1
|
Kim SH, Shin HL, Son TH, Kim D, Kim HG, Cho JH, Choi SW. The Biphasic Activity of Auricularia Auricula-Judae Extract on Bone Homeostasis through Inhibition of Osteoclastogenesis and Modulation of Osteogenic Activity. J Microbiol Biotechnol 2024; 34:2576-2585. [PMID: 39467699 PMCID: PMC11729361 DOI: 10.4014/jmb.2408.08055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Osteoporosis arises from the disturbance of bone homeostasis, a process regulated by osteoblasts and osteoclasts. The treatment and prevention of bone metabolic disorders resulting from an imbalance in bone homeostasis require the use of agents that effectively promote both bone formation and anti-resorptive effects. Therefore, an investigation was carried out to determine the potential of the edible mushroom Auricularia auricula-judae in modulating bone remodeling by inhibiting RANKL-induced osteoclastogenesis and enhancing BMP-2-stimulated osteoblast differentiation. Moreover, this study assessed the mode of action of the Auricularia auricula-judae extracts. The staining of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclast activity, demonstrated that Auricularia auricula-judae water extract (AAJWE) inhibited the formation of multinucleated osteoclasts while exhibiting no cytotoxic effects. The study demonstrated that AAJWE reduced RANKL-induced osteoclast differentiation by inhibiting c-Fos/NFATc1 through the inhibition of ERK and JNK phosphorylation during the RANKL-induced osteoclast differentiation. Moreover, AAJWE exhibited a dose-dependent induction of ALP expression in the presence of BMP-2 during osteoblast differentiation. The AAJWE strengthened BMP-2-induced osteogenesis through the activation of Runx2 and Smad phosphorylation. Therefore, AAJWE emerges as a promising candidate for both prevention and therapy owing to its biphasic effect, which aids in the preservation of bone homeostasis.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Republic of Korea
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Republic of Korea
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae Hyun Son
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Republic of Korea
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Republic of Korea
| | - Hwan-Gyu Kim
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Han Cho
- Postharvest Research Division, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Republic of Korea
| |
Collapse
|
2
|
Weng Y, Feng Y, Li Z, Xu S, Wu D, Huang J, Wang H, Wang Z. Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells. Nat Commun 2024; 15:10186. [PMID: 39582024 PMCID: PMC11586402 DOI: 10.1038/s41467-024-54640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.
Collapse
Affiliation(s)
- Yuteng Weng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zeyuan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Shuyu Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Di Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jie Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Haicheng Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China.
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Cao Y, Chen F, Zhu S, Zhu D, Qi H. Staphylococcus aureus infection initiates hypoxia-mediated STIP1 homology and U-box containing protein 1 upregulation to trigger osteomyelitis. Toxicon 2024; 248:108049. [PMID: 39059559 DOI: 10.1016/j.toxicon.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although little is known about the regulatory mechanisms underlying the pathogenesis of osteomyelitis caused by Staphylococcus aureus (S. aureus), hypoxia-inducible factor-1α (HIF-1α) and STIP1 homology and U-box containing protein 1 (STUB1) have been found to be up-regulated in both S. aureus infected MC3T3-E1 cells and in patients with osteomyelitis. HIF-1α directly targets STUB1 to induce its expression. In MC3T3-E1 cells infected with S. aureus, silencing HIF-1α and STUB1 and administering the hypoxia inhibitor IDF-11774 consistently increased the expression of OSX and RUNX2, as well as the levels of alizarin Red S and alkaline phosphatase activity. In a mouse model of osteomyelitis, S. aureus infection elevated HIF-1α expression and serum STUB1 levels. Interleukin (IL)-6, IL-1β, and C-reactive protein levels in serum were reduced after treatment with the hypoxia inhibitor IDF-11774. Following an infection with S. aureus, hypoxia was activated to cause STUB1 overexpression by directly targeting HIF-1α, ultimately causing osteomyelitis symptoms such as osteogenesis and mineralization defected and increased inflammation. This study presents a novel signaling cascade in the pathogenesis of osteomyelitis involving hypoxia/HIF-1α/STUB1. This signaling cascade may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Suyue Zhu
- Department of Pediatric, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China
| | - Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Han Qi
- Department of Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
4
|
Yalaev B, Tyurin A, Akhiiarova K, Khusainova R. Hypomethylation of the RUNX2 Gene Is a New Potential Biomarker of Primary Osteoporosis in Men and Women. Int J Mol Sci 2024; 25:7312. [PMID: 39000419 PMCID: PMC11242095 DOI: 10.3390/ijms25137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The search for the molecular markers of osteoporosis (OP), based on the analysis of differential deoxyribonucleic acid (DNA) methylation in bone cells and peripheral blood cells, is promising for developments in the field of the early diagnosis and targeted therapy of the disease. The Runt-related transcription factor 2 (RUNX2) gene is one of the key genes of bone metabolism, which is of interest in the search for epigenetic signatures and aberrations associated with the risk of developing OP. Based on pyrosequencing, the analysis of the RUNX2 methylation profile from a pool of peripheral blood cells in men and women over 50 years of age of Russian ethnicity from the Volga-Ural region of Russia was carried out. The level of DNA methylation in three CpG sites of the RUNX2 gene was assessed and statistically significant hypomethylation was revealed in all three studied CpG sites in men (U = 746.5, p = 0.004; U = 784, p = 0.01; U = 788.5, p = 0.01, respectively) and in one CpG site in women (U = 537, p = 0.03) with primary OP compared with control. In the general sample, associations were preserved for the first CpG site (U = 2561, p = 0.0001766). The results were obtained for the first time and indicate the existence of potentially new epigenetic signatures of RUNX2 in individuals with OP.
Collapse
Affiliation(s)
- Bulat Yalaev
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (B.Y.); (R.K.)
| | - Anton Tyurin
- Internal Medicine & Clinical Psychology Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Karina Akhiiarova
- Internal Medicine & Clinical Psychology Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Rita Khusainova
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (B.Y.); (R.K.)
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
5
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
6
|
Al-Mutairi DA, Jarragh AA, Alsabah BH, Wein MN, Mohammed W, Alkharafi L. A homozygous SP7/OSX mutation causes osteogenesis and dentinogenesis imperfecta with craniofacial anomalies. JBMR Plus 2024; 8:ziae026. [PMID: 38562913 PMCID: PMC10984723 DOI: 10.1093/jbmrpl/ziae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous spectrum of hereditary genetic disorders that cause bone fragility, through various quantitative and qualitative defects of type 1 collagen, a triple helix composed of two α1 and one α2 chains encoded by COL1A1 and COL1A2, respectively. The main extra-skeletal manifestations of OI include blue sclerae, opalescent teeth, and hearing impairment. Moreover, multiple genes involved in osteoblast maturation and type 1 collagen biosynthesis are now known to cause recessive forms of OI. In this study a multiplex consanguineous family of two affected males with OI was recruited for genetic screening. To determine the causative, pathogenic variant(s), genomic DNA from two affected family members were analyzed using whole exome sequencing, autozygosity mapping, and then validated with Sanger sequencing. The analysis led to the mapping of a homozygous variant previously reported in SP7/OSX, a gene encoding for Osterix, a transcription factor that activates a repertoire of genes involved in osteoblast and osteocyte differentiation and function. The identified variant (c.946C > T; p.Arg316Cys) in exon 2 of SP7/OSX results in a pathogenic amino acid change in two affected male siblings and develops OI, dentinogenesis imperfecta, and craniofacial anomaly. On the basis of the findings of the present study, SP7/OSX:c. 946C > T is a rare homozygous variant causing OI with extra-skeletal features in inbred Arab populations.
Collapse
Affiliation(s)
- Dalal A Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, 13110 Kuwait City, Kuwait
| | - Ali A Jarragh
- Department of Surgery, Faculty of Medicine, Kuwait University, 13110 Kuwait City, Kuwait
| | - Basel H Alsabah
- Zain Specialized Hospital for Ear, Nose and Throat, 70030 Kuwait City, Kuwait
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Wasif Mohammed
- Department of Radiology, Al Sabah Hospital, 13041 Kuwait City, Kuwait
| | - Lateefa Alkharafi
- Cleft and Craniofacial Unit, Farwaniya Specialized Dental Center, Ministry of Health, 13001 Kuwait City, Kuwait
| |
Collapse
|
7
|
Chen Q, Wu Z, Shi Y, Li Z, Yang J, Qu M, Zhang S, Wang Z, Ji N, Li J, Shen Y, Xie L, Chen Q. Loss of PA28γ exacerbates imbalanced differentiation of bone marrow stromal cells during bone formation and bone healing in mice. J Bone Miner Res 2024; 39:326-340. [PMID: 38477820 DOI: 10.1093/jbmr/zjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/β-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/β-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - ZuPing Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - YuJie Shi
- Department of Stomatology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P. R. China
| | - ZaiYe Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - JiaKang Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - MoYuan Qu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - ShiYu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - YingQiang Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
8
|
Miki K, Takeshita N, Yamashita M, Kitamura M, Murakami S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci Rep 2024; 14:1344. [PMID: 38228723 PMCID: PMC10791604 DOI: 10.1038/s41598-024-52029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.
Collapse
Affiliation(s)
- Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Chen Y, Wu L, Li Y, Zheng J, Zhong S, Gu S, Chen J. Necrotizing apoptosis-related genes prognosis and treatment effect analysis of osteosarcoma in children. J Gene Med 2024; 26:e3646. [PMID: 38100138 DOI: 10.1002/jgm.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Immune cell homeostasis plays a crucial role in cancer research and therapeutic response. While chemotherapy and immunotherapy hold promise in treating osteosarcoma (OS), identifying patients who are likely to respond would significantly improve clinical practices. Necroptosis, a fundamental mechanism mediating chemotherapy and immunotherapy efficacy, offers valuable insights. In this context, subtypes based on necroptosis-related genes have been established to predict the response of OS patients to immunotherapy and chemotherapy. METHODS We conducted a high-throughput screening test to identify necroptosis-associated genes that regulate the development of osteosarcoma. Subsequently, the ConsensusClusterPlus package was employed to classify OS patients into subtypes, enabling comparisons of prognosis and clinical information between these subtypes. Patients from the TARGET-OS and GSE21257 datasets were stratified into high-risk and low-risk groups, and their prognoses were compared. Additionally, we assessed the accuracy of the Risk Scoring Model in predicting prognosis, identified independent prognostic factors and explored potential chemotherapeutic agents and immunotherapy drugs. RESULTS Through the intersection of expression profiles from the TARGET-OS and GSE21257 datasets, we have identified a total of 92 genes associated with necroptosis. Based on differences in the expression of these genes, patients were divided into three subtypes, and we investigated the differences in tumor-infiltrating immune cells, immune-related pathways, and prognosis among these subtypes. Our nomogram effectively differentiated subtypes with distinct responses to chemotherapy and immunotherapy. The established signature demonstrated superior prediction ability compared with single clinical indicators. CONCLUSIONS This pioneering study unveils the prognostic role of necroptosis-related genes in OS patients, providing a promising alternative for prognostic prediction in clinical disease management. Moreover, our findings highlight the significance of immune cell homeostasis in cancer research and therapeutic response, underscoring its relevance in advancing current treatment strategies.
Collapse
Affiliation(s)
| | - Ling Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Yunyan Li
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Jika Zheng
- Ningbo Women and Children's Hospital, Ningbo, China
| | | | - Shirong Gu
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jingyang Chen
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
11
|
Wan Y, Hu C, Hou Y, Si C, Zhao Q, Wang Z, Wang L, Guo X. OPG gene-modified adipose-derived stem cells improve bone formation around implants in osteoporotic rat maxillae. Heliyon 2023; 9:e19474. [PMID: 37817994 PMCID: PMC10560787 DOI: 10.1016/j.heliyon.2023.e19474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023] Open
Abstract
Background Osteoporosis is a significant barrier to the use of dental implants in the elderly for the treatment of tooth defects. Adipose derived stem cells (ADSCs) have demonstrated extensive potential for tissue repair and regeneration. The present study aimed to investigate the effectiveness of ADSCs engineered to express high levels of osteoprotegerin (OPG) for the treatment of bone loss in implant dentistry caused by estrogen deficiency. Methods A rat model of osteoporosis was established through double oophorectomy, and the rats were treated by gene modified cells Adv-OPG-ADSCs. The effects of the treatment on maxilla tissue changes were evaluated using HE staining and micro-CT. Additionally, ALP and TRAP staining were used to assess osteoblast and osteoclast alterations. Finally, the changes in related osteoblast and osteoclast indicators were measured by RT-qPCR, Western blot, and ELISA. Results The successfully generated high-OPG-expressing ADSCs led to increase of cell viability, proliferation, and osteoblast differentiation. Treatment with Adv-OPG-ADSCs significantly ameliorated maxillary morphology, trabecular volume reduction, and bone mineral density decline in the model of estrogen-deficient maxillary implant dentistry. Furthermore, the treatment was beneficial to promoting the generation of osteoblasts and inhibiting the generation of osteoclast. Adv-OPG-ADSCs increased OPG, ALP, OCN, and Runx-2 expressions in the maxilla while suppressing RANKL expression, and also increased the concentration of COL I and PINP, as well as decreased the concentration of CTX-1. Conclusion Adv-OPG-ADSCs promote the formation of osteoblasts and inhibit the generation of osteoclasts, thereby inhibiting bone absorption, facilitating bone formation, and promoting the repair of maxillary bone after dental implantation in the presence of osteoporosis-related complications, especially in the setting of estrogen deficiency, providing scientific basis for the application of Adv-OPG-ADSCs in the treatment of implant related osteoporosis.
Collapse
Affiliation(s)
| | | | - Yongjie Hou
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chenchen Si
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Zhao
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhenzhen Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Liyuan Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoqian Guo
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
12
|
Bitencourt Reis CL, Nakane Matsumoto MA, Baratto-Filho F, Scariot R, Sasso Stuani MB, Lourenço Romano F, Della Coletta R, Silva Barroso de Oliveira D, Proff P, Kirschneck C, Calvano Küchler E. Impact of genetic variations in the WNT family members and RUNX2 on dental and skeletal maturation: a cross-sectional study. Head Face Med 2023; 19:26. [PMID: 37400934 PMCID: PMC10316614 DOI: 10.1186/s13005-023-00372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND This study evaluated if genetic variations in the WNT family members and RUNX2 are associated with craniofacial maturation, investigating dental and skeletal maturity in children and teenagers. METHODS Radiographs from pre-orthodontic treatment of Brazilian patients (7 to 17 years-old) were used to assess dental (panoramic radiographs) and skeletal maturity (cephalometric radiographs). The chronological age (CA) was calculated based on the date of birth and the time the radiographs were performed. For the dental maturity analysis, the Demirjian (1973) method was used and a delta [dental age - chronological age (DA-CA)] was calculated. For the skeletal maturity analysis, the Baccetti et al. (2005) method was used and the patients were classified as "delayed skeletal maturation", "advanced skeletal maturation" or "normal skeletal maturation". DNA isolated from buccal cells was used for genotyping of two genetic variations in WNT family genes: rs708111 (G > A) in WNT3A and rs1533767 (G > A) in WNT11; and two genetic variations in RUNX2: rs1200425 (G > A) and rs59983488 (G > T). A statistical analysis was performed and values of p < 0.05 indicated a significant difference. RESULTS There were no associations between dental maturity and genotypes (p > 0.05). In the skeletal maturity analysis, the allele A in the rs708111 (WNT3A) was statistically more frequent in patients with delayed skeletal maturation (Prevalence Ratio = 1.6; 95% Confidence Interval = 1.00 to 2.54; p-value = 0.042). CONCLUSIONS The rs708111 in the WNT3A gene impacts on skeletal maturation.
Collapse
Affiliation(s)
- Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Flares Baratto-Filho
- School of Dentistry, Tuiuti University of Paraná, Paraná, Brazil
- School of Dentistry, Univille University, Joinville, Brazil
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Paraná, Brazil
| | - Maria Bernadete Sasso Stuani
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio Lourenço Romano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Campinas, SP Brazil
| | | | - Peter Proff
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Zhang Q, Zhang Q, Yan X, Wang L, Yuan X. Wrinkled topography regulates osteogenesis via autophagy-mediated Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Arch Oral Biol 2023; 151:105700. [PMID: 37094411 DOI: 10.1016/j.archoralbio.2023.105700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE In this study, we aimed to evaluate the effects of different dimensional wrinkled in topography on the osteogenic differentiation of MC3T3-E1 cells and explored the underlying mechanisms. DESIGN Polydimethylsiloxane (PDMS) with a wrinkled topography was synthesized using an elastomer base and crosslinking while observing by atomic force microscopy. MC3T3-E1 proliferation was detected by Cell Counting Kit-8(CCK-8) assays and the cell morphology was determined by phalloidin staining. Osteogenetic genes expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. In addition, Autophagy-related genes expression levels were evaluated by immunostaining and western blotting in MC3T3-E1 in order to assess the induction of autophagy. RESULTS In this experiment, the 0.7 µm amplitude and 3 µm wavelength (W3) group increased the expression of osteogenic markers, whereas the 4.3 µm amplitude and 27 µm wavelength (W27) group showed inhibition. Both the cytoplasm and the nucleus of β-catenin, compared with those of the Flat, W3 increased, whereas W27 decreased. At the same time, the autophagy was consistent with the influence of the topography on osteogenic differentiation. Moreover, using CQ or RAPA significantly inhibited or promoted autophagy, as well as partially decreasing or increasing osteogenesis, respectively. Infecting siRNA-β-catenin decreased the expression of RUNX2 and OSX in MC3T3-E1 cells both treated with CQ and RAPA. CONCLUSIONS Wrinkled topographies activated the autophagy-mediated Wnt/β-catenin signaling pathway and affected the osteogenic differentiation of MC3T3-E1 cells. The introduction of aligned topographies on biomaterial scaffolds could provide physical cues with which modulate MC3T3-E1 responses for bone engineering constructs.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Liping Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266003, China.
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
14
|
Kagioka T, Itoh S, Hue MT, Abe M, Hayashi M. Lithium carbonate accelerates the healing of apical periodontitis. Sci Rep 2023; 13:7886. [PMID: 37193735 PMCID: PMC10188564 DOI: 10.1038/s41598-023-34700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
Apical periodontitis is a disease caused by bacterial invasions through the root canals. Our previous study reported that lithium chloride (LiCl) had a healing effect on apical periodontitis. The aim of this report is to investigate the healing properties and mechanism of lithium ion (Li+) for apical periodontitis using rat root canal treatment model. 10-week-old male Wistar rat's mandibular first molars with experimentally induced apical periodontitis underwent root canal treatment and were applied lithium carbonate (Li2CO3) containing intracanal medicament. Base material of the medicament was used as a control. Subject teeth were scanned by micro-CT every week and the periapical lesion volume was evaluated. The lesion volume of Li2CO3 group was significantly smaller than that of the control group. Histological analysis showed that in Li2CO3 group, M2 macrophages and regulatory T cells were induced in the periapical lesion. In situ hybridization experiments revealed a greater expression of Col1a1 in Li2CO3 group compared with the control group. At 24 h after application of intracanal medicament, Axin2-positive cells were distributed in Li2CO3 group. In conclusion, Li2CO3 stimulates Wnt/β-catenin signaling pathway and accelerate the healing process of apical periodontitis, modulating the immune system and the bone metabolism.
Collapse
Affiliation(s)
- Takumi Kagioka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mai Thi Hue
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The Metabolic Features of Osteoblasts: Implications for Multiple Myeloma (MM) Bone Disease. Int J Mol Sci 2023; 24:ijms24054893. [PMID: 36902326 PMCID: PMC10003241 DOI: 10.3390/ijms24054893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The study of osteoblast (OB) metabolism has recently received increased attention due to the considerable amount of energy used during the bone remodeling process. In addition to glucose, the main nutrient for the osteoblast lineages, recent data highlight the importance of amino acid and fatty acid metabolism in providing the fuel necessary for the proper functioning of OBs. Among the amino acids, it has been reported that OBs are largely dependent on glutamine (Gln) for their differentiation and activity. In this review, we describe the main metabolic pathways governing OBs' fate and functions, both in physiological and pathological malignant conditions. In particular, we focus on multiple myeloma (MM) bone disease, which is characterized by a severe imbalance in OB differentiation due to the presence of malignant plasma cells into the bone microenvironment. Here, we describe the most important metabolic alterations involved in the inhibition of OB formation and activity in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
16
|
Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell 2023; 36:540-553. [PMID: 36580272 DOI: 10.1007/s13577-022-00853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhuoyue Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuqi Feng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
17
|
Denervation during mandibular distraction osteogenesis results in impaired bone formation. Sci Rep 2023; 13:2097. [PMID: 36747028 PMCID: PMC9902545 DOI: 10.1038/s41598-023-27921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Mandibular distraction osteogenesis (DO) is mediated by skeletal stem cells (SSCs) in mice, which enact bone regeneration via neural crest re-activation. As peripheral nerves are essential to progenitor function during development and in response to injury, we questioned if denervation impairs mandibular DO. C57Bl6 mice were divided into two groups: DO with a segmental defect in the inferior alveolar nerve (IAN) at the time of mandibular osteotomy ("DO Den") and DO with IAN intact ("DO Inn"). DO Den demonstrated significantly reduced histological and radiological osteogenesis relative to DO Inn. Denervation preceding DO results in reduced SSC amplification and osteogenic potential in mice. Single cell RNA sequencing analysis revealed that there was a predominance of innervated SSCs in clusters dominated by pathways related to bone formation. A rare human patient specimen was also analyzed and suggested that histological, radiological, and transcriptional alterations seen in mouse DO may be conserved in the setting of denervated human mandible distraction. Fibromodulin (FMOD) transcriptional and protein expression were reduced in denervated relative to innervated mouse and human mandible regenerate. Finally, when exogenous FMOD was added to DO-Den and DO-Inn SSCs undergoing in vitro osteogenic differentiation, the osteogenic potential of DO-Den SSCs was increased in comparison to control untreated DO-Den SSCs, modeling the superior osteogenic potential of DO-Inn SSCs.
Collapse
|
18
|
Kitajima H, Hirota M, Komatsu K, Isono H, Matsuura T, Mitsudo K, Ogawa T. Ultraviolet Light Treatment of Titanium Microfiber Scaffolds Enhances Osteoblast Recruitment and Osteoconductivity in a Vertical Bone Augmentation Model: 3D UV Photofunctionalization. Cells 2022; 12:cells12010019. [PMID: 36611812 PMCID: PMC9818481 DOI: 10.3390/cells12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vertical bone augmentation to create host bone prior to implant placement is one of the most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium microfibers (20 μm diameter) and treated with UVC light (200-280 nm wavelength) emitted from a low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even and dense fiber network with 87% porosity and 20-50 mm inter-fiber distance. Surface carbon reduced from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed 4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro, four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds. In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was double that observed between bone and untreated scaffold. Morphological and chemical analysis confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Makoto Hirota
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-45-785-8438
| | - Keiji Komatsu
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takanori Matsuura
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
19
|
GAO X, SHEN S, NIU Q, MIAO W, HAN Y, HAO Z, AN N, YANG Y, ZHANG Y, ZHANG H, STOREY KB, CHANG H. Differential bone metabolism and protein expression in mice fed a high-fat diet versus Daurian ground squirrels following natural pre-hibernation fattening. J Zhejiang Univ Sci B 2022; 23:1042-1056. [PMID: 36518056 PMCID: PMC9758712 DOI: 10.1631/jzus.b2100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study compared the effects on bone metabolism and morphology of pathological obesity induced by excessive fat intake in a non-hibernator (mice) versus healthy obesity due to pre-hibernation fattening in a hibernator (ground squirrels). Kunming mice were fed a high-fat diet to provide a model of pathological obesity (OB group). Daurian ground squirrels fattened naturally in their pre-hibernation season (PRE group) were used as a healthy obesity model. Micro-computed tomography (micro-CT) and three-point bending tests were used to determine the microstructure and mechanical properties of bone. Western blots were used to analyze protein expression levels related to bone metabolism (Runt-related transcription factor 2 (RunX2), osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), cathepsin K, matrix metallopeptidase 9 (MMP9), patched protein homolog 1 (Ptch1), phosphorylated β-catenin (P-β-catenin), and glycogen synthase kinase-3β (GSK-3β)). Compared with controls, there was no obvious bone loss in the OB mice, and the stiffness of the femur was increased significantly. Compared with summer active squirrels, bone formation was enhanced but the mechanical properties did not change in the PRE group squirrels. In OB mice, western blots showed significantly increased expression levels of all proteins except RunX2, OPG, and Ptch1. PRE ground squirrels showed significantly increased expression of most proteins except OCN and Ptch1, which decreased significantly, and P-β-catenin and OPG, which did not change. In conclusion, for non-hibernating mice, moderate obesity had a certain protective effect on bones, demonstrating two-way regulation, increasing both bone loss and bone formation. For pre-hibernating ground squirrels, the healthy obesity acquired before hibernation had a positive effect on the microstructure of bones, and also enhanced the expression levels of proteins related to bone formation, bone resorption, and Wnt signaling.
Collapse
Affiliation(s)
- Xuli GAO
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Shenyang SHEN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Qiaohua NIU
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Weilan MIAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yuting HAN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ziwei HAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ning AN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yingyu YANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yu ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Han ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Kenneth B. STOREY
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui CHANG
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China,Hui CHANG,
| |
Collapse
|
20
|
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY, Pan J. The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther 2022; 13:511. [PMID: 36333820 PMCID: PMC9636722 DOI: 10.1186/s13287-022-03199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bone injury plagues millions of patients worldwide every year, and it demands a heavy portion of expense from the public medical insurance system. At present, orthopedists think that autologous bone transplantation is the gold standard for treating large-scale bone defects. However, this method has significant limitations, which means that parts of patients cannot obtain a satisfactory prognosis. Therefore, a basic study on new therapeutic methods is urgently needed. The in-depth research on crosstalk between macrophages (Mϕs) and bone marrow mesenchymal stem cells (BMSCs) suggests that there is a close relationship between inflammation and regeneration. The in-depth understanding of the crosstalk between Mϕs and BMSCs is helpful to amplify the efficacy of stem cell-based treatment for bone injury. Only in the suitable inflammatory microenvironment can the damaged tissues containing stem cells obtain satisfactory healing outcomes. The excessive tissue inflammation and lack of stem cells make the transplantation of biomaterials necessary. We can expect that the crosstalk between Mϕs and BMSCs and biomaterials will become the mainstream to explore new methods for bone injury in the future. This review mainly summarizes the research on the crosstalk between Mϕs and BMSCs and also briefly describes the effects of biomaterials and aging on cell transplantation therapy.
Collapse
Affiliation(s)
- Yu-Hao Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cheng-Zhi Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ren-Yi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Qian-Xin Du
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ji-Yuan Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jian Pan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| |
Collapse
|
21
|
Abnormal Variations of the Key Genes in Osteoporotic Fractures. Emerg Med Int 2022; 2022:1022078. [PMID: 37008288 PMCID: PMC10060067 DOI: 10.1155/2022/1022078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. The classical osteoporotic signaling pathways include the four key genes (LRP5, Runx2, Osterix, and RANKL) influencing the regulation of osteogenesis and osteoclastogenesis. This study investigates the expression of these four genes associated with bone remodeling during fracture healing. Methods. Ovariectomized rats as an osteoporotic group were randomly divided into three groups-group A, group B, and group C. Nonosteoporotic rats as the control group were likewise divided into three groups A0, B0, and C0, using the same method. The rats were killed on the third day of fractures in groups A and A0, on the seventh day of fractures in groups B and B0, and on the fourteenth day of fractures in groups C and C0. The bone specimens were taken from the femoral fracture site, and the expression level of each gene in the bone specimens was detected using RT-qPCR, Western blotting, and immunohistochemistry. Results. LRP5, Runx2, and Osterix expressions were decreased in osteoporotic rat fractures and then increased over time. The expression of RANKL was elevated in osteoporotic rat bone specimens, which decreased after that. Conclusion. The expressions of the four genes varied with time after fracture, which could be associated with the various stages of bone repair. The four genes can inform practice in ideal interventions in the prevention and management of osteoporosis.
Collapse
|
22
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
23
|
Aru B, Gürel G, Yanikkaya Demirel G. Mesenchymal Stem Cells: History, Characteristics and an Overview of Their Therapeutic Administration. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Matilla L, Jover E, Garaikoetxea M, Martín-Nuñez E, Arrieta V, García-Peña A, Navarro A, Fernández-Celis A, Gainza A, Álvarez V, Álvarez de la Rosa D, Sádaba R, Jaisser F, López-Andrés N. Sex-Related Signaling of Aldosterone/Mineralocorticoid Receptor Pathway in Calcific Aortic Stenosis. Hypertension 2022; 79:1724-1737. [PMID: 35549329 DOI: 10.1161/hypertensionaha.122.19526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There are sex differences in the pathophysiology of aortic valve (AV) calcification in patients with aortic stenosis, although the molecular and cellular mechanisms have not been elucidated. Aldosterone (Aldo) promotes proteoglycan synthesis in valve interstitial cells (VICs) from mitral valves via the mineralocorticoid receptor (MR). We investigated the influence of sex in the role of Aldo/MR pathway in AV alterations in patients with aortic stenosis. METHODS AND RESULTS MR was expressed by primary aortic VICs and in AVs from patients with aortic stenosis. MR expression positively correlated with VIC activation markers in AVs from both sexes. However, MR expression was positively associated with molecules involved in AV calcification only in AV from men. Aldo enhanced VIC activation markers in cells from men and women. Interestingly, Aldo increased the expression of calcification markers only in VICs isolated from men. In female VICs, Aldo enhanced fibrotic molecules. MR antagonism (spironolactone) blocked all the above effects. Cytokine arrays showed ICAM (intercellular adhesion molecule)-1 and osteopontin to be specifically increased by Aldo in male VICs. In AVs from men, MR expression positively associated with both ICAM-1 (intercellular adhesion molecule-1) and osteopontin. Only in female VICs, estradiol treatment blocked Aldo-induced VICs activation, inflammation, and fibrosis. CONCLUSIONS These findings demonstrate that the Aldo/MR pathway could play a role in early stages of aortic stenosis by promoting VICs activation, fibrosis, and ulterior calcification. Importantly, Aldo/MR pathway is involved in fibrosis in women and in early AV calcification only in men. Accordingly, MR antagonism emerges as a new sex-specific pharmacological treatment to prevent AV alterations.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Ernesto Martín-Nuñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Vanessa Arrieta
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaia García-Peña
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Diego Álvarez de la Rosa
- Department of Physiology, Institute of Biomedical Technology, University of Laguna, La Laguna, Spain (D.A.d.l.R.)
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Team Diabetes, Metabolic Diseases and Comorbidities, Paris, France (F.J.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| |
Collapse
|
25
|
Jing Z, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Wei W. Bone formation and bone repair: The roles and crosstalk of osteoinductive signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
27
|
Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022; 299:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM Orsellinic acid (2,4-Dimethoxy-6-methylbenzoic acid) (OA) is a hydrophobic polyphenolic compound with therapeutic potential, but its impact on actuating osteogenesis remains unknown. The bioavailability of OA is hampered by its hydrophobic nature. This study aimed to fabricate nano-drug delivery system-based scaffolds for OA and test its potential for osteogenesis in vitro. MATERIALS AND METHODS OA was loaded into chitosan nanoparticles (nCS + OA) using the ionic gelation technique at different concentrations. nCS + OA were incorporated onto the scaffolds containing gelatin (Gel) and nanohydroxyapatite (nHAp) by the lyophilization method. Biocomposite scaffolds were examined for their physicochemical and material characteristic properties. The effect of OA in the scaffolds for osteoblast differentiation was determined by alizarin red and von Kossa staining at the cellular level and by reverse transcriptase-qPCR and western blot analysis at the molecular level. KEY FINDINGS The scaffolds showed excellent physiochemical and material characteristics and remained cyto-friendly to mouse mesenchymal stem cells (mMSCs, C3H10T1/2). The release of OA from Gel/nHAp/nCS scaffolds enhanced the differentiation of mMSCs towards osteoblasts, as observed through cellular and molecular studies. Moreover, the osteogenic potential of OA was mediated by the activation of FAK and ERK signaling pathways through integrins. SIGNIFICANCE The inclusion of OA into Gel/nHAp/nCS biocomposite scaffolds at 80 μM concentration promoted osteoblast differentiation via cell adhesion mediated signaling, compared with that shown by Gel/nHAp/nCS alone. Overall, this study identified the potential therapeutic OA containing Gel/nHAp/nCS scaffolds, accelerating its potential for clinical application towards bone regeneration.
Collapse
Affiliation(s)
- L Roshini Yadav
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
28
|
Komori T, Ji Y, Pham H, Jani P, Kilts TM, Kram V, Li L, Young MF. Type
VI
collagen regulates endochondral ossification in the temporomandibular joint. JBMR Plus 2022; 6:e10617. [PMID: 35509631 PMCID: PMC9059467 DOI: 10.1002/jbm4.10617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
For many years there has been a keen interest in developing regenerative treatment for temporomandibular joint–osteoarthritis (TMJ‐OA). Currently, there is no consensus treatment due to the limited self‐healing ability of articular cartilage and lack of understanding of the complex mechanisms regulating cartilage development in the TMJ. Endochondral ossification, the process of subchondral bone formation through chondrocyte differentiation, is critical for TMJ growth and development, and is tightly regulated by the composition of the extracellular matrix (ECM). Type VI collagen is a highly expressed ECM component in the TMJ cartilage, yet its specific functions are largely unknown. In this study, we investigated α2(VI)‐deficient (Col6a2‐knockout [KO]) mice, which are unable to secret or incorporate type VI collagen into their ECM. Compared with wild‐type (WT) mice, the TMJ condyles of Col6a2‐KO mice exhibit decreased bone volume/tissue volume (BV/TV) and a larger bone marrow space, suggesting the α2(VI)‐deficient condyles have a failure in endochondral ossification. Differentiating chondrocytes are the main source of bone cells during endochondral ossification. Our study shows there is an increased number of chondrocytes in the proliferative zone and decreased Col10‐expressing chondrocytes in Col6a2‐KO cartilage, all pointing to abnormal chondrocyte differentiation and maturation. In addition, RNA sequencing (RNAseq) analysis identified distinct gene expression profiles related to cell cycle and ECM organization that were altered in the mutant condyles. These data also suggest that bone morphogenetic protein 2 (BMP2) activity was deregulated during chondrocyte differentiation. Immunohistochemical analysis indicated an upregulation of Col2 and Acan expression in Col6a2‐KO cartilage. Moreover, the expression of pSmad1/5/8 and Runx2 was decreased in the Col6a2‐KO cartilage compared with WT controls. Taken together, our data indicate that type VI collagen expressed in the TMJ cartilage is important for endochondral ossification, possibly by modulating the ECM and altering/disrupting signaling pathways important for TMJ chondrocyte differentiation. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Hai Pham
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| |
Collapse
|
29
|
Han I, Rana JN, Kim JH, Choi EH, Kim Y. A Non-thermal Biocompatible Plasma-Modified Chitosan Scaffold Enhances Osteogenic Differentiation in Bone Marrow Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14020465. [PMID: 35214198 PMCID: PMC8874420 DOI: 10.3390/pharmaceutics14020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Non-thermal biocompatible plasma (NBP) was considered as an efficient tool in tissue engineering to modify the surface of biomaterials. Three-dimensional chitosan scaffolds have been extensively used in different ways because it holds some remarkable properties, including biodegradability and biocompatibility. In this study, we evaluated the osteogenic potential of NBP-treated chitosan scaffolds using two different plasma sources: a dielectric barrier discharge (NBP-DBD) and a soft jet (NBP-J). The surface modification of the scaffold was evaluated using scanning electron microscopy. For osteogenic differentiation of cells, proliferation and differentiation were tested by using bone marrow-derived stem cells (BMSCs). We observed that cell viability using NBP-DBD and NBP-J treated chitosan scaffolds yielded significant improvements in cell viability and differentiation. The results obtained with MTT and live/dead assays showed that NBP-modified scaffold increases cell metabolic by MTT assay and live/dead assay. It also observed that the NBP treatment is more effective at 5 min with DBD and was selected for further investigations. Enhanced osteogenic differentiation was observed using NBP-treated scaffolds, as reflected by increased alkaline phosphatase activity. Our findings showed that NBP is an innovative and beneficial tool for modifying chitosan scaffolds to increase their activity, making them suitable as biocompatible materials and for bone tissue engineering.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (I.H.); (E.H.C.); (Y.K.)
| | - Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - Ji-Hye Kim
- Ellitech Medical Incorporation, Seoul 02584, Korea;
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (I.H.); (E.H.C.); (Y.K.)
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul 02447, Korea
- Correspondence: (I.H.); (E.H.C.); (Y.K.)
| |
Collapse
|
30
|
Theoretical Evidence of Osteoblast Self-Inhibition after Activation of the Genetic Regulatory Network Controlling Mineralization. J Theor Biol 2022; 537:111005. [PMID: 35031309 DOI: 10.1016/j.jtbi.2022.111005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023]
Abstract
Bone is a hard-soft biomaterial built through a self-assembly process under genetic regulatory network (GRN) monitoring. This paper aims to capture the behavior of the bone GRN part that controls mineralization by using a mathematical model. Here, we provide an advanced review of empirical evidence about interactions between gene coding (i) transcription factors and (ii) bone proteins. These interactions are modeled with nonlinear differential equations using Michaelis-Menten and Hill functions. Compared to empirical evidence, the two best systems (among 126=2,985,984 possibilities) use factors of inhibition from the start of the activation of each gene. It reveals negative indirect interactions coming from either negative feedback loops or the recently depicted micro-RNAs. The difference between the two systems also lies in the BSP equation and two ways for activating and reducing its production. Thus, it highlights the critical role of BSP in the bone GRN that acts on bone mineralization. Our study provides the first theoretical evidence of a necessary genetic inhibition for bone mineralization with this work.
Collapse
|
31
|
Zhou HL, Wei MH, Di DS, Zhang RY, Zhang JL, Yuan TT, Liu Q, Zhou TT, Huang Q, Wang Q. Association between SEMA3A signaling pathway genes and BMD/OP risk: An epidemiological and experimental study. Front Endocrinol (Lausanne) 2022; 13:1014431. [PMID: 36425469 PMCID: PMC9679019 DOI: 10.3389/fendo.2022.1014431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study aimed to explore the associations of genetic variants in the semaphorin 3A (SEMA3A) signaling pathway genes, including SEMA3A, NRP1, PLXNA1, PLXNA2 and PLXNA3 with osteoporosis (OP) risk and bone mineral density (BMD) in a Chinese Han older adult population. STUDY DESIGN AND METHOD A two-stage design was adopted. Total of 47.8kb regions in the 5 genes were sequenced using targeted next-generation sequencing (NGS) technology in the discovery stage, and the discovered OP-related single nucleotide polymorphisms (SNPs) were further genotyped using improved multiple linkage detection reaction technique in the validation stage. Methods of ALP/TRAP staining, real-time fluorescent quantitative PCR, and cell proliferation and apoptosis assays were performed with MC3T3-E1 and RAW 264.7 cell lines to clarify biological effects of observed functional variants in cell lines responsible for bone mass remodeling. RESULTS Total of 400 postmenopausal women (211 OP cases) were involved in the discovery stage, where 6 common and 4 rare genetic variants were found to be associated with OP risk. In the validation stage among another 859 participants (417 women, 270 OP cases), the PLXNA2 rs2274446 T allele was associated with reduced OP risk and increased femoral neck (FN) BMD compared to the C allele. Moreover, significant associations of NRP1 rs2070296 with FN BMD/OP risk and of NRP1 rs180868035 with lumbar spine and FN BMDs were also observed in the combination dataset analysis. Compared to the osteoblasts/osteoclasts transfected with the wild-type NRP1 rs180868035, those transfected with the mutant-type had reduced mRNA expression of osteoblastic genes (i.e., ALP, RUNX2, SP7 and OCN), while elevated mRNA expression of osteoclastic genes (i.e., TRAP, NFATc1 and CTSK). Furthermore, mutant NRP1 rs180868035 transfection inhibited osteoblast proliferation and osteoclast apoptosis, while promoted osteoclast proliferation and osteoblast apoptosis in corresponding cell lines. CONCLUSION Genetic variants located in NRP1 and PLXNA2 genes were associated with OP risk and BMD. The NRP1 rs180868035 affects bone metabolism by influencing osteoblasts and osteoclasts differentiation, proliferation and apoptosis.
Collapse
Affiliation(s)
- Hao-long Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu-hong Wei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-sheng Di
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-yi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-li Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-ting Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-ting Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qin Huang, ; Qi Wang,
| | - Qi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qin Huang, ; Qi Wang,
| |
Collapse
|
32
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
33
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
34
|
Atake OJ, Eames BF. Mineralized Cartilage and Bone-Like Tissues in Chondrichthyans Offer Potential Insights Into the Evolution and Development of Mineralized Tissues in the Vertebrate Endoskeleton. Front Genet 2021; 12:762042. [PMID: 35003210 PMCID: PMC8727550 DOI: 10.3389/fgene.2021.762042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.
Collapse
Affiliation(s)
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
36
|
Antitumor Effect of Sclerostin against Osteosarcoma. Cancers (Basel) 2021; 13:cancers13236015. [PMID: 34885123 PMCID: PMC8656567 DOI: 10.3390/cancers13236015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Osteosarcoma is highly variable and heterogeneous, which is one of the reasons for its resistance to treatment. Because osteosarcoma is defined by abnormal bone formation, we hypothesize its suppression could lead to effective treatment for all types of osteosarcomas. Sclerostin is secreted by osteocytes and inhibits the canonical pathway by binding to LRP5/6, thereby suppressing bone formation. The resulting suppression of bone formation leads to bone loss and osteoporosis. Here, we investigated the antitumor effect of sclerostin against osteosarcoma and found that sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Abstract Various risk factors and causative genes of osteosarcoma have been reported in the literature; however, its etiology remains largely unknown. Bone formation is a shared phenomenon in all types of osteosarcomas, and sclerostin is an extracellular soluble factor secreted by osteocytes that prevents bone formation by inhibiting the Wnt signaling pathway. We aimed to investigate the antitumor effect of sclerostin against osteosarcoma. Osteosarcoma model mice were prepared by transplantation into the dorsal region of C3H/He and BALB/c-nu/nu mice using osteosarcoma cell lines LM8 (murine) and 143B (human), respectively. Cell proliferations were evaluated by using alamarBlue and scratch assays. The migratory ability of the cells was evaluated using a migration assay. Sclerostin was injected intraperitoneally for 7 days to examine the suppression of tumor size and extension of survival. The administration of sclerostin to osteosarcoma cells significantly inhibited the growth and migratory ability of osteosarcoma cells. Kaplan–Meier curves and survival data demonstrated that sclerostin significantly inhibited tumor growth and improved survival. Sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Osteosarcoma model mice inhibited tumor growth and prolonged survival periods by the administration of sclerostin. The effect of existing anticancer drugs such as doxorubicin should be investigated for future clinical applications.
Collapse
|
37
|
Zhang X, Jiang Y, Mao J, Ren X, Ji Y, Mao Y, Chen Y, Sun X, Pan Y, Ma J, Huang S. Hydroxytyrosol prevents periodontitis-induced bone loss by regulating mitochondrial function and mitogen-activated protein kinase signaling of bone cells. Free Radic Biol Med 2021; 176:298-311. [PMID: 34610362 DOI: 10.1016/j.freeradbiomed.2021.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) overproduction promotes the alveolar bone loss during the development of periodontitis. Mitochondria are the principal source of ROS. Hydroxytyrosol (HT), a natural phenolic compound present in olive oil, is well known for its antioxidant and mitochondrial-protective prosperities. Nonetheless, the impact of HT on periodontitis and its related mechanisms underlying bone cell behavior remains unknown. Osteoclasts differentiated from RAW264.7 model and oxidative stress (OS) induced pre-osteoblast MC3T3-E1 cell injury model were treated with and without HT. Cell viability, apoptosis, differentiation, mitochondrial function along with mitogen-activated protein kinase (MAPK) signaling pathway were investigated. Meanwhile, the effect and related mechanisms of HT on bone loss in mice with periodontitis were also detected. HT inhibited osteoclast differentiation and prevented OS induced pre-osteoblast cells injury via regulating mitochondrial function as well as ERK and JNK signaling pathways. Moreover, HT attenuated the alveolar bone loss, increased bone forming activity, inhibited the osteoclasts differentiation and decreased the level of OS in mice with periodontitis. Our findings, for the first time, revealed a novel function of HT in bone remodeling of periodontitis, and highlighted its therapeutical potential for the prevention/treatment of periodontitis.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yun Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiajie Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xuekun Ren
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yinghui Ji
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
38
|
Kim EJ, Jung JI, Jeon YE, Lee HS. Aqueous extract of Petasites japonicus leaves promotes osteoblast differentiation via up-regulation of Runx2 and Osterix in MC3T3-E1 cells. Nutr Res Pract 2021; 15:579-590. [PMID: 34603606 PMCID: PMC8446688 DOI: 10.4162/nrp.2021.15.5.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Petasites japonicus Maxim (P. japonicus) has been used as an edible and medicinal plant and contains many bioactive compounds. The purpose of this study is to investigate the effect of P. japonicus on osteogenesis. MATERIALS/METHODS The leaves and stems of P. japonicus were separated and extracted with hot water or ethanol, respectively. The total phenolic compound and total polyphenol contents of each extract were measured, and alkaline phosphatase (ALP) activity of each extract was evaluated to determine their effect on bone metabolism. To investigate the effect on osteoblast differentiation of the aqueous extract of P. japonicus leaves (AL), which produced the highest ALP activity among the tested extracts, collagen content was measured using the Sirius Red staining method, mineralization using the Alizarin Red S staining method, and osteocalcin production through enzyme-linked immunosorbent assay analysis. Also, real-time reverse transcription polymerase chain reaction was performed to investigate the mRNA expression levels of Runt-related transcriptional factor 2 (Runx2) and Osterix. RESULTS Among the 4 P. japonicus extracts, AL had the highest values in all of the following measures: total phenolic compounds, total polyphenols, and ALP activity, which is a major biomarker of osteoblast differentiation. The AL-treated MC3T3-E1 cells showed significant increases in induced osteoblast differentiation, collagen synthesis, mineralization, and osteocalcin production. In addition, mRNA expressions of Runx2 and Osterix, transcription factors that regulate osteoblast differentiation, were significantly increased. CONCLUSIONS These results suggest that AL can regulate osteoblasts differentiation, at least in part through Runx2 and Osterix. Therefore, it is highly likely that P. japonicus will be useful as an alternate therapeutic for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Young Eun Jeon
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| |
Collapse
|
39
|
Naruse H, Itoh S, Itoh Y, Kagioka T, Abe M, Hayashi M. The Wnt/β-catenin signaling pathway has a healing ability for periapical periodontitis. Sci Rep 2021; 11:19673. [PMID: 34608236 PMCID: PMC8490427 DOI: 10.1038/s41598-021-99231-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Various disease-related genes have recently been identified using single nucleotide polymorphisms (SNPs). This study identified disease-related genes by analyzing SNP using genomic DNA isolated from Japanese patients with periapical periodontitis. Results showed that the SNP in LRP5 demonstrated a significant genotypic association with periapical lesions (Fisher’s exact test, P < 0.05). We constructed an in vivo murine periapical periodontitis model to confirm the Wnt/β-catenin signaling pathway’s role in developing and healing periapical periodontitis. We observed that administration of the Wnt/β-catenin signaling pathway inhibitor enlarged the periapical lesion. Moreover, applying lithium chloride (LiCl) to root canals accelerated periapical periodontitis healing. Histological analysis demonstrated that the expression levels of Col1a1 and Runx2 increased in the LiCl application group compared to that in the control group. Furthermore, many CD45R-positive cells appeared in the periapical lesions in the LiCl application group. These results indicated that LiCl promoted the healing of periapical periodontitis by inducing bone formation and immune responses. Our findings suggest that the Wnt/β-catenin signaling pathway regulates the development of periapical periodontitis. We propose a bioactive next-generation root canal treatment agent for this dental lesion.
Collapse
Affiliation(s)
- Haruna Naruse
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Yuki Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Takumi Kagioka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
40
|
Motaei J, Salmaninejad A, Jamali E, Khorsand I, Ahmadvand M, Shabani S, Karimi F, Nazari MS, Ketabchi G, Naqipour F. Molecular Genetics of Cleidocranial Dysplasia. Fetal Pediatr Pathol 2021; 40:442-454. [PMID: 31984822 DOI: 10.1080/15513815.2019.1710792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cleidocranial dysplasia (CCD) is a genetic disorder with an autosomal dominant inheritance pattern. CCD characterized by abnormal clavicles, patent sutures and fontenelles, supernumerary teeth and short stature. Approximately 60-70% of CCD patients have mutations in the RUNX2 gene. The RUNX2 gene is an essential transcription factor for chondrocyte maturation, osteoblast differentiation and bone formation. Runx2 regulates mesenchymal cell proliferation in sutures and suture closure by inducing the signaling pathways of the genes of Fgf, Pthlh, hedgehog and Wnt. Material and Methods: We summarized molecular genetics aspects of CCD. Result: Approximately 94% of CCD patients have dental anomalies, the most common of which are supernumerary tooth. Dental anomalies are not determined solely by gene mutations of RUNX2, but are also affected by modifier genes, environmental factors, epigenetic factors and copy number variations. Conclusion: a definite diagnosis of CCD should include the patient's clinical history, symptoms and signs, as well as genetic analyses.
Collapse
Affiliation(s)
- Jamshid Motaei
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Ebrahim Jamali
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Imaneh Khorsand
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ahmadvand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Shabani
- Department of Optometry, School of Para Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshid Karimi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Nazari
- Postgraduate Student, Department of Orthodontics, School of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Golsa Ketabchi
- Postgraduate Student, Department of Oral and Maxillofacial Radiology, School of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Fatemeh Naqipour
- Postgraduate Student, Department of Oral and Maxillofacial Radiology, School of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
41
|
Wu Q, Xu S, Wang F, He B, Wang X, Sun Y, Ning C, Dai K. Double-edged effects caused by magnesium ions and alkaline environment regulate bioactivities of magnesium-incorporated silicocarnotite in vitro. Regen Biomater 2021; 8:rbab016. [PMID: 34484805 PMCID: PMC8411036 DOI: 10.1093/rb/rbab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Magnesium (Mg) is an important element for its enhanced osteogenic and angiogenic properties in vitro and in vivo, however, the inherent alkalinity is the adverse factor that needs further attention. In order to study the role of alkalinity in regulating osteogenesis and angiogenesis in vitro, magnesium-silicocarnotite [Mg-Ca5(PO4)2SiO4, Mg-CPS] was designed and fabricated. In this study, Mg-CPS showed better osteogenic and angiogenic properties than CPS within 10 wt.% magnesium oxide (MgO), since the adversity of alkaline condition was covered by the benefits of improved Mg ion concentrations through activating Smad2/3-Runx2 signaling pathway in MC3T3-E1 cells and PI3K-AKT signaling pathway in human umbilical vein endothelial cells in vitro. Besides, provided that MgO was incorporated with 15 wt.% in CPS, the bioactivities had declined due to the environment consisting of higher-concentrated Mg ions, stronger alkalinity and lower Ca/P/Si ions caused. According to the results, it indicated that bioactivities of Mg-CPS in vitro were regulated by the double-edged effects, which were the consequence of Mg ions and alkaline environment combined. Therefore, if MgO is properly incorporated in CPS, the improved bioactivities could cover alkaline adversity, making Mg-CPS bioceramics promising in orthopedic clinical application for its enhancement of osteogenesis and angiogenesis in vitro.
Collapse
Affiliation(s)
- Qiang Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, Huangpu District 200011, China
| | - Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Fei Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No.169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Drum-tower District, Nanjing, 210029, China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No.1295, Dingxi Road, Changning District, Shanghai 200050, China
| | - Kerong Dai
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, Huangpu District 200011, China
| |
Collapse
|
42
|
Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, Cheung KMC, Yeung KWK. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 2021; 276:121038. [PMID: 34339925 DOI: 10.1016/j.biomaterials.2021.121038] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Macrophage has been gradually recognized as a central regulator in tissue regeneration, and the study of how macrophage mediates biomaterials-induced bone regeneration through immunomodulatory pathway becomes popular. However, the current understanding on the roles of different macrophage phenotypes in regulating bone tissue regeneration remains controversial. In this study, we demonstrate that sequential infiltration of heterogeneous phenotypes of macrophages triggered by bio-metal ions effectively facilitates bone healing in bone defect. Indeed, M1 macrophages promote the recruitment and early commitment of osteogenic and angiogenic progenitors, while M2 macrophages and osteoclasts support the deposition and mineralization of the bone matrix, as well as the maturation of blood vessels. Moreover, we have identified a group of bone biomaterial-related multinucleated cells that behave similarly to M2 macrophages with wound-healing features rather than participate in the bone resorption cascade similarly to osteoclasts. Our study shows how sequential activation of macrophage-osteoclast lineage contribute to a highly orchestrated immune response in the bone tissue microenvironment around biomaterials to regulate the complex biological process of bone healing. Therefore, we believe that the temporal activation pattern of heterogeneous macrophage phenotypes should be considered when the next generation of biomaterials for bone regeneration is engineered.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Huizhi Xie
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jinghan Fang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jie Shen
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Wenting Li
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Danni Shen
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China.
| |
Collapse
|
43
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Down-regulated microRNA-199a-3p enhances osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Kdm3a in ovariectomized rats. Biochem J 2021; 478:721-734. [PMID: 33410908 DOI: 10.1042/bcj20200314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023]
Abstract
Osteoporosis is a prevalent systemic skeletal disorder entailing bone fragility and increased fracture risk, often emerging in post-menopausal life. Emerging evidence implicates the dysregulation of microRNAs (miRNAs or miRs) in the progression of osteoporosis. This study investigated the effect of miR-199a-3p on osteoporosis and its underlying mechanism. We first examplished an ovariectomized (OVX)-induced rat osteoporosis model, and then isolated mesenchymal stem cells (MSCs) from bone marrow of the model rats. The overexpression and knock down of miR-199a-3p were conducted in OVX rats and MSCs to verify the role of miR-199a-3p on MSC differentiation. Calcium nodules were measured using alizarin red S (ARS) staining. RT-qPCR and Western blot assay were performed to measure the expression of miR-199a-3p, Kdm3a and osteogenic differentiation-related markers in rat tissues and cells. The correlation between miR-199a-3p and Kdm3a was confirmed using dual-luciferase reporter assay. The enrichment of Kdm3a at the Erk2 and Klf2 promoter was assessed using chromatin immunoprecipitation (ChIP) assay. Isolated MSCs were positive for CD29, CD44, CD90, and CD45, suggesting successful isolation of MSCs. There was increased expression of miR-199a-3p and inhibited osteogenic differentiation in OVX rats. Kdm3a was negatively targeted by miR-199a-3p. Our results also demonstrated that Kdm3a elevated the expression of Erk2 and Erk2 by promoting Erk2 and Klf2 demethylation, which further contributed to osteogenic differentiation. Overall, our results revealed a regulatory network of miR-199a-3p in osteogenic differentiation, highlighting miR-199a-3p as a potential target for therapeutic interventions in osteoporosis.
Collapse
|
45
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
46
|
Wu SC, Chang CH, Chang LH, Wu CW, Chen JW, Chen CH, Lin YS, Chang JK, Ho ML. Simvastatin Enhances the Chondrogenesis But Not the Osteogenesis of Adipose-Derived Stem Cells in a Hyaluronan Microenvironment. Biomedicines 2021; 9:biomedicines9050559. [PMID: 34067739 PMCID: PMC8156330 DOI: 10.3390/biomedicines9050559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Directing adipose-derived stem cells (ADSCs) toward chondrogenesis is critical for ADSC-based articular cartilage regeneration. Simvastatin (SIM) was reported to promote both chondrogenic and osteogenic differentiation of ADSCs by upregulating bone morphogenetic protein-2 (BMP-2). We previously found that ADSC chondrogenesis is initiated and promoted in a hyaluronan (HA) microenvironment (HAM). Here, we further hypothesized that SIM augments HAM-induced chondrogenesis but not osteogenesis of ADSCs. ADSCs were treated with SIM in a HAM (SIM plus HAM) by HA-coated wells or HA-enriched fibrin (HA/Fibrin) hydrogel, and chondrogenic differentiation of ADSCs was evaluated. SIM plus HAM increased chondrogenesis more than HAM or SIM alone, including cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and cartilaginous tissue formation (collagen type II and sulfated glycosaminoglycan). In contrast, SIM-induced osteogenesis in ADSCs was reduced in SIM plus HAM, including mRNA expression of osteogenic genes, osteocalcin and alkaline phosphatase (ALP), ALP activity and mineralization. SIM plus HAM also showed the most effective increases in the mRNA expression of BMP-2 and transcription factors of SOX-9 and RUNX-2 in ADSCs, while these effects were reversed by CD44 blockade. HAM suppressed the levels of JNK, p-JNK, P38 and p-P38 in ADSCs, and SIM plus HAM also decreased SIM-induced phosphorylated JNK and p38 levels. In addition, SIM enhanced articular cartilage regeneration, as demonstrated by implantation of an ADSCs/HA/Fibrin construct in an ex vivo porcine articular chondral defect model. The results from this study indicate that SIM may be an enhancer of HAM-initiated MSC-based chondrogenesis and avoid osteogenesis.
Collapse
Affiliation(s)
- Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
| | - Chih-Hsiang Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Ling-Hua Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Che-Wei Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Jhen-Wei Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Chung-Hwan Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Yi-Shan Lin
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Je-Ken Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Correspondence: (J.-K.C.); (M.-L.H.)
| | - Mei-Ling Ho
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.W.); (L.-H.C.); (C.-W.W.); (J.-W.C.); (C.-H.C.); (Y.-S.L.)
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Correspondence: (J.-K.C.); (M.-L.H.)
| |
Collapse
|
47
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
48
|
Abhinandan R, Pranav Adithya S, Saleth Sidharthan D, Balagangadharan K, Selvamurugan N. Synthesis and characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2021; 203:111771. [PMID: 33894648 DOI: 10.1016/j.colsurfb.2021.111771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023]
Abstract
Boride, which belongs to the distinct category of ceramic materials, has attracted significant attention in tissue engineering applications. Magnesium diboride (MgB2) consists of a plane of magnesium atoms sandwiched between the layers of boron. Even though MgB2 showed its role in various applications, its effect on osteogenesis has not yet been investigated. In this study, we synthesized MgB2 nanosheets (MgB2NS), a new class of 2D-nanoscale structures, by the ultrasonication exfoliation method and incorporated them into a polymeric mixture of alginate (Alg) and polyvinyl alcohol (PVA) by the freeze-drying procedure. The synthesized scaffolds (Alg/PVA/MgB2NS) were characterized by SEM, XRD, FT-IR, protein adsorption, swelling, degradation, and biomineralization studies. These scaffolds were non-toxic to mouse mesenchymal stem cells (mMSCs). MgB2NS in the scaffolds enhanced osteoblast differentiation of mMSCs at the molecular level by the expression of Runx2 and osteoblast differentiation marker genes and at the cellular level by alkaline phosphatase, alizarin Red and von Kossa staining. Overall, our results showed that MgB2NS in Alg/PVA scaffolds have osteogenic potential, suggesting their possible use in bone tissue engineering applications.
Collapse
Affiliation(s)
- R Abhinandan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - S Pranav Adithya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D Saleth Sidharthan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
49
|
Dhagia V, Kitagawa A, Jacob C, Zheng C, D'Alessandro A, Edwards JG, Rocic P, Gupte R, Gupte SA. G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H999-H1016. [PMID: 33416454 PMCID: PMC7988761 DOI: 10.1152/ajpheart.00488.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
We aimed to determine 1) the mechanism(s) that enables glucose-6-phosphate dehydrogenase (G6PD) to regulate serum response factor (SRF)- and myocardin (MYOCD)-driven smooth muscle cell (SMC)-restricted gene expression, a process that aids in the differentiation of SMCs, and 2) whether G6PD-mediated metabolic reprogramming contributes to the pathogenesis of vascular diseases in metabolic syndrome (MetS). Inhibition of G6PD activity increased (>30%) expression of SMC-restricted genes and concurrently decreased (40%) the growth of human and rat SMCs ex vivo. Expression of SMC-restricted genes decreased (>100-fold) across successive passages in primary cultures of SMCs isolated from mouse aorta. G6PD inhibition increased Myh11 (47%) while decreasing (>50%) Sca-1, a stem cell marker, in cells passaged seven times. Similarly, CRISPR-Cas9-mediated expression of the loss-of-function Mediterranean variant of G6PD (S188F; G6PDS188F) in rats promoted transcription of SMC-restricted genes. G6PD knockdown or inhibition decreased (48.5%) histone deacetylase (HDAC) activity, enriched (by 3-fold) H3K27ac on the Myocd promoter, and increased Myocd and Myh11 expression. Interestingly, G6PD activity was significantly higher in aortas from JCR rats with MetS than control Sprague-Dawley (SD) rats. Treating JCR rats with epiandrosterone (30 mg/kg/day), a G6PD inhibitor, increased expression of SMC-restricted genes, suppressed Serpine1 and Epha4, and reduced blood pressure. Moreover, feeding SD control (littermates) and G6PDS188F rats a high-fat diet for 4 mo increased Serpine1 and Epha4 expression and mean arterial pressure in SD but not G6PDS188F rats. Our findings demonstrate that G6PD downregulates transcription of SMC-restricted genes through HDAC-dependent deacetylation and potentially augments the severity of vascular diseases associated with MetS.NEW & NOTEWORTHY This study gives detailed mechanistic insight about the regulation of smooth muscle cell (SMC) phenotype by metabolic reprogramming and glucose-6-phosphate dehydrogenase (G6PD) in diabetes and metabolic syndrome. We demonstrate that G6PD controls the chromatin modifications by regulating histone deacetylase (HDAC) activity, which deacetylates histone 3-lysine 9 and 27. Notably, inhibition of G6PD decreases HDAC activity and enriches H3K27ac on myocardin gene promoter to enhance the expression of SMC-restricted genes. Also, we demonstrate for the first time that G6PD inhibitor treatment accentuates metabolic and transcriptomic reprogramming to reduce neointimal formation in coronary artery and large artery elastance in metabolic syndrome rats.
Collapse
MESH Headings
- Acetylation
- Animals
- Cell Line
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Hemodynamics
- Histones/metabolism
- Humans
- Male
- Metabolic Syndrome/enzymology
- Metabolic Syndrome/genetics
- Metabolic Syndrome/pathology
- Metabolic Syndrome/physiopathology
- Mice, Transgenic
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Mutation
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Processing, Post-Translational
- Rats, Sprague-Dawley
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Remodeling
- Rats
Collapse
Affiliation(s)
- Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Rakhee Gupte
- Raadysan Biotech., Incorporated, Fishkill, New York
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
50
|
de Winter TJJ, Nusse R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front Cell Dev Biol 2021; 9:627429. [PMID: 33634128 PMCID: PMC7900430 DOI: 10.3389/fcell.2021.627429] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) give rise to adipocytes, osteocytes, and chondrocytes and reside in various tissues, including bone marrow and adipose tissue. The differentiation choices of MSCs are controlled by several signaling pathways, including the Wnt/β-catenin signaling. When MSCs undergo adipogenesis, they first differentiate into preadipocytes, a proliferative adipocyte precursor cell, after which they undergo terminal differentiation into mature adipocytes. These two steps are controlled by the Wnt/β-catenin pathway, in such a way that when signaling is abrogated, the next step in adipocyte differentiation can start. This sequence suggests that the main role of Wnt/β-catenin signaling is to suppress differentiation while increasing MSC and preadipocytes cell mass. During later steps of MSC differentiation, however, active Wnt signaling can promote osteogenesis instead of keeping the MSCs undifferentiated and proliferative. The exact mechanisms behind the various functions of Wnt signaling remain elusive, although recent research has revealed that during lineage commitment of MSCs into preadipocytes, Wnt signaling is inactivated by endogenous Wnt inhibitors. In part, this process is regulated by histone-modifying enzymes, which can lead to increased or decreased Wnt gene expression. The role of Wnt in adipogenesis, as well as in osteogenesis, has implications for metabolic diseases since Wnt signaling may serve as a therapeutic target.
Collapse
Affiliation(s)
- Twan J J de Winter
- Faculty of Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Roeland Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford, CA, United States.,School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|