1
|
Yu W, Zhao Y, Ilyas I, Wang L, Little PJ, Xu S. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. J Pharm Pharmacol 2024:rgae053. [PMID: 38733634 DOI: 10.1093/jpp/rgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Anhui Renovo Pharmaceutical Co., Ltd, Hefei, Anhui, 230001, China
- Anhui Guozheng Pharmaceutical Co., Ltd, Hefei, Anhui, 230041, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter J Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Tianhe District, Guangzhou, 510520, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
2
|
Jang HY, Kim GB, Kim JM, Kang SY, Youn HJ, Park J, Ro SY, Chung EY, Park KH, Kim JS. Fisetin Inhibits UVA-Induced Expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK Pathway in Human Dermal Fibroblasts and Human Epidermal Keratinocytes. Int J Mol Sci 2023; 24:17358. [PMID: 38139186 PMCID: PMC10743569 DOI: 10.3390/ijms242417358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Fisetin is a flavonoid found in plants and has been reported to be effective in various human diseases. However, the effective mechanisms of ultraviolet-A (UVA)-mediated skin damage are not yet clear. In this study, we investigated the protective mechanisms of fisetin regarding UVA-induced human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) damages. Fisetin showed a cytoprotective effect against UVA irradiation and suppressed matrix metalloproteinases (MMPs), MMP-1, and MMP-3 expression. In addition, fisetin was rescued, which decreased mRNA levels of pro-inflammatory cytokines, reactive oxygen species production, and the downregulation of MAPK/AP-1 related protein and NADPH oxidase (NOX) mRNA levels. Furthermore, UVA-induced MMP-1 and MMP-3 were effectively inhibited by siRNAs to NOX 1 to 5 in HDFs and HEKs. These results indicate that fisetin suppresses UVA-induced damage through the NOX/ROS/MAPK pathway in HDFs and HEKs.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
- Infectious Diseases Therapeutic Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Jeong-Mi Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Hyun-Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Jinny Park
- Department of Medical Oncology and Hematology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Su Yeon Ro
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
- BioMedical Science Graduate Program (BMSGP), Department of Emergency Medicine, Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| |
Collapse
|
3
|
Pang QQ, Lee S, Cho EJ, Kim JH. Protective Effects of Cirsium japonicum var. maackii Flower on Amyloid Beta 25-35-Treated C6 Glial Cells. Life (Basel) 2023; 13:1453. [PMID: 37511827 PMCID: PMC10381248 DOI: 10.3390/life13071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloid beta (Aβ) is a neurotoxic peptide and a key factor causing Alzheimer's disease. Cirsium japonicum var. maackii (CJM) has neuroprotective effects, but the protective effects of the flower from CJM (FCJM) on the neural system remain unclear. This study aimed to identify the fraction of FCJM with the highest neuroprotective potential and investigate its protective mechanisms against Aβ25-35-induced inflammation in C6 glial cells. The cell viability and generation of reactive oxygen species (ROS) were measured to investigate the positive effect of FCJM on oxidative stress. Treatment with the FCJM extract or fractions increased the cell viability to 60-70% compared with 52% in the Aβ25-35-treated control group and decreased ROS production to 84% compared with 100% in the control group. The ethyl acetate fraction of FCJM (EFCJM) was the most effective among all the extracts and fractions. We analyzed the protective mechanisms of EFCJM on Aβ25-35-induced inflammation in C6 glial cells using Western blot. EFCJM downregulated amyloidogenic pathway-related proteins, such as Aβ precursor protein, β-secretase, presenilin 1, and presenilin 2. Moreover, EFCJM attenuated the Bax/Bcl-2 ratio, an index of apoptosis, and upregulated the oxidative stress-related protein, heme oxygenase-1. Therefore, this study demonstrated that FCJM improves cell viability and inhibits ROS in Aβ25-35-treated C6 glial cells. Furthermore, EFCJM exhibits neuroprotective effects in Aβ25-35-induced inflammation in C6 glial cells by modulating oxidative stress and amyloidogenic and apoptosis signaling pathways. FCJM, especially EFCJM, can be a promising agent for neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Qi Qi Pang
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
5
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Qian X, Lin S, Li J, Jia C, Luo Y, Fan R, Hu C, Chen Y. Fisetin Ameliorates Diabetic Nephropathy-Induced Podocyte Injury by Modulating Nrf2/HO-1/GPX4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9331546. [PMID: 39281805 PMCID: PMC11401708 DOI: 10.1155/2023/9331546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 09/18/2024]
Abstract
Diabetic nephropathy (DN) is one of the most severe microvascular complications of diabetes and has become the leading cause of end-stage renal disease formation. The pathogenesis of diabetic nephropathy is very complex and is still not fully understood. Fisetin is a flavonoid polyphenolic compound that is widely found in different fruits, vegetables, and medicinal plants. Many studies have indicated that it has a variety of pharmacological activities. In this study, we investigated the mechanism of action of fisetin in the protection of DN-induced podocyte injury both in vivo and in vitro. Results showed that fisetin could reduce high glucose (HG)-induced podocyte injury and streptozotocin (STZ)-induced diabetic nephropathy in mice. According to the histopathological staining results, fisetin ameliorated DN-induced glomerular injury in a dose-dependent manner. Western blot and immunofluorescence results showed that fisetin effectively promoted the expression of podocyte functional integrity marker proteins and inhibited the expression of podocyte injury marker proteins. In addition, according to the Western blot and RT-qPCR results, fisetin activates the nuclear translocation of Nrf2 to exert antioxidative stress ability and affects the expression of downstream antioxidant enzymes HO-1, GPX4, and other ferroptosis-related markers, thereby protecting against HG-induced podocyte ferroptosis and oxidative stress injury in DN mice. In summary, this study demonstrated that fisetin could enhance the antioxidative stress capacity of DN mice by promoting the activation of the Nrf2/HO-1/GPX4 signaling pathway in renal tissues, and attenuated HG-induced podocytes injury and STZ-induced DN in mice.
Collapse
Affiliation(s)
- Xiaojing Qian
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Lin
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - ChengLin Jia
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yun Luo
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Rui Fan
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Chen
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| |
Collapse
|
7
|
Biswas S, Mahapatra E, Das S, Roy M, Mukherjee S. PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay. Heliyon 2022; 8:e11656. [PMID: 36458309 PMCID: PMC9706142 DOI: 10.1016/j.heliyon.2022.e11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background/aim Intricate association and aberrant activation of serine/threonine kinase (STK) family proteins like Polo-like kinase (PLK1) and Aurora kinase (Aurora A abruptly regulate mitotic entry whereas activation of PKCδ), another important member of STK family conversely induces apoptosis which is preceded by cell cycle arrest. These STKs are considered as major determinant of oncogenicity. Therefore, the contributory role of Aurora A/PLK-1 axis in mitotic control and PKCδ in apoptosis control and their reciprocity in cancer research is an emerging area to explore. The present study investigated the intricate involvement of STKs in breast cancer cells (MCF-7 and MDA-MB-231) and their disruption by PEITC. Methods Both MCF-7 and MDA-MB-231 cells were checked for clonogenic assay, cell-cycle analysis and the results were compared with normal MCF-10A, Western blotting, TUNEL & DNA-fragmentation assay, wound healing, transwell migration assays in presence and absence of PEITC. Results PEITC was found to increase the expression of PKCδ with subsequent nuclear translocation. Nuclear translocation of PKCδ was accompanied by inhibition of nuclear lamin vis a vis phosphorylation of Nrf2 at Ser 40 alongside nuclear accumulation of phospho-Nrf2. Activated PKCδ furthermore exerted its apoptotic effect by negatively regulating Aurora A and consequentially PLK1; indicating activation of PLK1 by Aurora A. Involvement of PEITC induced PKCδ activation and Aurora A inhibition was ascertained by using Rottlerin/Aurora A Inhibitor. Discussion & conclusion Natural isothiocyanates like PEITC efficiently altered the functional abilities of STKs concerning their entangled functional interplay. Such alterations in protein expression by PEITC was chaperoned with inhibition of the aggressiveness of breast cancer cells and ultimately induction of apoptosis.
Collapse
Affiliation(s)
- Souvick Biswas
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Elizabeth Mahapatra
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Salini Das
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Madhumita Roy
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Sutapa Mukherjee
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| |
Collapse
|
8
|
Gualtieri M, Berico M, Grollino MG, Cremona G, La Torretta T, Malaguti A, Petralia E, Stracquadanio M, Santoro M, Benassi B, Piersanti A, Chiappa A, Bernabei M, Zanini G. Emission Factors of CO 2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment. TOXICS 2022; 10:617. [PMID: 36287897 PMCID: PMC9611748 DOI: 10.3390/toxics10100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Aviation is one of the sectors affecting climate change, and concerns have been raised over the increase in the number of flights all over the world. To reduce the climate impact, efforts have been dedicated to introducing biofuel blends as alternatives to fossil fuels. Here, we report environmentally relevant data on the emission factors of biofuel/fossil fuel blends (from 13 to 17% v/v). Moreover, in vitro direct exposure of human bronchial epithelial cells to the emissions was studied to determine their potential intrinsic hazard and to outline relevant lung doses. The results show that the tested biofuel blends do not reduce the emissions of particles and other chemical species compared to the fossil fuel. The blends do reduce the elemental carbon (less than 40%) and total volatile organic compounds (less than 30%) compared to fossil fuel emissions. The toxicological outcomes show an increase in oxidative cellular response after only 40 min of exposure, with biofuels causing a lower response compared to fossil fuels, and lung-deposited doses show differences among the fuels tested. The data reported provide evidence of the possibility to reduce the climate impact of the aviation sector and contribute to the risk assessment of biofuels for aviation.
Collapse
Affiliation(s)
- Maurizio Gualtieri
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Massimo Berico
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | | | - Giuseppe Cremona
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Teresa La Torretta
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Antonella Malaguti
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Ettore Petralia
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Milena Stracquadanio
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Massimo Santoro
- ENEA, Division of Health Protection Technologies, Via Anguillarese, 301, 00123 Rome, Italy
| | - Barbara Benassi
- ENEA, Division of Health Protection Technologies, Via Anguillarese, 301, 00123 Rome, Italy
| | - Antonio Piersanti
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| | - Andrea Chiappa
- Italian Air Force, Aerospatial Testing Division, Aerospace Materials and Technology Department, Aeroporto Militare de Bernardi 00071 Pratica di Mare, Pomezia, 00040 Rome, Italy
| | - Manuele Bernabei
- Italian Air Force, Aerospatial Testing Division, Aerospace Materials and Technology Department, Aeroporto Militare de Bernardi 00071 Pratica di Mare, Pomezia, 00040 Rome, Italy
| | - Gabriele Zanini
- ENEA, Division of Models and Technologies for Risk Reduction, Via Martiri di Monte Sole 4, 40146 Bologna, Italy
| |
Collapse
|
9
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Yang CC, Hsiao LD, Wang CY, Lin WN, Shih YF, Chen YW, Cho RL, Tseng HC, Yang CM. HO-1 Upregulation by Kaempferol via ROS-Dependent Nrf2-ARE Cascade Attenuates Lipopolysaccharide-Mediated Intercellular Cell Adhesion Molecule-1 Expression in Human Pulmonary Alveolar Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11040782. [PMID: 35453467 PMCID: PMC9028455 DOI: 10.3390/antiox11040782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lung inflammation is a pivotal event in the pathogenesis of acute lung injury. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme that could be induced by kaempferol (KPR) and exerts anti-inflammatory effects. However, the molecular mechanisms of KPR-mediated HO-1 expression and its effects on inflammatory responses remain unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). This study aimed to verify the relationship between HO-1 expression and KPR treatment in both in vitro and in vivo models. HO-1 expression was determined by real time-PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated by using pharmacological inhibitors or specific siRNAs. Chromatin immunoprecipitation (ChIP) assay was performed to investigate the interaction between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of HO-1 promoter. The effect of KPR on monocytes (THP-1) binding to HPAEpiCs challenged with lipopolysaccharides (LPS) was determined by adhesion assay. We found that KPR-induced HO-1 level attenuated the LPS-induced intercellular cell adhesion protein 1 (ICAM-1) expression in HPAEpiCs. KPR-induced HO-1 mRNA and protein expression also attenuated ICAM-1 expression in mice. Tin protoporphyrin (SnPP)IX reversed the inhibitory effects of KPR in HPAEpiCs. In addition, in HPAEpiCs, KPR-induced HO-1 expression was abolished by both pretreating with the inhibitor of NADPH oxidase (NOX, apocynin (APO)), reactive oxygen species (ROS) (N-acetyl-L-cysteine (NAC)), Src (Src kinase inhibitor II (Srci II)), Pyk2 (PF431396), protein kinase C (PKC)α (Gö6976), p38 mitogen-activated protein kinase (MAPK) inhibitor (p38i) VIII, or c-Jun N-terminal kinases (JNK)1/2 (SP600125) and transfection with their respective siRNAs. The transcription of the homx1 gene was enhanced by Nrf2 activated by JNK1/2 and p38α MAPK. The binding activity between Nrf2 and HO-1 promoter was attenuated by APO, NAC, Srci II, PF431396, or Gö6983. KPR-mediated NOX/ROS/c-Src/Pyk2/PKCα/p38α MAPK and JNK1/2 activate Nrf2 to bind with ARE on the HO-1 promoter and induce HO-1 expression, which further suppresses the LPS-mediated inflammation in HPAEpiCs. Thus, KPR exerts a potential strategy to protect against pulmonary inflammation via upregulation of the HO-1.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chen-Yu Wang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Yi-Wen Chen
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Rou-Ling Cho
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-220-53366 (ext. 2229)
| |
Collapse
|
12
|
Yang CC, Hsiao LD, Shih YF, Chang CI, Yang CM. Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040719. [PMID: 35453404 PMCID: PMC9024691 DOI: 10.3390/antiox11040719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ching-I Chang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| |
Collapse
|
13
|
Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2022; 34:43-63. [PMID: 35024180 PMCID: PMC8655139 DOI: 10.1016/j.jare.2021.06.023] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods A literature search was carried out regarding our topic with the keywords of “atherosclerosis” or “Nrf2/HO-1” or “vascular endothelial cells” or “oxidative stress” or “Herbal medicine” or “natural products” or “natural extracts” or “natural compounds” or “traditional Chinese medicines” based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.
Collapse
Key Words
- 7-HMR, (−)-7(S)-hydroxymatairesinol
- ADH, andrographolide
- AGE, advanced glycation end product
- AMP, Athyrium Multidentatum
- APV, aqueous extracts of Prunella Vulgaris
- ARE, antioxidant reaction elements
- AS, atherosclerosis
- ASD-IV, Astragaloside IV
- ASP, Angelica sinensis polysaccharide
- ASTP, Astragalus polysacharin
- Akt, protein kinase B
- Ang, Angiotensin
- ApoE, apolipoprotein E
- Atherosclerosis
- BAECs, bovine artery endothelial cells
- BBR, Berberine
- BITC, benzyl isothiocyanate
- C3G, Cyanidin-3-O-glucoside
- CINM, Cinnamaldehyde
- CNC, Cap'n'collar
- CREB, cAMP-response element binding protein
- CVDs, cardiovascular diseases
- CVRF, cardiovascular risk factors
- DMY, Dihydromyricetin
- ECC, (−)-Epicatechin
- ECs, endothelial cells
- EGCG, epigallocatechin-3-O-gallate
- ERK, extracellular regulated protein kinases
- ET, endothelin
- EXS, Xanthoceras sorbifolia
- FFA, Fatty Acids
- GPx, Glutathione peroxidase
- GSD Rg1, Ginsenoside Rg1
- GTE, Ganoderma tsugae extracts
- Gau A, Glaucocalyxin A
- HAMS, human anthocyanin medicated serum
- HG, high glucose
- HIF-1, Hypoxia-inducible factor 1
- HO-1, heme oxygenase
- HUVECs, human umbilical vein endothelial cells
- HXC, Huoxue capsule
- Hcy, Homocysteine
- Herbal medicine
- ICAM, intercellular adhesion molecule
- IL, interleukin
- KGRE, extracts of KGR
- KRG, Korean red ginseng
- Keap1, kelch-like epichlorohydrin-related proteins
- LWDH, Liuwei-Dihuang pill
- MA, maslinic acid
- MAPKK, mitogen-activated protein kinase kinase
- MAPKs, mitogen-activated protein kinases
- MCGA3, 3-O-caffeoyl-1-methylquinic acid
- MCP-1, monocyte chemotactic protein 1
- MMPs, matrix metalloproteinases
- Molecular mechanism
- NAF, Nepeta Angustifolia
- NF-κB, nuclear factor kappa-B
- NG, naringenin
- NQO1, NAD(P)H: quinone oxidoreductase
- Nrf2, nuclear factor erythroid-2 related factor 2
- Nrf2/HO-1 signaling
- OA, Oleanolic acid
- OMT, Oxymatrine
- OX-LDL, oxidized low density lipoprotein
- Oxidative stress
- PA, Palmitate
- PAA, Pachymic acid
- PAI-1, plasminogen activator Inhibitor-1
- PEITC, phenethyl isocyanate
- PI3K, phosphatidylinositol 3 kinase
- PKC, protein kinase C
- PT, Pterostilbene
- RBPC, phenolic extracts derived from rice bran
- ROS, reactive oxygen species
- SAL, Salidroside
- SFN, sulforaphane
- SMT, Samul-Tang Tang
- SOD, superoxide dismutase
- Sal B, salvianolic acid B
- SchB, Schisandrin B
- TCM, traditional Chinese medicine
- TNF, tumor necrosis factor
- TXA2, Thromboxane A2
- TrxR1, thioredoxin reductase-1
- US, uraemic serum
- VA, Vanillic acid
- VCAM, vascular cell adhesion molecule
- VEC, vascular endothelial cells
- VEI, vascular endothelial injury
- Vascular endothelial cells
- XAG, xanthoangelol
- XXT, Xueshuan Xinmaining Tablet
- Z-Lig, Z-ligustilide
- eNOS, endothelial NO synthase
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| |
Collapse
|
14
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
15
|
Ren T, Zhu H, Tian L, Yu Q, Li M. Candida albicans infection disturbs the redox homeostasis system and induces reactive oxygen species accumulation for epithelial cell death. FEMS Yeast Res 2021; 20:5643898. [PMID: 31769804 DOI: 10.1093/femsyr/foz081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a common pathogenic fungus with high mortality in immunocompromised patients. However, the mechanism by which C. albicans invades host epithelial cells and causes serious tissue damage remains to be further investigated. In this study, we established the C. albicans-293T renal epithelial cell interaction model to investigate the mechanism of epithelial infection by this pathogen. It was found that C. albicans infection causes severe cell death and reactive oxygen species (ROS) accumulation in epithelial cells. Further investigations revealed that C. albicans infection might up-regulate expression of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX), inhibit the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and suppress the p38-Nrf2-heme oxygenase-1 (HO-1) pathway which plays an important role in the elimination of intracellular ROS. Furthermore, epithelial cell death caused by the fungal infection could be strikingly alleviated by addition of the antioxidant agent glutathione, indicating the critical role of ROS accumulation in cell death caused by the fungus. This study revealed that disturbance of the redox homeostasis system and ROS accumulation in epithelial cells is involved in cell death caused by C. albicans infection, which sheds light on the application of antioxidants in the suppression of tissue damage caused by fungal infection.
Collapse
Affiliation(s)
- Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Lei Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
17
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Fisetin Inhibits Autophagy in HepG2 Cells via PI3K/Akt/mTOR and AMPK Pathway. Nutr Cancer 2020; 73:2502-2514. [DOI: 10.1080/01635581.2020.1836241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
19
|
Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2020; 25:1828-1846. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders. OBJECTIVE In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms. METHODS & RESULTS Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines. CONCLUSION Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.
Collapse
Affiliation(s)
- Ana Paunkov
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
21
|
Quercetin, but not rutin, attenuated hydrogen peroxide-induced cell damage via heme oxygenase-1 induction in endothelial cells. Arch Biochem Biophys 2019; 676:108157. [DOI: 10.1016/j.abb.2019.108157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 01/10/2023]
|
22
|
TFEB activates Nrf2 by repressing its E3 ubiquitin ligase DCAF11 and promoting phosphorylation of p62. Sci Rep 2019; 9:14354. [PMID: 31586112 PMCID: PMC6778067 DOI: 10.1038/s41598-019-50877-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
Transcriptional factor EB (TFEB) and nuclear factor E2-related factor 2 (Nrf2) play crucial roles in the biological response against cellular stressors; however, their relationship has not yet been investigated. Here, we constructed human neuroglioma cell lines stably expressing TFEB. The expression of Nrf2-response genes, including heme oxygenase (HO)-1, glutathione-s-transferase-mu1 (GSTM1), and p62, was induced in the cell line, independent of oxidative stress. Of note, the protein level of Nrf2 was significantly increased, and its ubiquitinated fraction was reduced in stable cells compared to that in the control cells. Among E3 ubiquitin ligases known to be involved in the ubiquitination of Nrf2, DDB1 and Cullin4 associated factor 11 (DCAF11) was down-regulated at both protein and mRNA levels in stable cells, indicating that the repression of DCAF11 by TFEB may be mainly involved in the stabilization of Nrf2. In addition, the level of phosphorylated p62 at S349 was highly increased in stable cells compared to that in control cells, which could allow it to interfere with the association of Keap1 and Nrf2, thus stabilizing Nrf2. We suggest for the first time that TFEB could activate Nrf2 by increasing its stability under conditions devoid of oxidative stress.
Collapse
|
23
|
Hussain T, Al-Attas OS, Alamery S, Ahmed M, Odeibat HAM, Alrokayan S. The plant flavonoid, fisetin alleviates cigarette smoke-induced oxidative stress, and inflammation in Wistar rat lungs. J Food Biochem 2019; 43:e12962. [PMID: 31368542 DOI: 10.1111/jfbc.12962] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Abstract
In the present study, we tested the antioxidant and anti-inflammatory potential of the plant flavonoid, fisetin against cigarette smoke-induced oxidative stress, and inflammation in rat lungs. Male Wistar rats were chronically exposed to cigarette smoke (CS) with or without administration of fisetin. Fisetin administration to CS-exposed rats resulted in a significant reduction in neutrophils and macrophages in bronchoalveolar lavage fluid as well as malondialdehyde, 3-nitrotyrosine, 8-isoprostane, tumor necrosis factor-alpha, interleukin-1beta, granulocyte macrophage-colony stimulating factor, interleukin-4, and interleukin-10 levels in lung tissues compared to those in CS-exposed rats not treated with fisetin. Fisetin also significantly augmented lung hemoxinase-1, glutathione peroxidase-2, reduced glutathione, superoxide dismutase, nitric oxide, and nuclear factor erythroid 2-related factor (Nrf2) levels in CS-exposed rats. In addition, a marked reversal in CS-induced histopathological changes was noted in fisetin-treated rats. Collectively, these data demonstrate the potential of fisetin to blunt CS-induced oxidative stress and inflammation in the lung and to prevent tissue damage via the Nrf2-mediated upregulation of antioxidant gene expression. PRACTICAL APPLICATIONS: In the present study, we found that the plant flavonoid, fisetin significantly abrogated the oxidative stress, inflammation, and tissue damage induced by cigarette smoke, a powerful pro-oxidant in rat lungs. Additionally, fisetin markedly reversed cigarette smoke-induced increases in neutrophil and macrophage cell populations in bronchoalveolar lavage fluid. These findings are particularly significant considering the association of cigarette smoking with increased oxidative stress and inflammation, which are central to the pathologies of a wide variety of chronic diseases including chronic obstructive pulmonary disease, cancer, and cardiovascular diseases. Therefore, the present work underscores the beneficial effects of the regular consumption of plant-based foods with medicinal properties for the effective prevention of these chronic diseases.
Collapse
Affiliation(s)
- Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omar S Al-Attas
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alamery
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamza A M Odeibat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alrokayan
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants (Basel) 2019; 8:antiox8040082. [PMID: 30939721 PMCID: PMC6523540 DOI: 10.3390/antiox8040082] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS), products of oxidative stress, contribute to the initiation and progression of the pathogenesis of various diseases. Glutathione is a major antioxidant that can help prevent the process through the removal of ROS. The aim of this study was to evaluate the protective effect of glutathione on ROS-mediated DNA damage and apoptosis caused by hydrogen peroxide, H2O2, in RAW 264.7 macrophages and to investigate the role of the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The results showed that the decrease in the survival rate of RAW 264.7 cells treated with H2O2 was due to the induction of DNA damage and apoptosis accompanied by the increased production of ROS. However, H2O2-induced cytotoxicity and ROS generation were significantly reversed by glutathione. In addition, the H2O2-induced loss of mitochondrial membrane potential was related to a decrease in adenosine triphosphate (ATP) levels, and these changes were also significantly attenuated in the presence of glutathione. These protective actions were accompanied by a increase in the expression rate of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) and poly(ADP-ribose) polymerase cleavage by the inactivation of caspase-3. Moreover, glutathione-mediated cytoprotective properties were associated with an increased activation of Nrf2 and expression of HO-1; however, the inhibition of the HO-1 function using an HO-1 specific inhibitor, zinc protoporphyrin IX, significantly weakened the cytoprotective effects of glutathione. Collectively, the results demonstrate that the exogenous administration of glutathione is able to protect RAW 264.7 cells against oxidative stress-induced mitochondria-mediated apoptosis along with the activity of the Nrf2/HO-1 signaling pathway.
Collapse
|
25
|
Zhang H, Zheng W, Feng X, Yang F, Qin H, Wu S, Hou DX, Chen J. Nrf2⁻ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin. Molecules 2019; 24:molecules24040708. [PMID: 30781396 PMCID: PMC6413105 DOI: 10.3390/molecules24040708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Fisetin, a dietary flavonoid, is reported to have cellular antioxidant activity with an unclear mechanism. In this study, we investigated the effect of fisetin on the nuclear factor, erythroid 2-like 2 (Nrf2) signaling pathway in HepG2 cells to explore the cellular antioxidant mechanism. Fisetin upregulated the mRNA expression of heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1), and induced the protein of HO-1 but had no significant effect on the protein of GCLC, GCLM and NQO1. Moreover, nuclear accumulation of Nrf2 was clearly observed by immunofluorescence analysis and western blotting after fisetin treatment, and an enhanced luciferase activity of antioxidant response element (ARE)-regulated transactivation was obtained by dual-luciferase reporter gene assays. In addition, fisetin upregulated the protein level of Nrf2 and downregulated the protein level of Kelch-like ECH-associated protein 1 (Keap1). However, fisetin had no significant effect on Nrf2 mRNA expression. When protein synthesis was inhibited with cycloheximide (CHX), fisetin prolonged the half-life of Nrf2 from 15 min to 45 min. When blocking Nrf2 degradation with proteasome inhibitor MG132, ubiquitinated proteins were enhanced, and fisetin reduced ubiquitination of Nrf2. Taken together, fisetin translocated Nrf2 into the nucleus and upregulated the expression of downstream HO-1 gene by inhibiting the degradation of Nrf2 at the post-transcriptional level. These data provide the molecular mechanism to understand the cellular antioxidant activity of fisetin.
Collapse
Affiliation(s)
- Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Wan Zheng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Shusong Wu
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - De-Xing Hou
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
26
|
Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M, Mahmoud AM. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci 2019; 221:83-92. [PMID: 30742869 DOI: 10.1016/j.lfs.2019.02.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
AIMS Hyperglycemia-mediated oxidative damage has been described as a major mechanism leading to pathologic changes associated with diabetic cardiomyopathy (DCM). Fisetin is a bioactive flavonol molecule found in many plants and possesses various biological activities. The present study investigated the protective effect of fisetin on diabetes-induced cardiac injury. METHODS Diabetes was induced by streptozotocin (STZ) and both diabetic and control rats were treated with 2.5 mg/kg fisetin for six weeks. KEY FINDINGS Diabetic rats exhibited hyperglycemia, and increased glycosylated hemoglobin and serum lipids accompanied with significant hypoinsulinism. In addition, diabetic rats showed several histological alterations in the myocardium, and significantly increased serum troponin I, creatine kinase-MB and lactate dehydrogenase. Oxidative stress, inflammation and apoptosis markers were increased, whereas antioxidant defenses were significantly reduced in the diabetic heart. Treatment with fisetin alleviated hyperglycemia, hyperlipidemia and heart function markers, and minimized histological alterations in the myocardium. Fisetin suppressed oxidative stress, prevented inflammation and apoptosis, and boosted antioxidant defenses in the heart of diabetic rats. SIGNIFICANCE Fisetin attenuated the development of DCM via amelioration of hyperglycemia/hyperlipidemia-mediated oxidative stress, inflammation and apoptosis. Therefore, it might be worth considering the therapeutic potential of fisetin for human DCM.
Collapse
Affiliation(s)
- Osama Y Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan
| | - Amir M Al Hroob
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan
| | - Mohammad H Abukhalil
- Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Jordan
| | - Mousa O Germoush
- Department of Biology, College of Science, Jouf University, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
27
|
Singh S, Garg G, Singh AK, Bissoyi A, Rizvi SI. Fisetin, a potential caloric restriction mimetic, attenuates senescence biomarkers in rat erythrocytes. Biochem Cell Biol 2019; 97:480-487. [PMID: 30624963 DOI: 10.1139/bcb-2018-0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An imbalanced redox status is a hallmark of the aging process. Caloric restriction mimetics (CRMs) are compounds that produce caloric restriction benefits at the molecular, cellular, and physiological level, translating into health-promoting effects. Fisetin is the least explored CRM, and its role in modulating oxidative stress during aging is not clearly known. This study investigated the antioxidative and protective potential of fisetin in a rat model of d-galactose (D-gal)-induced accelerated senescence, and in naturally aged rat erythrocytes. Young rats (4 months), aged D-gal-induced rats [24 months; 500 mg/kg body mass (b.m.); subcutaneous injection] and naturally aged D-gal-induced rats [24 months; 500 mg/kg b.m.; subcutaneous injection] were supplemented with fisetin (15 mg/kg b.m.; orally) for 6 weeks. The resulting data indicated that supplementation with fisetin suppresses aging-induced increases in the levels of reactive oxygen species, eryptosis, lipid peroxidation, and protein oxidation. Our data also show that fisetin significantly increases the levels of antioxidants and activates the plasma membrane redox system. Taken together, the findings show that a fisetin-rich diet could be an anti-aging intervention strategy.
Collapse
Affiliation(s)
- Sandeep Singh
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Geetika Garg
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | | | - Akalabya Bissoyi
- b Department of Biomedical Engineering, National Institute of Technology, Raipur-492010, India
| | - Syed Ibrahim Rizvi
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
28
|
Ge C, Xu M, Qin Y, Gu T, Lou D, Li Q, Hu L, Nie X, Wang M, Tan J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct 2019; 10:2970-2985. [DOI: 10.1039/c8fo01653d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity-related renal disease is related to caloric excess promoting deleterious cellular responses.
Collapse
|
29
|
Jeong H, Shin JY, Kim MJ, Na J, Ju BG. Activation of Aryl Hydrocarbon Receptor Negatively Regulates Thymic Stromal Lymphopoietin Gene Expression via Protein Kinase Cδ-p300-NF-κB Pathway in Keratinocytes under Inflammatory Conditions. J Invest Dermatol 2018; 139:1098-1109. [PMID: 30503244 DOI: 10.1016/j.jid.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Epithelial-derived thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in several types of dermatitis. Recently, the anti-inflammatory effects of aryl hydrocarbon receptor (AhR) have been reported in inflamed skin. In this study, keratinocytes were stimulated with tumor necrosis factor-α or flagellin in combination with AhR ligands or antagonist. TSLP gene expression and recruitment of transcriptional regulator to TSLP gene promoter were determined. The effects of AhR activation were also studied in DNFB-induced dermatitis model. We found that AhR activation suppressed upregulation of TSLP expression in keratinocytes treated with tumor necrosis factor-α or flagellin. In addition, AhR activation induced protein kinase Cδ-mediated phosphorylation of p300 at serine 89, leading to decreased acetylation and DNA binding activity of NF-κB p65 to the TSLP gene promoter. We also found that AhR activation alleviates dermatitis induced by DNFB treatment. Protein kinase Cδ depletion by small interfering RNA abolished the beneficial effect of AhR activation on dermatitis. Our study suggests that AhR activation may help to reduce inflammation in the dermatitis via downregulation of TSLP expression.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Youn Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Min-Jung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungtae Na
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea.
| |
Collapse
|
30
|
Ma J, Yu KN, Cheng C, Ni G, Shen J, Han W. Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys 2018; 658:54-65. [PMID: 30248308 DOI: 10.1016/j.abb.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
Non-thermal plasma (NTP) treatment has been proposed as a potential approach for cancer therapy for killing cancer cells via generation of reactive oxygen species (ROS). As an antioxidant protein, Heme oxygenase-1 (HO-1) has been known to protect cells against oxidative stress. In this paper, we investigated the role of HO-1 activation in NTP-induced apoptosis in A549 cells. Distinctly increased ROS production and apoptosis were observed after NTP exposure. NTP exposure induced HO-1 expression in a dose- and time-dependent manner via activating the translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) from cytoplasm to nucleus. Furthermore, inhibiting HO-1 activation with its specific inhibitor, ZnPP, increased "killing" effect of NTP. Knocking down HO-1 or Nrf2 with the special siRNA also led to elevated ROS level and enhanced NTP-induced cell death. In addition, the c-JUN N-terminal kinase (JNK) signaling pathway was shown to be involved in NTP-induced HO-1 expression. Interestingly, a higher resistance to NTP exposure of A549 cell compared to H1299 and H322 cells was found to be linked to its higher basal level of HO-1 expression. These findings revealed that HO-1 could be considered as a potential target to improve the effect of NTP in cancer therapy.
Collapse
Affiliation(s)
- Jie Ma
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; University of Science and Technology of China, Hefei, Anhui, China
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Cheng Cheng
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Guohua Ni
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jie Shen
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Fisetin inhibits cardiac hypertrophy by suppressing oxidative stress. J Nutr Biochem 2018; 62:221-229. [PMID: 30312797 DOI: 10.1016/j.jnutbio.2018.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Cardiac hypertrophy is a pathophysiological response to various pathological stresses and ultimately leads to heart failure. Oxidative stress is one of the critical processes involved in hypertrophy development. Fisetin, a small molecular flavonoid, has been shown to have anti-oxidative, anti-proliferative and anti-inflammatory properties. However, the effect of fisetin on cardiac hypertrophy remains unknown. In our present study, we showed that fisetin inhibited pressure overload-induced cardiac hypertrophy, improved cardiac function in vivo and suppressed phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. Reactive oxygen species (ROS) levels were markedly decreased by fisetin treatment in both hypertrophic hearts and cardiomyocytes. Moreover, fisetin significantly up-regulated the expression of antioxidative genes, including catalase (CAT), superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1). Furthermore, co-treatment with N-acetylcysteine (NAC; ROS scavenger) and fisetin did not have synergistic inhibitory effects on PE-induced cardiomyocyte hypertrophy, indicating that the anti-hypertrophic effects of fisetin are mainly associated with the blockade of oxidative stress. Finally, the pro-hypertrophic signaling pathways, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) kinase, were found to be suppressed by fisetin after pressure overload and PE treatment. In conclusion, our study revealed that fisetin protects against cardiac hypertrophy and that oxidative stress inhibition may be one of the pivotal mechanisms involved.
Collapse
|
32
|
Gualtieri M, Grollino MG, Consales C, Costabile F, Manigrasso M, Avino P, Aufderheide M, Cordelli E, Di Liberto L, Petralia E, Raschellà G, Stracquadanio M, Wiedensohler A, Pacchierotti F, Zanini G. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. CHEMOSPHERE 2018; 207:552-564. [PMID: 29843032 DOI: 10.1016/j.chemosphere.2018.05.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Air pollution and particulate matter are recognised cause of increased disease incidence in exposed population. The toxicological processes underlying air pollution associated effects have been investigated by in vivo and/or in vitro experimentation. The latter is usually performed by exposing cells cultured under submerged condition to particulate matter concentration quite far from environmental exposure expected in humans. Here we report for the first time the feasibility of a direct exposure of air liquid interface cultured cells to environmental concentration of particulate matter. Inflammatory proteins release was analysed in cell medium while differential expression of selected genes was analysed in cells. Significant association of anti-oxidant genes was observed with secondary and aged aerosol, while cytochrome activation with primary and PAHs enriched ultrafine particles. The results obtained clearly show the opportunity to move from the lab bench to the field for properly understanding the toxicological effects also of ultrafine particles on selected in vitro models.
Collapse
Affiliation(s)
| | | | - Claudia Consales
- ENEA SSPT-TECS-BIORISC, Via Anguillarese, 301, 00123, Rome, Italy
| | - Francesca Costabile
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, Rome, Italy
| | - Maurizio Manigrasso
- Department of Technological Innovations, INAIL, Via IV Novembre 144, 00187 Rome, Italy
| | - Pasquale Avino
- Department of Technological Innovations, INAIL, Via IV Novembre 144, 00187 Rome, Italy; Department of Agricultural, Environmental and Food Sciences, DiAAA, University of Molise, via De Sanctis, Campobasso I-86100, Italy
| | | | - Eugenia Cordelli
- ENEA SSPT-TECS-BIORISC, Via Anguillarese, 301, 00123, Rome, Italy
| | - Luca Di Liberto
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, Rome, Italy
| | - Ettore Petralia
- ENEA SSPT-MET-INAT, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | | | | | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | | | - Gabriele Zanini
- ENEA SSPT-MET-INAT, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| |
Collapse
|
33
|
Wang Y, Li L, Wang Y, Zhu X, Jiang M, Song E, Song Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur J Pharmacol 2018; 822:128-137. [PMID: 29355553 DOI: 10.1016/j.ejphar.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
A large population of drug candidates have failed "from bench to bed" due to unwanted toxicities. We intend to develop an alternative approach for drug discovery, that is, to seek candidates from "safe" compounds. Rebaudioside A (Reb-A) is an approved commercial sweetener from Stevia rebaudiana Bertoni. We found that Reb-A protects against carbon tetrachloride (CCl4)-induced oxidative injury in human liver hepatocellular carcinoma (HepG2) cells. Reb-A showed antioxidant activity on reducing cellular reactive oxygen species and malondialdehyde levels while increasing glutathione levels and superoxide dismutase and catalase activities. Reb-A treatment induced nuclear factor erythroid-derived 2-like 2 (Nrf2) activation and antioxidant response element activity, as well as the expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Further mechanistic studies indicated that c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), mitogen-active protein kinase (MAPK) and protein kinase C epsilon (PKCε) signaling was upregulated. Thus, the present in vitro study conclusively demonstrated that Reb-A is an activator of Nrf2 and is a potential candidate hepatoprotective agent. More importantly, the present study illustrated that seeking drug candidates from "safe" compounds is a promising strategy.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China.
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
34
|
Zhang H, Yuan B, Huang H, Qu S, Yang S, Zeng Z. Gastrodin induced HO-1 and Nrf2 up-regulation to alleviate H2O2-induced oxidative stress in mouse liver sinusoidal endothelial cells through p38 MAPK phosphorylation. ACTA ACUST UNITED AC 2018; 51:e7439. [PMID: 30156611 PMCID: PMC6110350 DOI: 10.1590/1414-431x20187439] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Nuclear factor erythroid-related factor 2 (Nrf2) has been implicated in several detoxifying and antioxidant defense processes. Nrf2-mediated heme oxygenase-1 (HO-1) expression was demonstrated to play a key role against oxidative stress. Gastrodin (GSTD) is a well-known active compound isolated from the roots of Rhizoma gastrodiae, a plant used in ancient Chinese traditional medicine. The aim of this work was to investigate whether GSTD could alleviate H2O2-induced oxidative stress in mouse liver sinusoidal endothelial cells (LSECs). In LSECs exposed to 1 mM H2O2, treatment with GSTD (1, 10, or 50 µM) resulted in higher cell viability than the untreated control. Treated cells maintained a higher Bcl2/Bax ratio and suppressed caspase-9 expression compared with untreated cells, reducing cell apoptosis. GSTD was protective for H2O2-induced oxidative injury by reducing the generation of intracellular reactive oxygen species and malondialdehyde. HO-1 and Nrf2 expressions were synergistically upregulated by GSTD. Inhibition of HO-1 by 10 µM zinc protoporphyrin resulted in less protective effects on cell viability and malondialdehyde reduction by GSTD treatment in H2O2-exposed LSECs. Additionally, phosphorylated p38 in LSECs exposed to H2O2 was elevated by GSTD. Inhibition of p38 phosphorylation by SB203580 did not induce Nrf2 and HO-1 expression after 1 or 10 µM GSTD treatment and the protective effect on cell viability and malondialdehyde reduction in H2O2-exposed LSECs was reduced. The data conclusively demonstrated that GSTD-induced HO-1 and Nrf2 expression is involved in protection of LSECs from H2O2-induced oxidative injury, which may be regulated by p38 phosphorylation.
Collapse
Affiliation(s)
- Hongbin Zhang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China.,Department of Oncology, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Yuan
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Hanfei Huang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Siming Qu
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Shikun Yang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zhong Zeng
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
35
|
Choi DR, Jeong JH, Yu KS, Lee NS, Jeong YG, Kim DK, Na CS, Na DS, Hwang WM, Han SY. Extract of Rhus verniciflua stokes protects against renal ischemia-reperfusion injury by enhancing Nrf2-mediated induction of antioxidant enzymes. Exp Ther Med 2018; 15:3827-3835. [PMID: 29581741 PMCID: PMC5863602 DOI: 10.3892/etm.2018.5913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) may cause acute kidney disease (AKD) by mediating the oxidative stress-induced apoptosis of parenchymal cells. The extract of Rhus verniciflua Stokes (RVS) is used as a traditional herbal medicine as it exhibits anti-oxidant, anti-apoptotic and anti-inflammatory properties. Therefore, the current study investigated the therapeutic effect and the underlying mechanism of RVS on IRI-induced AKD in vivo and in vitro. The current study assessed the effects of RVS on a mouse model of renal IRI and in hypoxic human renal tubular epithelial HK-2 cells. The results demonstrated that the IRI-induced elevation of blood urea nitrogen, serum creatinine and lactate dehydrogenase was significantly attenuated by the intraoral administration of RVS (20 mg/kg/day) for 14 days prior to surgery. It was demonstrated that IRI surgery induced histological damage and cellular apoptosis in renal parenchyma, which were attenuated by pretreatment with RVS. Furthermore, in HK-2 cells incubated with 300 µM CoCl2 to induce chemical hypoxia, it was demonstrated that RVS treatment significantly inhibited cell death and the production of reactive oxygen species (ROS). Furthermore, RVS treatment upregulated the levels of endogenous antioxidant enzymes, including heme oxygenase-1 and catalase, as well as their upstream regulator nuclear factor erythroid 2-related factor 2, in HK-2 cells. Taken together, these results suggested that the intraoral administration of RVS induces a therapeutic effect on IRI-induced AKD. These effects are at least partly due to the attenuation of ROS production via upregulation of the antioxidant defense system in renal tubular cells.
Collapse
Affiliation(s)
- Du Ri Choi
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Ji Heun Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Kwang-Sik Yu
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Nam-Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Young-Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| | - Chun Soo Na
- Lifetree Biotechnology Institute, Lifetree Biotech Co. Ltd, Suwon 441-813, Republic of South Korea
| | - Dae Seung Na
- Lifetree Biotechnology Institute, Lifetree Biotech Co. Ltd, Suwon 441-813, Republic of South Korea
| | - Won Min Hwang
- Division of Nephrology, Department of Internal Medicine, Konyang University Hospital, Daejeon 302-718, Republic of South Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea.,Myunggok Research Institute, College of Medicine, Konyang University, Daejeon 302-718, Republic of South Korea
| |
Collapse
|
36
|
Huang W, Li ML, Xia MY, Shao JY. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway. Int J Mol Med 2018; 42:208-218. [PMID: 29568921 PMCID: PMC5979929 DOI: 10.3892/ijmm.2018.3582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/31/2018] [Indexed: 11/23/2022] Open
Abstract
Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensi-tized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Li Li
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Yue Xia
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jian-Ying Shao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
37
|
Wang TH, Wang SY, Wang XD, Jiang HQ, Yang YQ, Wang Y, Cheng JL, Zhang CT, Liang WW, Feng HL. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK. Neuroscience 2018; 379:152-166. [PMID: 29559385 DOI: 10.1016/j.neuroscience.2018.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 11/29/2022]
Abstract
Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1G85R, hSOD1G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS.
Collapse
Affiliation(s)
- T H Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - S Y Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - X D Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - H Q Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Y Q Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Y Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - J L Cheng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - C T Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - W W Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - H L Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
38
|
Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3 β Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9173436. [PMID: 29636855 PMCID: PMC5845518 DOI: 10.1155/2018/9173436] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β), which was confirmed by a biochemical assay and molecular docking studies.
Collapse
|
39
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
40
|
Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci 2017; 194:75-87. [PMID: 29225112 DOI: 10.1016/j.lfs.2017.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
A wide variety of chronic diseases, such as neurodegenerative and cardiovascular disorders, diabetes mellitus, osteoarthtitis, obesity and various cancers, are now being treated with cost effective phytomedicines. Since synthetic medicines are very expensive, concerted efforts are being made in developing and poor countries to discover cost effective medicines for the treatment of non-communicable diseases (NCDs). Understanding the underlying mechanisms of bioactive medicines from natural sources would not only open incipient avenues for the scientific community and pharmaceutical industry to discover new drug molecules for the therapy of NCDs, but also help to garner knowledge for alternative therapeutic approaches for the management of chronic diseases. Fisetin is a polyphenolic molecule of flavonoids class, and belongs to the bioactive phytochemicals that have potential to block multiple signaling pathways associated with NCDs such as cell division, angiogenesis, metastasis, oxidative stress, and inflammation. The emerging evidence suggests that fisetin may be useful for the prevention and management of several types of human malignancies. Efforts are being made to enhance the bioavailability of fisetin after oral administration to prevent and/or treat cancer of the liver, breast, ovary and other organs. The intent of this review is to highlight the in vitro and in vivo activities of fisetin and to provide up-to-date information about the molecular interactions of fisetin with its cellular targets involved in cancer initiation, promotion and progression as well as to focus on strategies underway to increase the bioavailability and reduce the risk of deleterious effects, if any, associated with fisetin administration.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur 176 041, Himachal Pradesh, India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala 133 207, Haryana, India.
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
41
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Lin CC, Yang CC, Hsiao LD, Chen SY, Yang CM. Heme Oxygenase-1 Induction by Carbon Monoxide Releasing Molecule-3 Suppresses Interleukin-1β-Mediated Neuroinflammation. Front Mol Neurosci 2017; 10:387. [PMID: 29209167 PMCID: PMC5701945 DOI: 10.3389/fnmol.2017.00387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders and brain damage are initiated by excessive production of reactive oxygen species (ROS), which leads to tissue injury, cellular death and inflammation. In cellular anti-oxidant systems, heme oxygenase-1 (HO-1) is an oxidative-sensor protein induced by ROS generation or carbon monoxide (CO) release. CO releasing molecules (CORMs), including CORM-3, exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanisms of CORM-3-induced HO-1 expression and protection against interleukin (IL)-1β-induced inflammatory responses have not been fully elucidated in rat brain astrocytes (RBA-1). To study the regulation of CORM-3-induced HO-1 expression, signaling pathways, promoter activity, mRNA and protein expression were assessed following treatment with pharmacological inhibitors and gene-specific siRNA knockdown. We found that CORM-3 mediated HO-1 induction via transcritional and translational processes. Furthermore, CORM-3-induced HO-1 expression was mediated by phosphorylation of several protein kinases, such as c-Src, Pyk2, protein kinase Cα (PKCα) and p42/p44 mitogen-activated protein kinase (MAPK), which were inhibited by respective pharmacological inhibitors or by gene-specific knockdown with siRNA transfections. Next, we found that CORM-3 sequentially activated the c-Src/Pyk2/PKCα/p42/p44 MAPK pathway, thereby up-regulating mRNA for the activator protein (AP)-1 components c-Jun and c-Fos; these effects were attenuated by an AP-1 inhibitor (Tanshinone IIA; TSIIA) and other relevant inhibitors. Moreover, CORM-3-induced upregulation of HO-1 attenuated the IL-1β-induced cell migration and matrix metallopeptidase-9 mRNA expression in RBA-1 cells. These effects were reversed by an matrix metalloproteinase (MMP)2/9 inhibitor or by transfection with HO-1 siRNA.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ssu-Yu Chen
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
43
|
Integrated analysis of miRNA and mRNA expression profiles in human endothelial cells exposed to fisetin. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Bodas M, Patel N, Silverberg D, Walworth K, Vij N. Master Autophagy Regulator Transcription Factor EB Regulates Cigarette Smoke-Induced Autophagy Impairment and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis. Antioxid Redox Signal 2017; 27:150-167. [PMID: 27835930 PMCID: PMC5510670 DOI: 10.1089/ars.2016.6842] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
AIMS Recent studies have shown that cigarette smoke (CS)-induced oxidative stress impairs autophagy, resulting in aggresome-formation that correlates with severity of chronic obstructive pulmonary disease (COPD)-emphysema, although the specific step in autophagy pathway that is impaired is unknown. Hence, in this study, we aimed to evaluate the role of master autophagy transcription factor EB (TFEB) in CS-induced COPD-emphysema pathogenesis. RESULTS We first observed that TFEB accumulates in perinuclear spaces as aggresome-bodies in COPD lung tissues of tobacco smokers and severe emphysema subjects, compared with non-emphysema or nonsmoker controls. Next, Beas2b cells and C57BL/6 mice were exposed to either cigarette smoke extract (CSE) or subchronic-CS (sc-CS), followed by treatment with potent TFEB-inducing drug, gemfibrozil (GEM, or fisetin as an alternate), to experimentally verify the role of TFEB in COPD. Our in vitro results indicate that GEM/fisetin-mediated TFEB induction significantly (p < 0.05) decreases CSE-induced autophagy-impairment (Ub/LC3B reporter and autophagy flux assay) and resulting aggresome-formation (Ub/p62 coexpression/accumulation; immunoblotting and staining) by controlling reactive oxygen species (ROS) activity. Intriguingly, we observed that CS induces TFEB accumulation in the insoluble protein fractions of Beas2b cells, which shows a partial rescue with GEM treatment. Moreover, TFEB knockdown induces oxidative stress, autophagy-impairment, and senescence, which can all be mitigated by GEM-mediated TFEB induction. Finally, in vivo studies were used to verify that CS-induced autophagy-impairment (increased Ub, p62, and valosin-containing protein in the insoluble protein fractions of lung/cell lysates), inflammation (interleukin-6 [IL-6] levels in bronchoalveolar lavage fluid and iNOS expression in lung sections), apoptosis (caspase-3/7), and resulting emphysema (hematoxylin and eosin [H&E]) can be controlled by GEM-mediated TFEB induction (p < 0.05). INNOVATION CS exposure impairs autophagy in COPD-emphysema by inducing perinuclear localization of master autophagy regulator, TFEB, to aggresome-bodies. CONCLUSION TFEB-inducing drug(s) can control CS-induced TFEB/autophagy-impairment and COPD-emphysema pathogenesis. Antioxid. Redox Signal. 27, 150-167.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Neel Patel
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Kyla Walworth
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPAR γ. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4397340. [PMID: 28761622 PMCID: PMC5518529 DOI: 10.1155/2017/4397340] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022]
Abstract
Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPARγ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones) to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays), we tested their free radical scavenging activities and used α-tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPARγ-dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPARγ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.
Collapse
|
46
|
|
47
|
Tsai CY, Wen SY, Cheng SY, Wang CH, Yang YC, Viswanadha VP, Huang CY, Kuo WW. Nrf2 Activation as a Protective Feedback to Limit Cell Death in High Glucose-Exposed Cardiomyocytes. J Cell Biochem 2017; 118:1659-1669. [PMID: 27859591 DOI: 10.1002/jcb.25785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- School of Chinese Medicine; College of Chinese Medicine; China Medical University; Taichung 40402 Taiwan
| | - Su-Ying Wen
- Department of Dermatology; Taipei City Hospital; Renai Branch; Taipei Taiwan
- Center for General Education; Mackay Junior College of Medicine; Nursing, and Management; Taipei Taiwan
| | - Shi-Yann Cheng
- Department of Medical Education and Research and Department of Obstetrics and Gynecology; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- Department of Obstetrics and Gynecology; China Medical University An Nan Hospital; Yunlin 651 Taiwan,ROC
- Obstetrics and Gynecology; School of Medicine; China Medical University; Taichung Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics; China Medical University Hospital; Taichung 404 Taiwan,ROC
| | - Yao-Chih Yang
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science; China Medical University; Taichung 404 Taiwan,ROC
- Department of Chinese Medicine; China Medical University Hospital; Taichung 404 Taiwan,ROC
- Department of Health and Nutrition Biotechnology; Asia University; Taichung 413 Taiwan,ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| |
Collapse
|
48
|
The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 2016; 789:8-16. [DOI: 10.1016/j.ejphar.2016.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022]
|
49
|
Krga I, Milenkovic D, Morand C, Monfoulet LE. An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food Funct 2016; 7:3656-76. [PMID: 27538117 DOI: 10.1039/c6fo00596a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyphenols are plant food microconstituents that are widely distributed in the human diet, with fruits and fruit-derived products as one of the main dietary sources. Epidemiological studies have shown an inverse relationship between the intake of different classes of polyphenols and the risk of myocardial infarction or cardiovascular disease (CVD) mortality. These compounds have been associated with the promotion of cardiovascular health as evidenced by clinical studies reporting beneficial effects of polyphenol-rich fruit consumption on intermediate markers of cardiovascular diseases. Additionally, animal and in vitro studies have indicated positive roles of polyphenols in preventing dysfunctions associated with the development of cardiovascular diseases. However, the mechanisms of action underlying their beneficial effects appear complex and are not fully understood. This review aims to provide an update on the nutrigenomic effects of different groups of polyphenols from fruits and especially focuses on their cardiovascular protective effects in cell and animal studies.
Collapse
Affiliation(s)
- I Krga
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
50
|
Yang J, Zhang D, Yu Y, Zhang RJ, Hu XL, Huang HF, Lu YC. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway. Cell Cycle 2016; 14:3318-30. [PMID: 26378412 DOI: 10.1080/15384101.2015.1087622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm cells (TEs) that lead to the formation of the blastocyst as well as the underlying mechanism have not been elucidated. The present study has demonstrated for the first time that endogenous FGF2 secreted by TEs can regulate protein expression and distribution in TEs via the FGFR2-mediated activation of PKC and p38, which are important for the development of expanded blastocysts. This finding provides the first explanation for the long-observed phenomenon that only high concentrations of exogenous FGFs have effects on embryonic development, but in vivo the amount of endogenous FGFs are trace. Besides, the present results suggest that FGF2/FGFR2 may act in an autocrine fashion and activate the downstream PKC/p38 pathway in TEs during expanded blastocyst formation.
Collapse
Affiliation(s)
- Jing Yang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China.,d Department of Assisted Reproduction ; Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Dan Zhang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Ying Yu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Run-Ju Zhang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Xiao-Ling Hu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - He-Feng Huang
- b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China.,c The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University ; Shanghai , China
| | - Yong-Chao Lu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| |
Collapse
|