1
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
2
|
Du L, Wilson BAP, Li N, Shah R, Dalilian M, Wang D, Smith EA, Wamiru A, Goncharova EI, Zhang P, O’Keefe BR. Discovery and Synthesis of a Naturally Derived Protein Kinase Inhibitor that Selectively Inhibits Distinct Classes of Serine/Threonine Kinases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2283-2293. [PMID: 37843072 PMCID: PMC10616853 DOI: 10.1021/acs.jnatprod.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 10/17/2023]
Abstract
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 μM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Collapse
Affiliation(s)
- Lin Du
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Development Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Tian EJ. Diclazuril-induced expression of CDK-related kinase 2 in the second-generation merozoites of Eimeria tenella. Mol Biochem Parasitol 2023; 255:111575. [PMID: 37302489 DOI: 10.1016/j.molbiopara.2023.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Diclazuril is a classic anticoccidial drug. The key molecules of diclazuril in anticoccidial action allows target screening for the development of anticoccidial drugs. Cyclin-dependent kinases (CDK) are prominent target proteins in apicomplexan parasites. In this study, a diclazuril anticoccidiosis animal model was established, and the transcription and translation levels of the CDK-related kinase 2 of Eimeria tenella (EtCRK2) were detected. mRNA and protein expression levels of EtCRK2 decreased in the infected/diclazuril group compared with those in the infected/control group. In addition, immunofluorescence analysis showed that EtCRK2 was localised in the cytoplasm of the merozoites. The fluorescence intensity of EtCRK2 in the infected/diclazuril group was significantly weaker than that in the infected/control group. The anticoccidial drug diclazuril against E.tenella affects the expression pattern of EtCRK2 molecule, and EtCRK2 is a potential target for new drug development.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jun Chai
- School of information technology and urban construction, Luoyang Vocational and Technical College, Keji Avenue 6, Yibin District, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Longzi Hubei Road 6, Zhengzhou 450046, Henan, People's Republic of China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| |
Collapse
|
4
|
Lucky AB, Wang C, Liu M, Liang X, Min H, Fan Q, Siddiqui FA, Adapa SR, Li X, Jiang RHY, Chen X, Cui L, Miao J. A type II protein arginine methyltransferase regulates merozoite invasion in Plasmodium falciparum. Commun Biol 2023; 6:659. [PMID: 37349497 PMCID: PMC10287762 DOI: 10.1038/s42003-023-05038-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate many important cellular processes, such as transcription and RNA processing in model organisms but their functions in human malaria parasites are not elucidated. Here, we characterize PfPRMT5 in Plasmodium falciparum, which catalyzes symmetric dimethylation of histone H3 at R2 (H3R2me2s) and R8, and histone H4 at R3 in vitro. PfPRMT5 disruption results in asexual stage growth defects primarily due to lower invasion efficiency of the merozoites. Transcriptomic analysis reveals down-regulation of many transcripts related to invasion upon PfPRMT5 disruption, in agreement with H3R2me2s being an active chromatin mark. Genome-wide chromatin profiling detects extensive H3R2me2s marking of genes of different cellular processes, including invasion-related genes in wildtype parasites and PfPRMT5 disruption leads to the depletion of H3R2me2s. Interactome studies identify the association of PfPRMT5 with invasion-related transcriptional regulators such as AP2-I, BDP1, and GCN5. Furthermore, PfPRMT5 is associated with the RNA splicing machinery, and PfPRMT5 disruption caused substantial anomalies in RNA splicing events, including those for invasion-related genes. In summary, PfPRMT5 is critical for regulating parasite invasion and RNA splicing in this early-branching eukaryote.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Min Liu
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
6
|
Goyal M, Simantov K, Dzikowski R. Beyond splicing: serine-arginine proteins as emerging multifaceted regulators of RNA metabolism in malaria parasites. Curr Opin Microbiol 2022; 70:102201. [PMID: 36087463 DOI: 10.1016/j.mib.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
The serine-arginine-rich (SR) proteins play an exceptionally important role in eukaryotic gene expression, primarily by regulating constitutive and alternative splicing events. In addition to their primary role as splicing factors, SR proteins have emerged as multifunctional RNA-binding proteins that act as key regulators of almost every step of RNA metabolism. As in higher eukaryotes, Plasmodium parasites encode several SR proteins, which were implicated in pre-mRNA splicing. However, only a few have been characterized and their biological roles remain understudied. Intriguingly, in addition to splicing regulation, unexpected functions of particular SR proteins have been reported in Plasmodium in recent years. Here, we highlight the key characteristics and different noncanonical splicing functions of SR proteins and discuss potential mechanisms, which might be involved in their multifaceted functionality in Plasmodium.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
7
|
Kar PP, Araveti PB, Srivastava A. Deciphering the kinome of Theileria annulata for identification of drug targets and anti-theilerial drug. Ticks Tick Borne Dis 2022; 13:102049. [PMID: 36215767 DOI: 10.1016/j.ttbdis.2022.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
Tropical theileriosis is one of the major parasitic diseases of ruminants. It is a tick-borne disease caused by an apicomplexan parasite, Theileria annulata. In the infected cells, these parasites induce phenotypes similar to cancerous cells. Among the most critical changes induced by the parasite are immortalization, hyperproliferation, and dissemination. The proliferative signal in the T. annulata transformed cells are provided by different kinases such as mitogen-activated protein kinases, SRC family kinases, casein kinase-2, and phosphatidylinositide 3-kinase. Deregulation of protein kinases in cancer is also well known. Targeting protein kinases in a cancerous cell is one of the most common methods in cancer therapy. Here, we revisited the kinome of T. annulata and studied its evolutionary relationship with other piroplasms. This analysis revealed that T. annulata kinome encodes 54 protein kinases. Based on our analysis, 12 of these 54 kinases were identified for the first time in the T. annulata proteome. Three protein kinases, TA16570, TA09820, and TA07000, had <40% identity with Bos taurus and >40% identity with the previously identified potential drug targets present in the Therapeutic Target Database (TTD). These 3 proteins were predicted to be essential for the survival of T. annulata and were selected as drug targets. Screening these drug targets in the Protein Kinase Inhibitor Database (PKID) led to shortlisting of 5 drugs. Only Dabrafenib, out of these 5 drugs, could bind to the ATP binding site (in silico) of the Calcium Dependent Protein Kinase 3 of both T. annulata and Theileria parva. Further, dabrafenib could inhibit the proliferation of T. annulata infected bovine leucocytes in 6 days proliferation assay with the IC50 value of 0.66 µM. Also, this drug did not have a cytotoxic effect on bovine peripheral blood mononuclear cells. In summary, the analysis of T. annulata kinome led to the identification of dabrafenib as a potential drug for treating theileriosis.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prasanna Babu Araveti
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Adjunct Assistant Professor, Regional Centre for Biotechnology (RCB), Faridabad, India.
| |
Collapse
|
8
|
Swale C, Bellini V, Bowler MW, Flore N, Brenier-Pinchart MP, Cannella D, Belmudes L, Mas C, Couté Y, Laurent F, Scherf A, Bougdour A, Hakimi MA. Altiratinib blocks Toxoplasma gondii and Plasmodium falciparum development by selectively targeting a spliceosome kinase. Sci Transl Med 2022; 14:eabn3231. [PMID: 35921477 DOI: 10.1126/scitranslmed.abn3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.
Collapse
Affiliation(s)
- Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nardella Flore
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Marie-Pierre Brenier-Pinchart
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 avenue des Martyrs, F-38042, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Fabrice Laurent
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Artur Scherf
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
9
|
Tiek DM, Erdogdu B, Razaghi R, Jin L, Sadowski N, Alamillo-Ferrer C, Hogg JR, Haddad BR, Drewry DH, Wells CI, Pickett JE, Song X, Goenka A, Hu B, Goldlust SA, Zuercher WJ, Pertea M, Timp W, Cheng SY, Riggins RB. Temozolomide-induced guanine mutations create exploitable vulnerabilities of guanine-rich DNA and RNA regions in drug-resistant gliomas. SCIENCE ADVANCES 2022; 8:eabn3471. [PMID: 35731869 PMCID: PMC9216507 DOI: 10.1126/sciadv.abn3471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.
Collapse
Affiliation(s)
- Deanna M. Tiek
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Beril Erdogdu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Roham Razaghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bassem R. Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julie E. Pickett
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Song
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anshika Goenka
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bo Hu
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel A. Goldlust
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mihaela Pertea
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
10
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
11
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
12
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
13
|
Mahindra A, Janha O, Mapesa K, Sanchez-Azqueta A, Alam MM, Amambua-Ngwa A, Nwakanma DC, Tobin AB, Jamieson AG. Development of Potent PfCLK3 Inhibitors Based on TCMDC-135051 as a New Class of Antimalarials. J Med Chem 2020; 63:9300-9315. [PMID: 32787140 PMCID: PMC7497403 DOI: 10.1021/acs.jmedchem.0c00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/20/2022]
Abstract
The protein kinase PfCLK3 plays a critical role in the regulation of malarial parasite RNA splicing and is essential for the survival of blood stage Plasmodium falciparum. We recently validated PfCLK3 as a drug target in malaria that offers prophylactic, transmission blocking, and curative potential. Herein, we describe the synthesis of our initial hit TCMDC-135051 (1) and efforts to establish a structure-activity relationship with a 7-azaindole-based series. A total of 14 analogues were assessed in a time-resolved fluorescence energy transfer assay against the full-length recombinant protein kinase PfCLK3, and 11 analogues were further assessed in asexual 3D7 (chloroquine-sensitive) strains of P. falciparum parasites. SAR relating to rings A and B was established. These data together with analysis of activity against parasites collected from patients in the field suggest that TCMDC-135051 (1) is a promising lead compound for the development of new antimalarials with a novel mechanism of action targeting PfCLK3.
Collapse
Affiliation(s)
- Amit Mahindra
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Omar Janha
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Kopano Mapesa
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Ana Sanchez-Azqueta
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Mahmood M. Alam
- Wellcome
Centre for Integrative Parasitology and Centre for Translational Pharmacology,
Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Alfred Amambua-Ngwa
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Davis C. Nwakanma
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Andrew B. Tobin
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Andrew G. Jamieson
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
14
|
Calarco L, Ellis J. Species diversity and genome evolution of the pathogenic protozoan parasite, Neospora caninum. INFECTION GENETICS AND EVOLUTION 2020; 84:104444. [PMID: 32619639 DOI: 10.1016/j.meegid.2020.104444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
Neospora caninum is a cyst-forming coccidian parasite of veterinary and economical significance, affecting dairy and beef cattle industries on a global scale. Comparative studies suggest that N. caninum consists of a globally dispersed, diverse population of lineages, distinguished by their geographical origin, broad host range, and phenotypic features. This viewpoint is however changing. While intraspecies diversity, and more specifically pathogenic variability, has been experimentally demonstrated in a myriad of studies, the underlying contributors and sources responsible for such diversity have remained nebulous. However, recent large-scale sequence and bioinformatics studies have aided in revealing intrinsic genetic differences distinguishing isolates of this species, that await further characterisation as causative links to virulence and pathogenicity. Furthermore, progress on N. caninum research as a non-model organism is hindered by a lack of robust, annotated genomic, transcriptomic, and proteomic data for the species, especially compared to other thoroughly studied Apicomplexa such as Toxoplasma gondii and Plasmodium species. This review explores the current body of knowledge on intra-species diversity within N. caninum. This includes the contribution of sequence variants in both coding and non-coding regions, the presence of genome polymorphic hotspots, and the identification of non-synonymous mutations. The implications of such diversity on important parasite phenotypes such as pathogenicity and population structure are also discussed. Lastly, the identification of potential virulence factors from both in-silico and next generation sequencing studies is examined, offering new insights into potential avenues for future research on neosporosis.
Collapse
Affiliation(s)
- Larissa Calarco
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
15
|
Contribution of introns to the species diversity associated with the apicomplexan parasite, Neospora caninum. Parasitol Res 2020; 119:431-445. [PMID: 31901106 DOI: 10.1007/s00436-019-06561-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Abstract
Neospora caninum is an intracellular parasite considered a leading cause of bovine reproduction failure worldwide, and a serious neurological disease of canines. Transplacental transmission in intermediate hosts is considered the most efficient means of transmission, which strictly involves asexual reproduction. Nonetheless, extensive genetic diversity has been reported within the species. What is yet to be elucidated are the major drivers of such diversity, and their impact on important parasite phenotypes such as virulence. Instead of protein-encoding sequences, genome and transcriptome data were used to investigate SNPs in introns between two distinct N. caninum isolates, with reported differences in pathogenicity. Variant analysis identified 840 and 501 SNPs within intergenic regions and introns, respectively, distinctly concentrated on chromosomes VI and XI, whereas the rest of the genome was monomorphic in comparison. Gene ontologies for SNP-dense intron-containing genes included ATP binding, transmembrane transport, protein kinase activity, and transcription and translation processes. This study shows that variation in non-coding DNA is contributing to N. caninum intraspecies genetic diversity, and potentially influencing and contributing to important parasite mechanisms. Finally, we present an assembled and annotated N. caninum apicoplast genome and show that this essential organelle is highly conserved between the two isolates, and related Coccidia.
Collapse
|
16
|
Matralis AN, Malik A, Penzo M, Moreno I, Almela MJ, Camino I, Crespo B, Saadeddin A, Ghidelli-Disse S, Rueda L, Calderon F, Osborne SA, Drewes G, Böesche M, Fernández-Álvaro E, Martin Hernando JI, Baker DA. Development of Chemical Entities Endowed with Potent Fast-Killing Properties against Plasmodium falciparum Malaria Parasites. J Med Chem 2019; 62:9217-9235. [PMID: 31566384 PMCID: PMC6816013 DOI: 10.1021/acs.jmedchem.9b01099] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.
Collapse
Affiliation(s)
- Alexios N Matralis
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Biomedical Sciences Research Center "Alexander Fleming" , Fleming 34 Street , 16672 Vari , Greece
| | - Adnan Malik
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria Penzo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| | - Inmaculada Moreno
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria J Almela
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Isabel Camino
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Benigno Crespo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Anas Saadeddin
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Lourdes Rueda
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Felix Calderon
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Simon A Osborne
- LifeArc, Accelerator Building, Open Innovation Campus , Stevenage SG1 2FX , U.K
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Markus Böesche
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Elena Fernández-Álvaro
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jose Ignacio Martin Hernando
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - David A Baker
- Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| |
Collapse
|
17
|
Alam MM, Sanchez-Azqueta A, Janha O, Flannery EL, Mahindra A, Mapesa K, Char AB, Sriranganadane D, Brancucci NMB, Antonova-Koch Y, Crouch K, Simwela NV, Millar SB, Akinwale J, Mitcheson D, Solyakov L, Dudek K, Jones C, Zapatero C, Doerig C, Nwakanma DC, Vázquez MJ, Colmenarejo G, Lafuente-Monasterio MJ, Leon ML, Godoi PHC, Elkins JM, Waters AP, Jamieson AG, Álvaro EF, Ranford-Cartwright LC, Marti M, Winzeler EA, Gamo FJ, Tobin AB. Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science 2019; 365:365/6456/eaau1682. [PMID: 31467193 DOI: 10.1126/science.aau1682] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/15/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
Abstract
The requirement for next-generation antimalarials to be both curative and transmission-blocking necessitates the identification of previously undiscovered druggable molecular pathways. We identified a selective inhibitor of the Plasmodium falciparum protein kinase PfCLK3, which we used in combination with chemogenetics to validate PfCLK3 as a drug target acting at multiple parasite life stages. Consistent with a role for PfCLK3 in RNA splicing, inhibition resulted in the down-regulation of more than 400 essential parasite genes. Inhibition of PfCLK3 mediated rapid killing of asexual liver- and blood-stage P. falciparum and blockade of gametocyte development, thereby preventing transmission, and also showed parasiticidal activity against P. berghei and P. knowlesi Hence, our data establish PfCLK3 as a target for drugs, with the potential to offer a cure-to be prophylactic and transmission blocking in malaria.
Collapse
Affiliation(s)
- Mahmood M Alam
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ana Sanchez-Azqueta
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Omar Janha
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erika L Flannery
- Novartis Institute for Biomedical Research, Emeryville, CA 94608, USA
| | - Amit Mahindra
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kopano Mapesa
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aditya B Char
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dev Sriranganadane
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, São Paulo 13083-886, Brazil
| | - Nicolas M B Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Yevgeniya Antonova-Koch
- Skaggs School of Pharmaceutical Sciences, UC Health Sciences Center for Immunology, Infection and Inflammation, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nelson Victor Simwela
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Scott B Millar
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jude Akinwale
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | - Deborah Mitcheson
- Department of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Lev Solyakov
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | - Kate Dudek
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | - Carolyn Jones
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | - Cleofé Zapatero
- Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Christian Doerig
- Biomedical Science Cluster, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | | | - Maria Jesús Vázquez
- Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, 28049 Madrid, Spain
| | | | - Maria Luisa Leon
- Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Paulo H C Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, São Paulo 13083-886, Brazil
| | - Jon M Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | - Lisa C Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elizabeth A Winzeler
- Skaggs School of Pharmaceutical Sciences, UC Health Sciences Center for Immunology, Infection and Inflammation, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
18
|
Abstract
Alternative splicing is a widespread, essential, and complex component of gene regulation. Apicomplexan parasites have long been recognized to produce alternatively spliced transcripts for some genes and can produce multiple protein products that are essential for parasite growth. Alternative splicing is a widespread, essential, and complex component of gene regulation. Apicomplexan parasites have long been recognized to produce alternatively spliced transcripts for some genes and can produce multiple protein products that are essential for parasite growth. Recent approaches are now providing more wide-ranging surveys of the extent of alternative splicing; some indicate that alternative splicing is less widespread than in other model eukaryotes, whereas others suggest levels comparable to those of previously studied groups. In many cases, apicomplexan alternative splicing events appear not to generate multiple alternative proteins but instead produce aberrant or noncoding transcripts. Nonetheless, appropriate regulation of alternative splicing is clearly essential in Plasmodium and Toxoplasma parasites, suggesting a biological role for at least some of the alternative splicing observed. Several studies have now disrupted conserved regulators of alternative splicing and demonstrated lethal effects in apicomplexans. This minireview discusses methods to accurately determine the extent of alternative splicing in Apicomplexa and discuss potential biological roles for this conserved process in a phylum of parasites with compact genomes.
Collapse
|
19
|
Bennink S, von Bohl A, Ngwa CJ, Henschel L, Kuehn A, Pilch N, Weißbach T, Rosinski AN, Scheuermayer M, Repnik U, Przyborski JM, Minns AM, Orchard LM, Griffiths G, Lindner SE, Llinás M, Pradel G. A seven-helix protein constitutes stress granules crucial for regulating translation during human-to-mosquito transmission of Plasmodium falciparum. PLoS Pathog 2018; 14:e1007249. [PMID: 30133543 PMCID: PMC6122839 DOI: 10.1371/journal.ppat.1007249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/04/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andreas von Bohl
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Leonie Henschel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Nicole Pilch
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Weißbach
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Alina N. Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry & Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, United States of America
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Buskes MJ, Harvey KL, Richards BJ, Kalhor R, Christoff RM, Gardhi CK, Littler DR, Cope ED, Prinz B, Weiss GE, O'Brien NJ, Crabb BS, Deady LW, Gilson PR, Abbott BM. Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation. Org Biomol Chem 2018; 14:4617-39. [PMID: 27105169 DOI: 10.1039/c5ob02517f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central to malaria pathogenesis is the invasion of human red blood cells by Plasmodium falciparum parasites. Following each cycle of intracellular development and replication, parasites activate a cellular program to egress from their current host cell and invade a new one. The orchestration of this process critically relies upon numerous organised phospho-signaling cascades, which are mediated by a number of central kinases. Parasite kinases are emerging as novel antimalarial targets as they have diverged sufficiently from their mammalian counterparts to allow selectable therapeutic action. Parasite protein kinase A (PfPKA) is highly expressed late in the cell cycle of the parasite blood stage and has been shown to phosphorylate a critical invasion protein, Apical Membrane Antigen 1. This enzyme could therefore be a valuable drug target so we have repurposed a substituted 4-cyano-3-methylisoquinoline that has been shown to inhibit rat PKA with the goal of targeting PfPKA. We synthesised a novel series of compounds and, although many potently inhibit the growth of chloroquine sensitive and resistant strains of P. falciparum, they were found to have minimal activity against PfPKA, indicating that they likely have another target important to parasite cytokinesis and invasion.
Collapse
Affiliation(s)
- Melissa J Buskes
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin J Richards
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Robabeh Kalhor
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Chamodi K Gardhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | - Elliott D Cope
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Boris Prinz
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Greta E Weiss
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Nathan J O'Brien
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Leslie W Deady
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
21
|
Murungi EK, Kariithi HM. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases. Pathogens 2017; 6:pathogens6010012. [PMID: 28335576 PMCID: PMC5371900 DOI: 10.3390/pathogens6010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.
Collapse
Affiliation(s)
- Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115 Njoro, Kenya.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Kaptagat Rd, Loresho, 00200 Nairobi, Kenya.
| |
Collapse
|
22
|
Haubrich BA, Swinney DC. Enzyme Activity Assays for Protein Kinases: Strategies to Identify Active Substrates. Curr Drug Discov Technol 2016; 13:2-15. [PMID: 26768716 DOI: 10.2174/1570163813666160115125930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Protein kinases are an important class of enzymes and drug targets. New opportunities to discover medicines for neglected diseases can be leveraged by the extensive kinase tools and knowledge created in targeting human kinases. A valuable tool for kinase drug discovery is an enzyme assay that measures catalytic function. The functional assay can be used to identify inhibitors, estimate affinity, characterize molecular mechanisms of action (MMOAs) and evaluate selectivity. However, establishing an enzyme assay for a new kinases requires identification of a suitable substrate. Identification of a new kinase's endogenous physiologic substrate and function can be extremely costly and time consuming. Fortunately, most kinases are promiscuous and will catalyze the phosphotransfer from ATP to alternative substrates with differing degrees of catalytic efficiency. In this manuscript we review strategies and successes in the identification of alternative substrates for kinases from organisms responsible for many of the neglected tropical diseases (NTDs) towards the goal of informing strategies to identify substrates for new kinases. Approaches for establishing a functional kinase assay include measuring auto-activation and use of generic substrates and peptides. The most commonly used generic substrates are casein, myelin basic protein, and histone. Sequence homology modeling can provide insights into the potential substrates and the requirement for activation. Empirical approaches that can identify substrates include screening of lysates (which may also help identify native substrates) and use of peptide arrays. All of these approaches have been used with a varying degree of success to identify alternative substrates.
Collapse
Affiliation(s)
- Brad A Haubrich
- Institute for Rare and Neglected Diseases Drug Discovery, 897 Independence Ave, Suite 2C, Mountain View, CA 94043, USA.
| | | |
Collapse
|
23
|
von Bohl A, Kuehn A, Simon N, Ngongang VN, Spehr M, Baumeister S, Przyborski JM, Fischer R, Pradel G. A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny. Malar J 2015; 14:435. [PMID: 26537493 PMCID: PMC4634918 DOI: 10.1186/s12936-015-0967-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022] Open
Abstract
Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein–protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0967-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas von Bohl
- Division of Cellular and Applied Infection Biology, Institute for Biology II, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany. .,Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany.
| | - Nina Simon
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany.
| | - Vanesa Nkwouano Ngongang
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany.
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Baumeister
- Parasitology Section, Faculty of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany.
| | - Jude M Przyborski
- Parasitology Section, Faculty of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany.
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute for Biology II, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Yeoh LM, Goodman CD, Hall NE, van Dooren GG, McFadden GI, Ralph SA. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Res 2015; 43:4661-75. [PMID: 25870410 PMCID: PMC4482073 DOI: 10.1093/nar/gkv311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/27/2015] [Indexed: 11/12/2022] Open
Abstract
Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.
Collapse
Affiliation(s)
- Lee M Yeoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nathan E Hall
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Kern S, Agarwal S, Huber K, Gehring AP, Strödke B, Wirth CC, Brügl T, Abodo LO, Dandekar T, Doerig C, Fischer R, Tobin AB, Alam MM, Bracher F, Pradel G. Inhibition of the SR protein-phosphorylating CLK kinases of Plasmodium falciparum impairs blood stage replication and malaria transmission. PLoS One 2014; 9:e105732. [PMID: 25188378 PMCID: PMC4154858 DOI: 10.1371/journal.pone.0105732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-β-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.
Collapse
Affiliation(s)
- Selina Kern
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Shruti Agarwal
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Kilian Huber
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - André P. Gehring
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Benjamin Strödke
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Christine C. Wirth
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Brügl
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | | | - Thomas Dandekar
- Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Doerig
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andrew B. Tobin
- Department of Cell Physiology and Pharmacology, MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Mahmood M. Alam
- Department of Cell Physiology and Pharmacology, MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Franz Bracher
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Gabriele Pradel
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
26
|
Transcript maturation in apicomplexan parasites. Curr Opin Microbiol 2014; 20:82-7. [PMID: 24934558 DOI: 10.1016/j.mib.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
The complex life cycles of apicomplexan parasites are associated with dynamic changes of protein repertoire. In Toxoplasma gondii, global analysis of gene expression demonstrates that dynamic changes in mRNA levels unfold in a serial cascade during asexual replication and up to 50% of encoded genes are unequally expressed in development. Recent studies indicate transcription and mRNA processing have important roles in fulfilling the 'just-in-time' delivery of proteins to parasite growth and development. The prominence of post-transcriptional mechanisms in the Apicomplexa was demonstrated by mechanistic studies of the critical RNA-binding proteins and regulatory kinases. However, it is still early in our understanding of how transcription and post-transcriptional mechanisms are balanced to produce adequate numbers of specialized forms that is required to complete the parasite life cycle.
Collapse
|
27
|
Jha AK, Wang Y, Hercyk BS, Shin HS, Chen R, Yang M. The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis. PLANT MOLECULAR BIOLOGY 2014; 85:81-94. [PMID: 24430502 DOI: 10.1007/s11103-013-0170-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/24/2013] [Indexed: 05/10/2023]
Abstract
The Arabidopsis A1-type cyclin, CYCA1;2, also named TARDY ASYNCHRONOUS MEIOSIS (TAM), is known for its positive role in meiotic cell cycle progression, but its function in other cells has not been characterized. This paper reports the role of CYCA1;2/TAM in differentiated cells in vegetative organs. The pattern of CYCA1;2/TAM expression was investigated by promoter and protein fusions using the β-glucuronidase and the green fluorescent protein, respectively. The relevance of the promoter region used in these gene fusion constructs was verified by the effective complementation of the phenotype of the diploid null allele, tam-2 2C by a genomic fragment containing the wild-type coding region of CYCA1;2/TAM and the promoter region. CYCA1;2/TAM expression was found primarily in non-proliferating cells such as guard cells, trichomes, and mesophyll cells, and in vascular tissue. In two types of overexpression lines, one containing the CYCA1;2/TAM transgene driven by the ARABIDOPSIS SKP1-LIKE1 (ASK1) promoter and the other CYCA1;2/TAM-GFP driven by the cauliflower mosaic virus 35S promoter, the largest differences between the transgene transcript levels were approximately 72- and 45-folds, respectively, but the TAM-GFP signal levels in the mesophyll and stomata in the 35S:TAM-GFP lines only differ slightly. Furthermore, the GFP signals in the mesophyll and stomata in the TAM:TAM-GFP and 35S:TAM-GFP lines were all at similarly low levels. These results indicate that the CYCA1;2/TAM protein is likely maintained at low levels in these cells through post-transcriptional regulation. Loss of function in CYCA1;2/TAM resulted in increases in the nuclear size in both trichomes and guard cells. Surprisingly, overexpression of CYCA1;2/TAM led to similar increases. The large increases in trichome nuclear size likely reflected ploidy increases while the moderate increases in guard cell nuclear size did not justify for a ploidy increase. These nuclear size increases were not clearly correlated with trichome branch number increases and guard cell size increases, respectively. These results suggest that cellular homeostasis of the CYCA1;2/TAM protein is linked to the control of nuclear sizes in trichomes and guard cells.
Collapse
Affiliation(s)
- Ajay K Jha
- 301 Physical Science, Department of Botany, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
There is an urgent need for the development of new antimalarial drugs with novel modes of actions. The malarial parasite, Plasmodium falciparum, has a relatively small kinome of <100 kinases, with many members exhibiting a high degree of structural divergence from their host counterparts. A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets. Implementation of mass spectrometry-based phosphoproteomics approaches has informed on key phospho-signalling pathways in the parasite. In addition, global phenotypic screens have revealed a large number of putative protein kinase inhibitors with antimalarial potency. Taken together, these investigations point to the Plasmodium kinome as a rich source of potential new targets. In this review, we highlight recent progress made towards this goal.
Collapse
|
29
|
Ngwa CJ, Scheuermayer M, Mair GR, Kern S, Brügl T, Wirth CC, Aminake MN, Wiesner J, Fischer R, Vilcinskas A, Pradel G. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito. BMC Genomics 2013; 14:256. [PMID: 23586929 PMCID: PMC3640944 DOI: 10.1186/1471-2164-14-256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/01/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. RESULTS To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence.For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. CONCLUSIONS The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.
Collapse
Affiliation(s)
- Che Julius Ngwa
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh PK, Kanodia S, Dandin CJ, Vijayraghavan U, Malhotra P. Plasmodium falciparum Prp16 homologue and its role in splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1186-99. [PMID: 22982196 DOI: 10.1016/j.bbagrm.2012.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/25/2023]
Abstract
Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | |
Collapse
|
31
|
Philip N, Vaikkinen HJ, Tetley L, Waters AP. A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS One 2012; 7:e44617. [PMID: 22957089 PMCID: PMC3434153 DOI: 10.1371/journal.pone.0044617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022] Open
Abstract
Signalling through post-translational modification (PTM) of proteins is a process central to cell homeostasis, development and responses to external stimuli. The best characterised PTM is protein phosphorylation which is reversibly catalysed at specific residues through the action of protein kinases (addition) and phosphatases (removal). Here, we report characterisation of an orphan protein phosphatase that possesses a domain architecture previously only described in Plantae. Through gene disruption and the production of active site mutants, the enzymatically active Protein Phosphatase containing Kelch-Like domains (PPKL, PBANKA_132950) is shown to play an essential role in the development of an infectious ookinete. PPKL is produced in schizonts and female gametocytes, is maternally inherited where its absence leads to the development of a malformed, immotile, non-infectious ookinete with an extended apical protrusion. The distribution of PPKL includes focussed localization at the ookinete apical tip implying a link between its activity and the correct deployment of the apical complex and microtubule cytoskeleton. Unlike wild type parasites, ppkl– ookinetes do not have a pronounced apical distribution of their micronemes yet secretion of microneme cargo is unaffected in the mutant implying that release of microneme cargo is either highly efficient at the malformed apical prominence or secretion may also occur from other points of the parasite, possibly the pellicular pores.
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| | - Heli J. Vaikkinen
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| |
Collapse
|
32
|
Eshar S, Allemand E, Sebag A, Glaser F, Muchardt C, Mandel-Gutfreund Y, Karni R, Dzikowski R. A novel Plasmodium falciparum SR protein is an alternative splicing factor required for the parasites' proliferation in human erythrocytes. Nucleic Acids Res 2012; 40:9903-16. [PMID: 22885299 PMCID: PMC3479193 DOI: 10.1093/nar/gks735] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Malaria parasites have a complex life cycle, during which they undergo significant biological changes to adapt to different hosts and changing environments. Plasmodium falciparum, the species responsible for the deadliest form of human malaria, maintains this complex life cycle with a relatively small number of genes. Alternative splicing (AS) is an important post-transcriptional mechanisms that enables eukaryotic organisms to expand their protein repertoire out of relatively small number of genes. SR proteins are major regulators of AS in higher eukaryotes. Nevertheless, the regulation of splicing as well as the AS machinery in Plasmodium spp. are still elusive. Here, we show that PfSR1, a putative P. falciparum SR protein, can mediate RNA splicing in vitro. In addition, we show that PfSR1 functions as an AS factor in mini-gene in vivo systems similar to the mammalian SR protein SRSF1. Expression of PfSR1-myc in P. falciparum shows distinct patterns of cellular localization during intra erythrocytic development. Furthermore, we determine that the predicted RS domain of PfSR1 is essential for its localization to the nucleus. Finally, we demonstrate that proper regulation of pfsr1 is required for parasite proliferation in human RBCs and over-expression of pfsr1 influences AS activity of P. falciparum genes in vivo.
Collapse
Affiliation(s)
- Shiri Eshar
- Department of Microbiology and Molecular Genetics, The Kuvin Center for Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
34
|
Dorin-Semblat D, Bottrill AR, Solyakov L, Tobin A, Doerig C. Experimental tools for the study of protein phosphorylation in Plasmodium. Methods Mol Biol 2012; 923:241-57. [PMID: 22990782 DOI: 10.1007/978-1-62703-026-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The central role played by protein phosphorylation in the regulation of eukaryotic cellular processes calls for detailed investigations of this phenomenon in malaria parasites. Here, we describe protocols to measure the activity of protein kinases (using either recombinant proteins or native enzymes purified from parasite extracts), and outline procedures to identify phosphorylation sites on parasite proteins following a mass spectrometry approach.
Collapse
|
35
|
Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling. Int J Parasitol 2011; 42:21-32. [PMID: 22154850 DOI: 10.1016/j.ijpara.2011.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 11/20/2022]
Abstract
Some apicomplexan parasites have evolved distinct protein kinase families to modulate host cell structure and function. Toxoplasma gondii rhoptry protein kinases and pseudokinases are involved in virulence and modulation of host cell signalling. The proteome of Plasmodium falciparum contains a family of putative kinases called FIKKs, some of which are exported to the host red blood cell and might play a role in erythrocyte remodelling. In this review we will discuss kinases known to be critical for host cell invasion, intracellular growth and egress, focusing on (i) calcium-dependent protein kinases and (ii) the secreted kinases that are unique to Toxoplasma (rhoptry protein kinases and pseudokinases) and Plasmodium (FIKKs).
Collapse
|
36
|
Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2011; 2:565. [PMID: 22127061 DOI: 10.1038/ncomms1558] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/19/2011] [Indexed: 12/23/2022] Open
Abstract
The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome.
Collapse
|
37
|
Emerging functions of transcription factors in malaria parasite. J Biomed Biotechnol 2011; 2011:461979. [PMID: 22131806 PMCID: PMC3216465 DOI: 10.1155/2011/461979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022] Open
Abstract
Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.
Collapse
|
38
|
Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 2011; 11:321. [PMID: 22047078 PMCID: PMC3239843 DOI: 10.1186/1471-2148-11-321] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 12/04/2022] Open
Abstract
Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors.
Collapse
|