1
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
2
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
3
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Blockade of L-type Ca 2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep 2019; 9:9850. [PMID: 31285514 PMCID: PMC6614470 DOI: 10.1038/s41598-019-46367-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-kappa B (NF-κB) play crucial roles in pathogenesis of doxorubicin (DOX)-induced cardiomyopathy. Their activities are regulated by intracellular Ca2+. We hypothesized that blockade of L-type Ca2+ channel (LTCC) could attenuate DOX-induced cardiomyopathy by regulating CaMKII and NF-κB. DOX activated CaMKII and NF-κB through their phosphorylation and increased cleaved caspase 3 in cardiomyocytes. Pharmacological blockade or gene knockdown of LTCC by nifedipine or small interfering RNA, respectively, suppressed DOX-induced phosphorylation of CaMKII and NF-κB and apoptosis in cardiomyocytes, accompanied by decreasing intracellular Ca2+ concentration. Autocamtide 2-related inhibitory peptide (AIP), a selective CaMKII inhibitor, inhibited DOX-induced phosphorylation of NF-κB and cardiomyocyte apoptosis. Inhibition of NF-κB activity by ammonium pyrrolidinedithiocarbamate (PDTC) suppressed DOX-induced cardiomyocyte apoptosis. DOX-treatment (18 mg/kg via intravenous 3 injections over 1 week) increased phosphorylation of CaMKII and NF-κB in mouse hearts. Nifedipine (10 mg/kg/day) significantly suppressed DOX-induced phosphorylation of CaMKII and NF-κB and cardiomyocyte injury and apoptosis in mouse hearts. Moreover, it attenuated DOX-induced left ventricular dysfunction and dilatation. Our findings suggest that blockade of LTCC attenuates DOX-induced cardiomyocyte apoptosis via suppressing intracellular Ca2+ elevation and activation of CaMKII-NF-κB pathway. LTCC blockers might be potential therapeutic agents against DOX-induced cardiomyopathy.
Collapse
|
5
|
Nishimoto M, Mizuno R, Fujita T, Isshiki M. Stromal interaction molecule 1 modulates blood pressure via NO production in vascular endothelial cells. Hypertens Res 2018; 41:506-514. [DOI: 10.1038/s41440-018-0045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/19/2023]
|
6
|
Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, Kuwabara T, Morishita A, Hitomi H, Mori K, Mukoyama M, Masaki T, Hirano K, Nishiyama A. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. J Pharmacol Sci 2017; 135:S1347-8613(17)30128-7. [PMID: 29110957 DOI: 10.1016/j.jphs.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
The kidney expresses protease-activated receptor-1 (PAR-1). PAR-1 is known as a thrombin receptor, but its role in kidney injury is not well understood. In this study, we examined the contribution of PAR-1 to kidney glomerular injury and the effects of its inhibition on development of nephropathy. Mice were divided into 3 groups: control, doxorubicin + vehicle (15 mg/kg doxorubicin and saline) and doxorubicin + Q94 (doxorubicin at 15 mg/kg and the PAR-1 antagonist Q94 at 5 mg/kg/d) groups. Where indicated, doxorubicin was administered intravenously and PAR-1 antagonist or saline vehicle by subcutaneous osmotic mini-pump. PAR-1 expression was increased in glomeruli of mice treated with doxorubicin. Q94 treatment significantly suppressed the increased albuminuria in these nephropathic mice. Pathological analysis showed that Q94 treatment significantly attenuated periodic acid-Schiff and desmin staining, indicators of podocyte injury, and also decreased glomerular levels of podocin and nephrin. Furthermore, thrombin increased intracellular calcium levels in podocytes. This increase was suppressed by Q94 and Rox4560, a transient receptor potential cation channel (TRPC)3/6 antagonist. In addition, both Q94 and Rox4560 suppressed the doxorubicin-induced increase in activities of caspase-9 and caspase-3 in podocytes. These data suggested that PAR-1 contributes to development of podocyte and glomerular injury and that PAR-1 antagonists have therapeutic potential.
Collapse
Affiliation(s)
- Yu Guan
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Yifan Zhang
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Lei Li
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Wenhua Liu
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Asahiro Morishita
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Kiyoshi Mori
- Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| |
Collapse
|
7
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Arai S, Ikeda M, Ide T, Matsuo Y, Fujino T, Hirano K, Sunagawa K, Tsutsui H. Functional loss of DHRS7C induces intracellular Ca2+ overload and myotube enlargement in C2C12 cells via calpain activation. Am J Physiol Cell Physiol 2017; 312:C29-C39. [DOI: 10.1152/ajpcell.00090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Abstract
Dehydrogenase/reductase member 7C (DHRS7C) is a newly identified NAD/NADH-dependent dehydrogenase that is expressed in cardiac and skeletal muscle and localized in the endoplasmic/sarcoplasmic reticulum (ER/SR). However, its functional role in muscle cells remains to be fully elucidated. Here, we investigated the role of DHRS7C by analyzing mouse C2C12 myoblasts deficient in DHRS7C (DHRS7C-KO cells), overexpressing wild-type DHRS7C (DHRS7C-WT cells), or expressing mutant DHRS7C [DHRS7C-Y191F or DHRS7C-K195Q cells, harboring point mutations in the NAD/NADH-dependent dehydrogenase catalytic core domain (YXXXK)]. DHRS7C expression was induced as C2C12 myoblasts differentiated into mature myotubes, whereas DHRS7C-KO myotubes exhibited enlarged cellular morphology after differentiation. Notably, both DHRS7C-Y191F and DHRS7C-K195Q cells also showed similar enlarged cellular morphology, suggesting that the NAD/NADH-dependent dehydrogenase catalytic core domain is pivotal for DHRS7C function. In DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q cells, the resting level of cytosolic Ca2+ and total amount of Ca2+ storage in the ER/SR were significantly higher than those in control C2C12 and DHRS7C-WT cells after differentiation. Additionally, Ca2+ release from the ER/SR induced by thapsigargin and 4-chloro-m-cresol was augmented in these cells and calpain, a calcium-dependent protease, was significantly activated in DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q myotubes, consistent with the higher resting level of cytosolic Ca2+ concentration and enlarged morphology after differentiation. Furthermore, treatment with a calpain inhibitor abolished the enlarged cellular morphology. Taken together, our findings suggested that DHRS7C maintains intracellular Ca2+ homeostasis involving the ER/SR and that functional loss of DHRS7C leads to Ca2+ overload in the cytosol and ER/SR, resulting in enlarged cellular morphology via calpain activation.
Collapse
Affiliation(s)
- Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Matsuo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology Faculty of Medicine, Kagawa University, Kagawa, Japan; and
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Hirano M, Hirano K. Myosin di-phosphorylation and peripheral actin bundle formation as initial events during endothelial barrier disruption. Sci Rep 2016; 6:20989. [PMID: 26863988 PMCID: PMC4750094 DOI: 10.1038/srep20989] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
The phosphorylation of the 20-kD myosin light chain (MLC) and actin filament formation play a key role in endothelial barrier disruption. MLC is either mono- or di-phosphorylated (pMLC and ppMLC) at T18 or S19. The present study investigated whether there are any distinct roles of pMLC and ppMLC in barrier disruption induced by thrombin. Thrombin induced a modest bi-phasic increase in pMLC and a robust mono-phasic increase in ppMLC. pMLC localized in the perinuclear cytoplasm during the initial phase, while ppMLC localized in the cell periphery, where actin bundles were formed. Later, the actin bundles were rearranged into stress fibers, where pMLC co-localized. Rho-kinase inhibitors inhibited thrombin-induced barrier disruption and peripheral localization of ppMLC and actin bundles. The double, but not single, mutation of phosphorylation sites abolished the formation of peripheral actin bundles and the barrier disruption, indicating that mono-phosphorylation of MLC at either T18 or S19 is functionally sufficient for barrier disruption. Namely, the peripheral localization, but not the degree of phosphorylation, is suggested to be essential for the functional effect of ppMLC. These results suggest that MLC phosphorylation and actin bundle formation in cell periphery are initial events during barrier disruption.
Collapse
Affiliation(s)
- Mayumi Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
| |
Collapse
|
10
|
Béliveau É, Lessard V, Guillemette G. STIM1 positively regulates the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor in bovine aortic endothelial cells. PLoS One 2014; 9:e114718. [PMID: 25506690 PMCID: PMC4266619 DOI: 10.1371/journal.pone.0114718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
The endothelium is actively involved in many functions of the cardiovascular system, such as the modulation of arterial pressure and the maintenance of blood flow. These functions require a great versatility of the intracellular Ca2+ signaling that resides in the fact that different signals can be encoded by varying the frequency and the amplitude of the Ca2+ response. Cells use both extracellular and intracellular Ca2+ pools to modulate the intracellular Ca2+ concentration. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R), located on the endoplasmic reticulum (ER), is responsible for the release of Ca2+ from the intracellular store. The proteins STIM1 and STIM2 are also located on the ER and they are involved in the activation of a store-operated Ca2+ entry (SOCE). Due to their Ca2+ sensor property and their close proximity with IP3Rs on the ER, STIMs could modulate the activity of IP3R. In this study, we showed that STIM1 and STIM2 are expressed in bovine aortic endothelial cells and they both interact with IP3R. While STIM2 appears to play a minor role, STIM1 plays an important role in the regulation of agonist-induced Ca2+ mobilization in BAECs by a positive effect on both the SOCE and the IP3R-dependent Ca2+ release.
Collapse
Affiliation(s)
- Éric Béliveau
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Vincent Lessard
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Gaétan Guillemette
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| |
Collapse
|
11
|
Naser N, Januszewski AS, Brown BE, Jenkins AJ, Hill MA, Murphy TV. Advanced glycation end products acutely impair ca(2+) signaling in bovine aortic endothelial cells. Front Physiol 2013; 4:38. [PMID: 23483845 PMCID: PMC3593230 DOI: 10.3389/fphys.2013.00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/13/2013] [Indexed: 01/16/2023] Open
Abstract
Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs) are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signaling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signaling in bovine aortic endothelial cells (BAEC). Ca2+ signaling was studied using the fluorescent indicator dye Fura-2-AM. AGEs were generated by incubating bovine serum albumin with 0–250 mM glucose or glucose-6-phosphate for 0–120 days at 37°C. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML) as assayed using both gas-liquid chromatograph-mass spectroscopy and high-performance liquid chromatography. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 μM). In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 μM), and ionomycin (3 μM), but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 μM) and NAD(P)H oxidase inhibitors apocynin (500 μM) and diphenyleneiodonium (1 μM) abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 μM). In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of reactive oxygen species from NAD(P)H oxidase and possible activation of the IP3 receptor.
Collapse
Affiliation(s)
- Nadim Naser
- Department of Physiology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Ruhle B, Trebak M. Emerging roles for native Orai Ca2+ channels in cardiovascular disease. CURRENT TOPICS IN MEMBRANES 2013; 71:209-35. [PMID: 23890117 DOI: 10.1016/b978-0-12-407870-3.00009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orai proteins form highly calcium (Ca(2+))-selective channels located in the plasma membrane of both nonexcitable and excitable cells, where they make important contributions to many cellular processes. The well-characterized Ca(2+) release-activated Ca(2+) current is mediated by Orai1 multimers and is activated, upon depletion of inositol 1,4,5-trisphosphate-sensitive stores, by direct interaction of Orai1 with the endoplasmic reticulum Ca(2+) sensor, stromal interaction molecule 1 (STIM1). This pathway is known as capacitative Ca(2+) entry or store-operated Ca(2+) entry. While most investigations have focused on STIM1 and Orai1 in their store-dependent mode, emerging evidence suggests that Orai1 and Orai3 heteromultimeric channels can form store-independent Ca(2+)-selective channels. The role of store-dependent and store-independent channels in excitation-transcription coupling and the pathological remodeling of the cardiovascular system are beginning to come forth. Recent evidence suggests that STIM/Orai-generated Ca(2+) signaling couples to gene transcription and subsequent phenotypic changes associated with the processes of cardiac and vascular remodeling. This short review will explore the contributions of native Orai channels to heart and vessel physiology and their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Brian Ruhle
- Nanobioscience Constellation, The College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, NY, USA
| | | |
Collapse
|
13
|
STIM1 and Orai1 mediate thrombin-induced Ca2+ influx in rat cortical astrocytes. Cell Calcium 2012; 52:457-67. [DOI: 10.1016/j.ceca.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/08/2012] [Indexed: 12/23/2022]
|
14
|
Lysophosphatidic acid promotes cell migration through STIM1- and Orai1-mediated Ca2+(i) mobilization and NFAT2 activation. J Invest Dermatol 2012; 133:793-802. [PMID: 23096711 PMCID: PMC3572452 DOI: 10.1038/jid.2012.370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysophosphatidic acid (LPA) enhances cell migration and promotes wound healing in vivo, but the intracellular signaling pathways regulating these processes remain incompletely understood. Here we investigated the involvement of agonist-induced Ca2+ entry and STIM1 and Orai1 proteins in regulating nuclear factor of activated T cell (NFAT) signaling and LPA-induced keratinocyte cell motility. As monitored by Fluo-4 imaging, stimulation with 10 μℳ LPA in 60 μℳ Ca2+o evoked Ca2+i transients owing to store release, whereas addition of LPA in physiological 1.2 mℳ Ca2+o triggered store release coupled to extracellular Ca2+ entry. Store-operated Ca2+ entry (SOCE) was blocked by the SOCE inhibitor diethylstilbestrol (DES), STIM1 silencing using RNA interference (RNAi), and expression of dominant/negative Orai1R91W. LPA induced significant NFAT activation as monitored by nuclear translocation of green fluorescent protein-tagged NFAT2 and a luciferase reporter assay, which was impaired by DES, expression of Orai1R91W, and inhibition of calcineurin using cyclosporin A (CsA). By using chemotactic migration assays, LPA-induced cell motility was significantly impaired by STIM1, CsA, and NFAT2 knockdown using RNAi. These data indicate that in conditions relevant to epidermal wound healing, LPA induces SOCE and NFAT activation through Orai1 channels and promotes cell migration through a calcineurin/NFAT2-dependent pathway.
Collapse
|
15
|
Estrada IA, Donthamsetty R, Debski P, Zhou MH, Zhang SL, Yuan JXJ, Han W, Makino A. STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res 2012; 111:1166-75. [PMID: 22896585 DOI: 10.1161/circresaha.112.275743] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE The endoplasmic reticulum (ER) is a major intracellular Ca(2+) store in endothelial cells (ECs). The Ca(2+) concentration in the ER greatly contributes to the generation of Ca(2+) signals that regulate endothelial functions. Many proteins, including stromal interaction molecule 1/2 (STIM1/2), Orai1/2/3, and sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3), are involved in the ER Ca(2+) refilling after store depletion in ECs. OBJECTIVE This study is designed to examine the role of Ca(2+) in the ER in coronary endothelial dysfunction in diabetes. METHODS AND RESULTS Mouse coronary ECs (MCECs) isolated from diabetic mice exhibited (1) a significant decrease in the Ca(2+) mobilization from the ER when the cells were treated by SERCA inhibitor, and (2) significant downregulation of STIM1 and SERCA3 protein expression in comparison to the controls. Overexpression of STIM1 restored (1) the increase in cytosolic Ca(2+) concentration due to Ca(2+) leak from the ER in diabetic MCECs, (2) the Ca(2+) concentration in the ER, and (3) endothelium-dependent relaxation that was attenuated in diabetic coronary arteries. CONCLUSIONS Impaired ER Ca(2+) refilling in diabetic MCECs, due to the decrease in STIM1 protein expression, attenuates endothelium-dependent relaxation in diabetic coronary arteries, while STIM1 overexpression has a beneficial and therapeutic effect on coronary endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Irene A Estrada
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
17
|
Willer EA, Malli R, Bondarenko AI, Zahler S, Vollmar AM, Graier WF, Fürst R. The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. J Mol Cell Cardiol 2012; 53:567-77. [PMID: 22814436 DOI: 10.1016/j.yjmcc.2012.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
WS® 1442 has been proven as an effective and safe therapeutical to treat mild forms of congestive heart failure. Beyond this action, we have recently shown that WS® 1442 protects against thrombin-induced vascular barrier dysfunction and the subsequent edema formation by affecting endothelial calcium signaling. The aim of the study was to analyze the influence of WS® 1442 on intracellular calcium concentrations [Ca(2+)](i) in the human endothelium and to investigate the underlying mechanisms. Using ratiometric calcium measurements and a FRET sensor, we found that WS® 1442 concentration-dependently increased basal [Ca(2+)](i) by depletion of the endoplasmic reticulum (ER) and inhibited a subsequent histamine-triggered rise of [Ca(2+)](i). Interestingly, the augmented [Ca(2+)](i) did neither trigger an activation of the contractile machinery nor led to a barrier breakdown (macromolecular permeability). It also did not impair endothelial cell viability. As assessed by patch clamp recordings, WS® 1442 did only slightly affect endothelial Na(+)/K(+)-ATPase, but increased [Ca(2+)](i) by inhibiting the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) and by activating the inositol 1,4,5-trisphosphate (IP(3)) pathway. Most importantly, WS® 1442 did not induce store-operated calcium entry (SOCE), but even irreversibly prevented histamine-induced SOCE. Taken together, WS® 1442 prevented the deleterious hyperpermeability-associated rise of [Ca(2+)](i) by a preceding, non-toxic release of Ca(2+) from the ER. WS® 1442 interfered with SERCA and the IP(3) pathway without inducing SOCE. The elucidation of this intriguing mechanism helps to understand the complex pharmacology of the cardiovascular drug WS® 1442.
Collapse
Affiliation(s)
- Elisabeth A Willer
- Department of Pharmacy, Centre for Drug Research, Pharmaceutical Biology, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Sandow SL, Senadheera S, Grayson TH, Welsh DG, Murphy TV. Calcium and endothelium-mediated vasodilator signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:811-31. [PMID: 22453971 DOI: 10.1007/978-94-007-2888-2_36] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular tone refers to the balance between arterial constrictor and dilator activity. The mechanisms that underlie tone are critical for the control of haemodynamics and matching circulatory needs with metabolism, and thus alterations in tone are a primary factor for vascular disease etiology. The dynamic spatiotemporal control of intracellular Ca(2+) levels in arterial endothelial and smooth muscle cells facilitates the modulation of multiple vascular signaling pathways. Thus, control of Ca(2+) levels in these cells is integral for the maintenance of tone and blood flow, and intimately associated with both physiological and pathophysiological states. Hence, understanding the mechanisms that underlie the modulation of vascular Ca(2+) activity is critical for both fundamental knowledge of artery function, and for the development of targeted therapies. This brief review highlights the role of Ca(2+) signaling in vascular endothelial function, with a focus on contact-mediated vasodilator mechanisms associated with endothelium-derived hyperpolarization and the longitudinal conduction of responses over distance.
Collapse
Affiliation(s)
- Shaun L Sandow
- Department of Physiology, School of Medical Sciences, University of New South Wales, 2052 Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
19
|
Decuypere JP, Monaco G, Kiviluoto S, Oh-hora M, Luyten T, De Smedt H, Parys JB, Missiaen L, Bultynck G. STIM1, but not STIM2, is required for proper agonist-induced Ca2+ signaling. Cell Calcium 2011; 48:161-7. [PMID: 20801505 DOI: 10.1016/j.ceca.2010.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The stromal interaction molecules STIM1 and STIM2 sense a decreasing Ca(2+) concentration in the lumen of the endoplasmic reticulum and activate Ca(2+) channels in the plasma membrane. In addition, at least 2 reports suggested that STIM1 may also interact with the inositol 1,4,5-trisphosphate (IP(3)) receptor. Using embryonic fibroblasts from Stim1(-/-), Stim2(-/-) and wild-type mice, we now tested the hypothesis that STIM1 and STIM2 would also regulate the IP(3) receptor. We investigated whether STIM1 or STIM2 would be the luminal Ca(2+) sensor that controls the loading dependence of the IP(3)-induced Ca(2+) release. Partial emptying of the stores in plasma-membrane permeabilized cells resulted in an increased EC(50) and a decreased Hill coefficient for IP(3)-induced Ca(2+) release. This effect occurred both in the presence and absence of STIM proteins, indicating that these proteins were not the luminal Ca(2+) sensor for the IP(3) receptor. Although Stim1(-/-) cells displayed a normal IP(3)-receptor function, agonist-induced Ca(2+) release was reduced. This finding suggests that the presence of STIM1 is required for proper agonist-induced Ca(2+) signaling. Our data do not provide experimental evidence for the suggestion that STIM proteins would directly control the function of the IP(3) receptor.
Collapse
|
20
|
Bishara NB, Ding H. Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. Am J Physiol Heart Circ Physiol 2009; 298:H171-8. [PMID: 19855058 DOI: 10.1152/ajpheart.00699.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hyperglycemia is a major risk factor for endothelial dysfunction and vascular disease, and in the current study, the link to glucose-induced abnormal intracellular Ca(2+) (Ca(i)(2+)) homeostasis was explored in bovine aortic endothelial cells in high glucose (HG; 25 mmol/l) versus low glucose (LG; 5.5 mmol/l; control). Transient receptor potential 1 (TRPC1) ion channel protein, but not TRPC3, TRPC4, or TRPC6 expression, was significantly increased in HG versus LG at 72 h. HG for 4, 24, and 72 h did not change basal Ca(i)(2+) or ATP-induced Ca(i)(2+) release; however, the amplitude of sustained Ca(i)(2+) was significantly increased at 24 and 72 h and reduced by low concentration of the putative, but nonspecific, TRPC blockers, gadolinium, SKF-96365, and 2-aminoethoxydiphenyl borate. Treatment with TRPC1 antisense significantly reduced TRPC1 protein expression and ATP-induced Ca(2+) entry in bovine aortic endothelial cells. Although the link between HG-induced changes in TRPC1 expression, enhanced Ca(2+) entry, and endothelial dysfunction require further study, the current data are suggestive that targeting these pathways may reduce the impact of HG on endothelial function.
Collapse
Affiliation(s)
- N B Bishara
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | | |
Collapse
|