergology, Department of Clinical Medical Science, Lund University, Sweden.
| | | | | | | | | |
Collapse
|