1
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
2
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Almeer RS, Alnasser M, Aljarba N, AlBasher GI. Effects of Green cardamom (Elettaria cardamomum Maton) and its combination with cyclophosphamide on Ehrlich solid tumors. BMC Complement Med Ther 2021; 21:133. [PMID: 33926427 PMCID: PMC8086365 DOI: 10.1186/s12906-021-03305-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cardamom (Elettaria cardamomum) is a spice and exhibits potent antioxidant and biological activities through distinct molecular mechanisms. However, the anticancer effect of cardamom was not explored yet in Ehrlich solid tumor (EST)-bearing mice. Objectives This investigation was aimed to evaluate the anti-cancer effects of green cardamom (GCar) alone or combined with the anti-cancer drug cyclophosphamide in an in vivo model to explore its mechanistic role in tumor cell death in EST-bearing mice. Methods Ehrlich ascites tumor cells were injected in the mice and 5 days later the animals treated with GCar and/or cyclophosphamide for 10 days. Twenty-four hours from the last treatment, animals were sacrificed for the different measurements. Results Data recorded for tumor size, percentage of tumor growth inhibition, tumor growth delay and mean survival time of EST-bearing mice demonstrated the effective role of GCar alone or combined with CPO as a promising anti-cancer agent because it reduced tumor size. GCar elevated the mean survival time of EST-bearing mice compared to that of untreated EST and EST + CPO groups. Analysis of qPCR mRNA gene and protein expression revealed that GCar alone or combined with CPO were promising anticancer agents. After the treatment of EST with GCar, the apoptotic-related genes and proteins were significantly modulated. GCar induced markedly significant decreases in oxidative stress biomarkers and a significant increment in glutathione levels and that of antioxidant enzymes. With a marked diminish in liver and kidney function biomarkers. Conclusion The results revealed that GCar could serve as an apoptotic stimulator agent, presenting a novel and potentially curative approach for cancer treatment, inducing fewer side effects than those of the commercially used anti-cancer drugs, such as CPO. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03305-2.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Meshael Alnasser
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gadah I AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Human BM-MSC secretome enhances human granulosa cell proliferation and steroidogenesis and restores ovarian function in primary ovarian insufficiency mouse model. Sci Rep 2021; 11:4525. [PMID: 33633319 PMCID: PMC7907146 DOI: 10.1038/s41598-021-84216-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Primary ovarian insufficiency (POI) is defined as the loss of ovarian function before 40 years of age. It clinically manifests as amenorrhea, infertility, and signs of estrogen insufficiency. POI is frequently induced by chemotherapy. Gonadotoxic chemotherapy reagents damage granulosa cells, which are essential for follicular function and development. Our recently published studies demonstrated that intraovarian transplantation of human mesenchymal stem cells (hMSCs) can restore fertility in a chemotherapy-induced POI mouse model. However, the regenerative mechanism underlying the hMSC effect in POI mice is not fully understood. Here, we report that the hMSC secretome increased the proliferation of human granulosa cells (HGrC1). We showed by FACS analysis that treatment of HGrC1 cells with hMSC-conditioned media (hMSC CM) stimulates cellular proliferation. We also demonstrated that the expression of steroidogenic enzymes involved in the production of estrogen, CYP19A1 and StAR, are significantly elevated in hMSC CM-treated HGrC1 cells. Our data suggest that hMSC CM stimulates granulosa cell proliferation and function, which may explain the therapeutic effect of hMSCs in our chemotherapy-induced POI animal model. Our findings indicate that the hMSC secretome may be a novel treatment approach for restoring granulosa cell and ovarian function in patients with POI.
Collapse
|
5
|
Shan X, Dong W, Zhang L, Cai X, Zhao Y, Chen Q, Yan Q, Liu J. Role of fucosyltransferase IV in the migration and invasion of human melanoma cells. IUBMB Life 2020; 72:942-956. [PMID: 31961483 DOI: 10.1002/iub.2227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is one of the most aggressive human tumor types, mainly due to its high invasion capability, metastatic properties, and the absence of effective treatments. Glycosylation serves a pivotal role in the migration and invasion of melanoma. However, differences in glycosylation between high and low metastatic melanoma cells and how these regulate migration and invasion by altering the expression of fucosyltransferases (FUTs) remain unclear. In the present study, matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis revealed that the composition profiling of fucosylated N-glycans differed between high metastatic C8161 and low metastatic A375P cells. Further analysis revealed that FUT4 expression was significantly increased in C8161 cells. Melanoma tissue arrays further demonstrated that FUT4 was overexpressed in metastatic samples. Altered FUT4 expression was accompanied by a change in the migration and invasion capacity of the cells. In addition, the migration and invasion potential of melanoma cells were decreased in C8161 and increased in A375P cells upon altering FUT4 expression levels by small interfering RNA or complementary DNA transfection. Furthermore, regulating FUT4 expression markedly modulated the activity of the phosphoinositide-3-kinase/Akt (PI3K/Akt) signaling pathway, which affected melanoma cell migration and invasion. In conclusion, FUT4 is a novel biomarker and regulator of the migration and invasion of melanoma cells and may serve as a therapeutic target for melanoma.
Collapse
Affiliation(s)
- Xiu Shan
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| | - Weijie Dong
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| | - Xin Cai
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| | - Yi Zhao
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| | - Qun Chen
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiwei Liu
- Department of Oncology, Dalian Medical University, the First Affiliated Hospital, Dalian, Liaoning Province, China
| |
Collapse
|
6
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Tsubaki M, Takeda T, Tomonari Y, Koumoto YI, Imano M, Satou T, Nishida S. Overexpression of HIF-1α contributes to melphalan resistance in multiple myeloma cells by activation of ERK1/2, Akt, and NF-κB. J Transl Med 2019; 99:72-84. [PMID: 30353128 DOI: 10.1038/s41374-018-0114-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) commonly displays multidrug resistance and is associated with poor prognosis. Therefore, it is important to identify the mechanisms by which MM cells develop multidrug resistance. Our previous study showed that multidrug resistance is correlated with overexpression of multidrug resistance protein 1 (MDR1) and Survivin, and downregulation of Bim expression in melphalan-resistant RPMI8226/L-PAM cells; however, the underlying mechanism of multidrug resistance remains unclear. In the present study, we investigated the mechanism of multidrug resistance in melphalan-resistant cells. We found that RPMI8226/L-PAM and ARH-77/L-PAM cells showed increased phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Akt, and nuclear localization of nuclear factor κB (NF-κB). The combination of ERK1/2, Akt, and NF-κB inhibitors with melphalan reversed melphalan resistance via suppression of Survivin expression and enhanced Bim expression in melphalan-resistant cells. In addition, RPMI8226/L-PAM and ARH-77/L-PAM cells overexpressed hypoxia-inducible factor 1α (HIF-1α) via activation of ERK1/2, Akt, and NF-κB. Moreover, suppression of HIF-1α by echinomycin or HIF-1α siRNA resensitized RPMI8226/L-PAM cells to melphalan through downregulation of Survivin expression and upregulation of Bim expression. These results indicate that enhanced Survivin expression and decreased Bim expression by HIF-1α via activation of ERK1/2, Akt, and NF-κB play a critical role in melphalan resistance. Our findings suggest that HIF-1α, ERK1/2, Akt, and NF-κB inhibitors are potentially useful as anti-MDR agents for the treatment of melphalan-resistant MM.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Yoshika Tomonari
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Yu-Ichi Koumoto
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan.
| |
Collapse
|
8
|
Grzesiuk M, Mielecki D, Pilżys T, Garbicz D, Marcinkowski M, Grzesiuk E. How cyclophosphamide at environmentally relevant concentration influences Daphnia magna life history and its proteome. PLoS One 2018; 13:e0195366. [PMID: 29621334 PMCID: PMC5886542 DOI: 10.1371/journal.pone.0195366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
The waste of commonly used medicines is known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic, mutagenic, or modifying to freshwater organisms even at low concentrations if consider their permanent presence in the environment. Chemotherapeutics used to treat cancer, and in particular alkylating agents, contribute significantly to this form of pollution, the latter introducing cytotoxic and/or mutagenic lesions to the DNA and RNA of organisms which can be disruptive to their cells. The aim of the present study was to investigate the influence of the alkylating anticancer agent cyclophosphamide (CP) on Daphnia magna clones. We evaluated the life history parameters and protein profiles of this crustacean following exposure to environmentally relevant CP concentration of 10 ng L-1. Even at this low concentration, the alkylating agent caused modification of the life history parameters and proteome profile of the Daphnia. These changes were clone-specific and involved growth rate, age at first reproduction, neonate number, and proteins related to cell cycle and redox state regulation. The disturbance caused by pharmaceuticals contaminating freshwater ecosystem is probably weaker and unlikely to be cytotoxic in character due to the high dilution of these substances in the water. However, our results indicate that prolonged exposure of organisms to these toxins may lead to modifications on the organismal and molecular levels with unpredictable significance for the entire ecosystem.
Collapse
Affiliation(s)
- Małgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biological and Chemical Research Centre, Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Pilżys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Huang J, Wang L, Jiang M, Chen Q, Zhang X, Wang Y, Jiang Z, Zhang Z. Low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384. Immunol Res 2016; 64:461-9. [PMID: 26423071 DOI: 10.1007/s12026-015-8701-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eighteen different Pearson mutual-positive-correlation BIK-activatory molecular feedback upstream and downstream networks were constructed from 79 overlapping of 376 GRNInfer and 98 Pearson under BIK CC ≥ 0.25 in low normal adjacent tissues of Taiwan compared with high lung adenocarcinoma. Our identified BIK interactive total feedback molecular network showed FUT3 [fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase Lewis blood group)], PMM2 (phosphomannomutase 2), SQSTM1 (sequestosome 1), SFN_2 [REX2 RNA exonuclease 2 homolog (S. cerevisiae)] and ZNF384 (zinc finger protein 384) in low normal adjacent tissues of lung adenocarcinoma. BIK interactive total feedback terms included mitochondrial envelope, endomembrane system, integral to membrane, Golgi apparatus, cytoplasm, nucleus, cytosol, intracellular signaling cascade, mitochondrion, extracellular space, inflammation, immune response, apoptosis, cell differentiation, cell cycle, regulation of cell cycle, cell proliferation, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, induction or regulation of apoptosis based on integrative GO, KEGG, GenMAPP, BioCarta and disease databases in low normal adjacent tissues of lung adenocarcinoma. Therefore, we propose low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384 in normal adjacent tissues of lung adenocarcinoma.
Collapse
Affiliation(s)
- Juxiang Huang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Lin Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Minghu Jiang
- Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingchun Chen
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaoyu Zhang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yangming Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhenfu Jiang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhongjie Zhang
- College of Information, North China University of Technology, Beijing, 100043, China
| |
Collapse
|
10
|
Shan X, Tian LL, Zhang YM, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3 suppresses FUT4 expression through inhibiting NF-κB/p65 signaling pathway to promote melanoma cell death. Int J Oncol 2015; 47:701-9. [PMID: 26094873 PMCID: PMC6903900 DOI: 10.3892/ijo.2015.3057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
Abnormal glycosylation is catalyzed by the specific glycosyltransferases and correlates with tumor cell apoptosis. Increased fucosyltransferase IV (FUT4) is seen in many types of cancer, and manipulating FUT4 expression through specific signaling pathway inhibits cell growth and induces apoptosis. NF-κB is known playing a vital role to control cell growth and apoptosis. Ginsenoside Rg3 is an herbal medicine with strong antitumor activity through inhibiting tumor growth and promoting tumor cell death. However, whether Rg3-induced inhibition on tumor development involves reduced NF-κB signaling and FUT4 expression remains unknown. In the present study, we found that Rg3 suppressed FUT4 expression by abrogating the binding of NF-κB to FUT4 promoter through inhibiting the expression of signaling molecules of NF-κB pathway, reducing NF-κB DNA binding activity and NF-κB transcription activity. NF-κB inhibitor (Bay 11-7082) or knocking down p65 expression by p65 siRNA also led to a significant decreased FUT4 expression. In addition, Rg3 induced apoptosis by activating both extrinsic and intrinsic apoptotic pathways. Moreover, in a xenograft mouse model, Rg3 downregulated FUT4 and NF-κB/p65 expression and suppressed melanoma cell growth and induced apoptosis without any noticeable toxicity. In conclusion, Rg3 induces tumor cell apoptosis correlated with its inhibitory effect on NF-κB signaling pathway-mediated FUT4 expression. Results suggest Rg3 might be a novel therapy agent for melanoma treatment.
Collapse
Affiliation(s)
- Xiu Shan
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Li Li Tian
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Mei Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiao Qi Wang
- Department of Dermatology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ji Wei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
11
|
Shan X, Aziz F, Tian LL, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol 2015; 46:1667-76. [PMID: 25672851 PMCID: PMC6903901 DOI: 10.3892/ijo.2015.2886] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/13/2015] [Indexed: 01/20/2023] Open
Abstract
Malignant melanoma is a destructive and lethal form of skin cancer with poor prognosis. An effective treatment for melanoma is greatly needed. Ginsenoside Rg3 is a herbal medicine with high antitumor activity. It is reported that abnormal glycosylation is correlated with the tumor cell growth. However, the antitumor effect of Rg3 on melanoma and its mechanism on regulating glycosylation are unknown. We found that Rg3 did not only inhibit A375 melanoma cell proliferation in a dose-dependent manner, but also decreased the expression of fucosyltransferase IV (FUT4) and its synthetic product Lewis Y (LeY), a tumor-associated carbohydrate antigen (TACA). Knocking down FUT4 expression by siRNA dramatically reduced FUT4/LeY level and inhibited cell proliferation through preventing the activation of EGFR/MAPK pathway. Consistently, the inhibitory effect of the Rg3 and FUT4 knockdown on melanoma growth was also seen in a xenograft melanoma mouse model. In conclusion, Rg3 effectively inhibited melanoma cell growth by downregulating FUT4 both in vitro and in vivo. Targeting FUT4/LeY mediated fucosylation by Rg3 inhibited the activation of EGFR/MAPK pathway and prevented melanoma growth. Results from this study suggest Rg3 is a potential novel therapy agent for melanoma treatment.
Collapse
Affiliation(s)
- Xiu Shan
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Faisal Aziz
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, Liaoning, P.R. China
| | - Li Li Tian
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Xiao Qi Wang
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, Liaoning, P.R. China
| | - Ji Wei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
12
|
Bai J, Lei P, Zhang J, Zhao C, Liang R. Sulfite exposure-induced hepatocyte death is not associated with alterations in p53 protein expression. Toxicology 2013; 312:142-8. [PMID: 23973939 DOI: 10.1016/j.tox.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
Although sulfite (SO3(2-)) is commonly used as an antimicrobial agent and preservative in foods, medicines and wine, it has also been listed as an important risk factor for the initiation and progression of liver diseases due to oxidative damage. In general, apoptosis that is induced by oxidative stress is triggered by increases in p53 and alterations in Mdm2 and Bcl-2. However, the level of involvement of the p53 signaling pathway, which has been shown to be upregulated in some animal studies, in hepatocyte death remains unclear. To examine the response of the p53 signaling pathway to stimulation with different concentrations of sulfite, a time course study of p53, Mdm2, and Bcl-2 expression was conducted in an immortalized hepatic cell line, HL-7702. When the HL-7702 cells were cultured in the presence of Na2SO3, the cell viability was significantly decreased after 24h compared to that of the control group (0mmol/L) (p<0.05). Meanwhile, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the supernatants of HL-7702 cells were significantly increased following Na2SO3 administration. Interestingly, the expression of p53 and p-p53 (Ser15) remained unchanged. In addition, no obvious alterations in Mdm2 and Bcl-2 expression were observed in HL-7702 cells that had been stimulated with various concentrations of sulfite. To further investigate the detailed mechanism underlying sulfite toxicity, caspase-3, PCNA and RIP1 expression in HL-7702 cells was studied. The expression levels of caspase-3 and PCNA were unchanged, but RIP1 expression was increased significantly after 24h of exposure. In light of this evidence, we propose that sulfite is cytotoxic to hepatocytes, but this cytotoxicity is not achieved by direct interruption of the p53 signaling pathway. In addition, we propose that an alternative necrotic process underlies hepatocellular death following sulfite exposure.
Collapse
Affiliation(s)
- Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | |
Collapse
|
13
|
Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells. Cell Death Dis 2013; 4:e735. [PMID: 23887626 PMCID: PMC3730415 DOI: 10.1038/cddis.2013.241] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 11/09/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.
Collapse
|