1
|
Song H, Han MG, Lee R, Park HJ. Neonatal exposure to high D-galactose affects germ cell development in neonatal testes organ culture. Sci Rep 2024; 14:24029. [PMID: 39402149 PMCID: PMC11473950 DOI: 10.1038/s41598-024-74895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Excess exogenous supplementation of D-galactose (D-gal), a monosaccharide and reducing sugar, generates reactive oxygen species (ROS), leading to cell damage and death. ROS accumulation is critical in aging. Therefore, D-gal-induced aging mouse models are used in aging studies. Herein, we evaluated D-gal's effect on neonatal testis development using an in vitro organ culture method. Mouse testicular fragments (MTFs) derived from neonatal testes (postnatal day 5) were cultured with 500 mM D-gal for 5 days. D-gal-treated MTFs showed a significantly increased and decreased expression of undifferentiated and differentiated germ cell markers, respectively, with a substantial reduction in meiotic cells. In D-gal-exposed MTFs, expression levels of Sertoli cell markers (Sox9 and Wt1) increased, while those of StAR and 17β-HSD3, whose expressions are abundant in D-Gal treated adult Leydig cells, decreased. Additionally, the enzyme 3 β-HSD1, essential for steroidogenesis in Leydig cells, was significantly reduced in D-gal-exposed MTFs compared to that in controls.D-gal significantly increased the expression of Bad, Bax, and cleaved caspase-3 and -8. Via oxidative stress in MTF. Overall, D-gal negatively regulates germ cell and Leydig cell development in neonatal testes through pro-apoptotic mechanisms and ROS.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Gi Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
2
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
3
|
Wu MC, Gao YH, Zhang C, Ma BT, Lin HR, Jiang JY, Xue MF, Li S, Wang HB. Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans. BMC Complement Med Ther 2023; 23:386. [PMID: 37891552 PMCID: PMC10612239 DOI: 10.1186/s12906-023-04183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit β-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of β-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ye-Hui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Bo-Tian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Hong-Ru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jin-Yun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Meng-Fan Xue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Shan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| | - Hong-Bing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Fatima M, Karwasra R, Almalki WH, Sahebkar A, Kesharwani P. Galactose engineered nanocarriers: Hopes and hypes in cancer therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Zhang JJ, Chen KC, Zhou Y, Wei H, Qi MH, Wang Z, Zheng YN, Chen RX, Liu S, Li W. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154341. [PMID: 35870376 DOI: 10.1016/j.phymed.2022.154341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aging is an inevitable gradual process of the body, which can cause dysfunction or degeneration of the nervous or immune system, thus becoming a critical pathogenic factor inducing neurodegenerative diseases. Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C.A. Meyer exerted obvious memory-enhancing and anti-aging effects, and the simpler the structure of ginsenosides, the better the biological activity. Ginsenoside Rg2 (Rg2) is a prominent and representative panaxatriol-type ginsenoside produced during ginseng processing, which has been reported to have pretty good neuroprotective activity. PURPOSE The work was aimed at exploring the therapeutic effects and possible molecular mechanisms of Rg2 by establishing the subacute brain aging model induced by D-galactose (D-gal) in mice. METHODS The anti-aging activity of G-Rg2 (10, 20 mg/kg for 4 weeks) was assessed using the D-gal induced brain aging model (800 mg/kg for 8 weeks). The Morris water maze (MWM) and histopathological analysis were used to evaluate the cognitive function and pathological changes of the brain in mice, respectively. The protein expression levels of p53, p21, p16ink4α, IL-6, CDK4, ATG3, ATG5, ATG7, LC3, p62, LAMP2, and TFEB were quantified through western blot analysis. The degree of mitochondrial damage and the number of mitochondrial autophagolysosomes in hippocampal neurons were monitored using TEM analysis. RESULTS The results showed that Rg2 could significantly restore D-gal-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Rg2 treatment also considerably decreased the over-expression of aging-related proteins such as p53/p21/p16ink4α induced by D-galactose, which demonstrated that Rg2 possessed good anti-aging activity. Meanwhile, Rg2 could evidently reduce the pathological changes caused by D-gal exposure. Moreover, the results from transmission electron microscopy and western blot analysis indicated that Rg2 could delay the brain aging induced by D-gal in mice via promoting the degradation of the autophagy substrate p62 while increasing the protein expression level of LAMP2/TFEB to maintain mitochondrial function. CONCLUSION These results indicate that Rg2 could postpone brain aging by increasing mitochondrial autophagy flux to maintain mitochondrial function, which greatly enriched the research on the pharmacological activity of ginsenosides for delaying brain aging.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Ke-Cheng Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Yue Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Heng Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ri-Xin Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Shuang Liu
- Goldenwell Biotechnology, Inc., Reno 89501, United States
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
6
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Wei J, Chen L, Wang D, Tang L, Xie Z, Chen W, Zhang S, Weng G. Upregulation of RIP3 promotes necroptosis via a ROS‑dependent NF‑κB pathway to induce chronic inflammation in HK‑2 cells. Mol Med Rep 2021; 24:783. [PMID: 34498705 PMCID: PMC8441977 DOI: 10.3892/mmr.2021.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tubular atrophy/interstitial fibrosis (TA/IF) is a major cause of late allograft loss, and inflammation within areas of TA/IF is associated with adverse outcomes in kidney transplantation. However, there is currently no satisfactory method to suppress this inflammation to improve TA/IF. The present study aimed to determine the proinflammatory role of receptor-interacting protein 3 (RIP3) in TA/IF to discover a novel therapeutic target. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression of RIP3 and inflammation-associated factors. Lactate dehydrogenase release assay was used to determine necroptosis. Fluorescent 2,7-dichlorodihydrofluorescein diacetate was used to detect the levels of reactive oxygen species (ROS). The results demonstrated that patients with chronic TA/IF exhibited upregulated receptor-interacting protein 3 (RIP3) expression compared with the patients who had a favorable recovery after renal transplant. Therefore, the current study used normal renal tubular epithelial cells HK-2 to establish a cellular model with a high expression level of RIP3 in order to investigate the effect of RIP3 on renal epithelial cells after transplantation. The western blotting results demonstrated that overexpression of RIP3 could significantly increase the phosphorylation level of the necroptosis executive molecule mixed lineage kinase domain-like protein. Lactate dehydrogenase release, a key feature of necroptosis, was also markedly improved by RIP3 overexpression. Moreover, a higher inflammatory response was detected in HK-2 cells with RIP3 overexpression, and this elevated inflammation could be restored by the necroptosis inhibitor necrosulfonamide. Of note, it was found that overexpression of RIP3 activated the NF-κB signaling pathway via the excessive accumulation of ROS to induce necroptosis, which ultimately led to inflammation. Collectively, these findings indicated that overexpression of RIP3 promoted necroptosis via a ROS-dependent NF-κB pathway to induce chronic inflammation, suggesting that RIP3 may have the potential to be a therapeutic target against inflammation in TA/IF.
Collapse
Affiliation(s)
- Junjun Wei
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Liangliang Chen
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Duidui Wang
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Li Tang
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Zhenhua Xie
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Weifeng Chen
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Shuwei Zhang
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Guobin Weng
- Department of Renal Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| |
Collapse
|
8
|
Homolak J, Babic Perhoc A, Knezovic A, Kodvanj I, Virag D, Osmanovic Barilar J, Riederer P, Salkovic-Petrisic M. Is Galactose a Hormetic Sugar? An Exploratory Study of the Rat Hippocampal Redox Regulatory Network. Mol Nutr Food Res 2021; 65:e2100400. [PMID: 34453395 DOI: 10.1002/mnfr.202100400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/24/2021] [Indexed: 01/22/2023]
Abstract
SCOPE Galactose, a ubiquitous monosaccharide with incompletely understood physiology is often exploited for inducing oxidative-stress mediated aging in animals. Recent research demonstrates that galactose can conserve cellular function during periods of starvation and prevent/alleviate cognitive deficits in a rat model of sporadic Alzheimer's disease. The present aim is to examine the acute effects of oral galactose on the redox regulatory network (RRN). METHODS AND RESULTS Rat plasma and hippocampal RRNs are analyzed upon acute orogastric gavage of galactose (200 mg kg-1 ). No systemic RRN disbalance is observed; however, a mild pro-oxidative shift accompanied by a paradoxical increment in tissue reductive capacity suggesting overcompensation of endogenous antioxidant systems is observed in the hippocampus. Galactose-induced increment of reductive capacity is accompanied by inflation of the hippocampal pool of nicotinamide adenine dinucleotide phosphates indicating ROS detoxification through disinhibition of the oxidative pentose phosphate pathway flux, reduced neuronal activity, and upregulation of Leloir pathway gatekeeper enzyme galactokinase-1. CONCLUSION Based on the observed findings, and in the context of previous work on galactose, a hormetic hypothesis of galactose is proposed suggesting that the protective effects may be inseparable from its pro-oxidative action at the biochemical level.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Clinic and Polyclinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.,University of Southern Denmark Odense, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Liu Y, Li S, Gao Z, Li S, Tan Q, Li Y, Wang D, Wang Q. Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism. Cardiovasc Toxicol 2021; 21:655-668. [PMID: 34021461 PMCID: PMC8211584 DOI: 10.1007/s12012-021-09657-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme for tryptophan metabolism, involved in immune cell differentiation/maturation and cancer biology. IDO1 is also expressed in cardiomyocytes, but its roles in the cardiovascular system are not fully understood. Here, we reported the functions of IDO1 during cardiac hypertrophy. Quantitative real-time PCR and Western blot experiments demonstrated the upregulation of IDO1 mRNA and protein levels in human and hypertrophic mouse hearts, as well as in angiotensin II (Ang II)-induced hypertrophic rat cardiomyocytes. IDO1 activity and metabolite product kynurenine were upregulated in rodent hypertrophic hearts and cardiomyocytes. Inhibition of IDO1 activity with PF-06840003 reduced Ang II-induced cardiac hypertrophy and rescued cardiac function in mice. siRNA-mediated knockdown of Ido1 repressed Ang II-induced growth in cardiomyocyte size and overexpression of hypertrophy-associated genes atrial natriuretic peptide (Anp or Nppa), brain natriuretic peptide (Bnp or Nppb), β-myosin heavy chain (β-Mhc or Myh7). By contrast, adenovirus-mediated rat Ido1 overexpression in cardiomyocytes promoted hypertrophic growth induced by Ang II. Mechanism analysis showed that IDO1 overexpression was associated with PI3K-AKT-mTOR signaling to activate the ribosomal protein S6 kinase 1 (S6K1), which promoted protein synthesis in Ang II-induced hypertrophy of rat cardiomyocytes. Finally, we provided evidence that inhibition of PI3K with pictilisib, AKT with perifosine, or mTOR with rapamycin, blocked the effects of IDO1 on protein synthesis and cardiomyocyte hypertrophy in Ang II-treated cells. Collectively, our findings identify that IDO1 promotes cardiomyocyte hypertrophy partially via PI3K-AKT-mTOR-S6K1 signaling.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Cardiomegaly/drug therapy
- Cardiomegaly/enzymology
- Cardiomegaly/pathology
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Male
- Mice
- Middle Aged
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Yang Liu
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuang Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhanqun Gao
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuangjia Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Qingyun Tan
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanmei Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Dongwei Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China.
| | - Qingdong Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China.
| |
Collapse
|
10
|
Kim GN, Hah YS, Seong H, Yoo WS, Choi MY, Cho HY, Yun SP, Kim SJ. The Role of Nuclear Factor of Activated T Cells 5 in Hyperosmotic Stress-Exposed Human Lens Epithelial Cells. Int J Mol Sci 2021; 22:ijms22126296. [PMID: 34208226 PMCID: PMC8230750 DOI: 10.3390/ijms22126296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of nuclear factor of activated T cells 5 (NFAT5) under hyperosmotic conditions in human lens epithelial cells (HLECs). Hyperosmotic stress decreased the viability of human lens epithelial B-3 cells and significantly increased NFAT5 expression. Hyperosmotic stress-induced cell death occurred to a greater extent in NFAT5-knockout (KO) cells than in NFAT5 wild-type (NFAT5 WT) cells. Bcl-2 and Bcl-xl expression was down-regulated in NFAT5 WT cells and NFAT5 KO cells under hyperosmotic stress. Pre-treatment with a necroptosis inhibitor (necrostatin-1) significantly blocked hyperosmotic stress-induced death of NFAT5 KO cells, but not of NFAT5 WT cells. The phosphorylation levels of receptor-interacting protein kinase 1 (RIP1) and RIP3, which indicate the occurrence of necroptosis, were up-regulated in NFAT5 KO cells, suggesting that death of these cells is predominantly related to the necroptosis pathway. This finding is the first to report that necroptosis occurs when lens epithelial cells are exposed to hyperosmolar conditions, and that NFAT5 is involved in this process.
Collapse
Affiliation(s)
- Gyu-Nam Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (G.-N.K.); (H.S.); (W.-S.Y.); (M.-Y.C.)
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (Y.-S.H.); (H.-Y.C.)
| | - Hyemin Seong
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (G.-N.K.); (H.S.); (W.-S.Y.); (M.-Y.C.)
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Woong-Sun Yoo
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (G.-N.K.); (H.S.); (W.-S.Y.); (M.-Y.C.)
| | - Mee-Young Choi
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (G.-N.K.); (H.S.); (W.-S.Y.); (M.-Y.C.)
| | - Hee-Young Cho
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (Y.-S.H.); (H.-Y.C.)
| | - Seung Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (S.P.Y.); (S.-J.K.); Tel.: +82-55-772-8071 (S.P.Y.); +82-55-750-8468 (S.-J.K.)
| | - Seong-Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (G.-N.K.); (H.S.); (W.-S.Y.); (M.-Y.C.)
- Correspondence: (S.P.Y.); (S.-J.K.); Tel.: +82-55-772-8071 (S.P.Y.); +82-55-750-8468 (S.-J.K.)
| |
Collapse
|
11
|
Al Shahrani M, Chandramoorthy HC, Alshahrani M, Abohassan M, Eid RA, Ravichandran K, Rajagopalan P. Cassia auriculata leaf extract ameliorates diabetic nephropathy by attenuating autophagic necroptosis via RIP-1/RIP-3-p-p38MAPK signaling. J Food Biochem 2021; 45:e13810. [PMID: 34080203 DOI: 10.1111/jfbc.13810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
Diabetic nephropathy (DN) is the most common manifestation of high glucose induced diabetes mellitus. In this study, we report the effects of Cassia auriculata ethanol leaf extract (CALE) on DN-associated cell toxicity and complications. The effects of CALE were screened in vitro using RGE cells. Cell viability was assessed using MTT and flow cytometry. Male Sprague-Dawley rats were divided into control, DN and treatment groups (n = 8). The DN and treatment groups received 60 mg/kg/bw of streptozotocin in citrate buffer, while the treatment group was administered 150 mg/kg/bw of CALE for 10 weeks. Biochemical analysis was conducted using spectrophotometry. Kidney tissues were analyzed using hematoxylin and eosin staining and transmission electron microscopy. CD365-KIM-1 expression was assessed using flow cytometry and signalling proteins were detected using western blotting. Treatment with 30-mM glucose reduced the viability of RGE cells in a time-dependent manner and increased the population of dead RGE cells. Cotreatment with CALE reduced cell death and glucose induced protein expression of LC3-II, RIP-1 and RIP-3 in a dose-dependent manner. In addition, CALE improved the biochemical complications, renal dysfunction and pathophysiology of rats with DN and partially or fully restored the expression of key DN-associated signalling proteins, such as KIM-1 LC3-II, RIP-1, RIP-3 and p-p38MAPK in kidney cells. CALE showed protective effects, and improved DN-associated complications in RGE cells under high glucose stress conditions, potentially by inhibiting autophagic-necroptosis signals. Additionally, CALE improved the biochemical and pathological features of kidney injury while reducing autophagic-necroptosis in rat renal cells via the LC3-II-RIP-p38MAPK pathway. PRACTICAL APPLICATIONS: Results from the current investigation will add information to the literature on glucose induced renal toxicity and the protective effects of CALE over the complications of diabetic nephropathy (DN). The mechanistic investigations of the study will add light on the autophagic/necroptosis signals in DN and open new routes of investigations to study the efficacy of CALE in diabetes-related complications.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, Centre for Stem Cell Research, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, Centre for Stem Cell Research, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, Centre for Stem Cell Research, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Kameswaran Ravichandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8840590. [PMID: 33532038 PMCID: PMC7837784 DOI: 10.1155/2021/8840590] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) is a tumor with unpredictable presentation and poor clinical outcome. RCC is always resistant to chemotherapy and radiation, and weakly sensitive to immunotherapeutic agents. Therefore, novel agents and approaches are urgently needed for the treatment of RCC. Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese herbs, has been implicated in a wide variety of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. However, its role in RCC remains unknown. In this study, we found that emodin effectively killed renal cancer cells without significant toxicity to noncancerous cell HK-2. Flow cytometry assay with Annexin V-FITC and PI demonstrated that emodin induces necroptosis, but not apoptosis, in renal cancer cells. Meanwhile, the phosphorylation levels of RIP1 and MLKL, the key necroptosis-related proteins, were significantly increased. To explore how emodin inhibits kidney tumor growth, we tested reactive oxygen species (ROS) levels and found that the levels of ROS increased upon emodin treatment in a dose-dependent manner. Further studies demonstrated that emodin induces necroptosis through ROS-mediated activation of JNK signaling pathway and also inhibits glycolysis by downregulation of GLUT1 through ROS-mediated inactivation of the PI3K/AKT signaling pathway. Our findings revealed the potential mechanisms by which emodin suppresses renal cancer cell growth and will help develop novel therapeutic approaches for patients with JNK- or PI3K/AKT-dysregulated renal cancer.
Collapse
|
13
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
14
|
Maaßen T, Vardanyan S, Brosig A, Merz H, Ranjbar M, Kakkassery V, Grisanti S, Tura A. Monosomy-3 Alters the Expression Profile of the Glucose Transporters GLUT1-3 in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21249345. [PMID: 33302435 PMCID: PMC7762573 DOI: 10.3390/ijms21249345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Monosomy-3 in uveal melanoma (UM) cells increases the risk of fatal metastases. The gene encoding the low-affinity glucose transporter GLUT2 resides on chromosome 3q26.2. Here, we analyzed the expression of the glucose transporters GLUT1, GLUT2, and GLUT3 with regard to the histological and clinical factors by performing immunohistochemistry on the primary tumors of n = 33 UM patients. UMs with monosomy-3 exhibited a 57% lower immunoreactivity for GLUT2 and a 1.8×-fold higher ratio of GLUT1 to total GLUT1-3. The combined levels of GLUT1-3 proteins were reduced in the irradiated but not the non-irradiated tumors with monosomy-3. GLUT3 expression was stronger in the irradiated samples with disomy-3 versus monosomy-3, but the ratio of the GLUT3 isoform to total GLUT1-3 did not differ with regard to the monosomy-3 status in the irradiated or non-irradiated subgroups. Systemic metastases were associated with the presence of monosomy-3 in the primary and circulating tumor cells as well as a higher GLUT1 ratio. Upregulation of the high-affinity glucose transporter GLUT1 possibly as a compensation for the low-affinity isoform GLUT2 may be enhancing the basal glucose uptake in the UM cells with monosomy-3. Prevention of hyperglycemia might, therefore, be a valuable approach to delay the lethal UM metastases.
Collapse
Affiliation(s)
- Tjorge Maaßen
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Siranush Vardanyan
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Anton Brosig
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Hartmut Merz
- Reference Center for Lymph Node Pathology and Haematopathology, 23562 Lübeck, Germany;
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Vinodh Kakkassery
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (T.M.); (S.V.); (A.B.); (M.R.); (V.K.); (S.G.)
- Correspondence: ; Tel.: +49-451-500-43912
| |
Collapse
|
15
|
Bai Z, Du Y, Cong L, Cheng Y. The USP22 promotes the growth of cancer cells through the DYRK1A in pancreatic ductal adenocarcinoma. Gene 2020; 758:144960. [PMID: 32687947 DOI: 10.1016/j.gene.2020.144960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023]
Abstract
As a member of the ubiquitin-specific protease (USP) family, USP22 could remove ubiquitin moieties from its target proteins to control the function of the target proteins. Accumulating studies show that USP22 essentially participates in diverse types of cancer as an oncogene-like protein. However, the roles of USP22 in human pancreatic ductal adenocarcinoma (PDAC) and the underlying mechanism are unknown. Here we report that USP22 promotes the growth of PDAC cells by promoting the expression of dual-specificity tyrosine regulated kinase 1A (DYRK1A). Our results showed that the expression levels of USP22 were up-regulated in human PDAC tissues and cell lines (BxPC-3, AsPC-1, MIA-PaCa-2, PANC-1, and CAPAN-1). Lentivirus-mediated knockdown of USP22 repressed the rate of proliferation and capacity of colony formation of BxPC3 and CAPAN1 cancer cells and USP22 overexpression promoted the proliferation and capacity of the colony formation of BxPC3 and CAPAN1 cancer cells. The further mechanism study showed that USP22 elevated the expression of the mRNA and protein levels of DYRK1A in PDAC cancer cells. Inhibition of DYRK1A with EHT-5732 or lentivirus-mediated knockdown of DYRK1A blocked the function of USP22 overexpression in the regulation of the proliferation and colony formation of PDAC cells. Taken together, our findings demonstrated that USP22 overexpression in PDAC promoted the growth of the cancer cells partially through upregulating the expression of DYRK1A.
Collapse
Affiliation(s)
- Zhile Bai
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
16
|
Xu X, Shen X, Feng W, Yang D, Jin L, Wang J, Wang M, Ting Z, Xue F, Zhang J, Meng C, Chen R, Zheng X, Du L, Xuan L, Wang Y, Xie T, Huang Z. D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway. Aging (Albany NY) 2020; 12:18501-18521. [PMID: 32991321 PMCID: PMC7585072 DOI: 10.18632/aging.103819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Treatment of glioblastoma using radiotherapy and chemotherapy has various outcomes, key among them being cellular senescence. However, the molecular mechanisms of this process remain unclear. In the present study, we tested the ability of D-galactose (D-gal), a reducing sugar, to induce senescence in glioblastoma cells. Following pretreatment with D-gal, glioblastoma cell lines (C6 and U87MG) showed typical characteristics of senescence. These included the reduced cell proliferation, hypertrophic morphology, increased senescence-associated β-galactosidase activity, downregulation of Lamin B1, and upregulation of several senescence-associated genes such as p16, p53, and NF-κB. Furthermore, our results showed that D-gal was more suitable than etoposide (a DNA-damage drug) in inducing senescence of glioblastoma cells. Mechanistically, D-gal inactivated the YAP-CDK6 signaling pathway, while overexpression of YAP or CDK6 could restore D-gal-induced senescence of C6 cells. Finally, metformin, an anti-aging agent, activated the YAP-CDK6 pathway and suppressed D-gal-induced senescence of C6 cells. Taken together, these findings established a new model for analyzing senescence in glioblastoma cells, which occurred through the YAP-CDK6 pathway. This is expected to provide a basis for development of novel therapies for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd, Wenzhou, 325000, Zhejiang, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhang Ting
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou,310058, China
| | - Feng Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chaobo Meng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Roumeng Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xinru Zheng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Leilei Du
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lina Xuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ying Wang
- Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital of Hangzhou Medical College, Hangzhou 310053, China
| | - Tian Xie
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhihui Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China,Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China,Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
17
|
The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12102780. [PMID: 32998263 PMCID: PMC7601708 DOI: 10.3390/cancers12102780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) have been shown to be the main cause of therapy resistance and cancer recurrence. An analysis of their biological properties has revealed that CSCs have a particular metabolism that differs from non-CSCs to maintain their stemness properties. In this review, we analyze the flexible metabolic mechanisms of CSCs and highlight the new therapeutics that target CSC metabolism. Abstract Numerous findings have indicated that CSCs, which are present at a low frequency inside primary tumors, are the main cause of therapy resistance and cancer recurrence. Although various therapeutic methods targeting CSCs have been attempted for eliminating cancer cells completely, the complicated characteristics of CSCs have hampered such attempts. In analyzing the biological properties of CSCs, it was revealed that CSCs have a peculiar metabolism that is distinct from non-CSCs to maintain their stemness properties. The CSC metabolism involves not only the catabolic and anabolic pathways, but also intracellular signaling, gene expression, and redox balance. In addition, CSCs can reprogram their metabolism to flexibly respond to environmental changes. In this review, we focus on the flexible metabolic mechanisms of CSCs, and highlight the new therapeutics that target CSC metabolism.
Collapse
|
18
|
Wang KJ, Wang KY, Zhang HZ, Meng XY, Chen JF, Wang P, Jiang JH, Ma Q. Up-Regulation of RIP3 Alleviates Prostate Cancer Progression by Activation of RIP3/MLKL Signaling Pathway and Induction of Necroptosis. Front Oncol 2020; 10:1720. [PMID: 32984054 PMCID: PMC7480187 DOI: 10.3389/fonc.2020.01720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Background The receptor-interacting protein kinase 3 (RIP3/RIPK3) was recently found to be a critical regulator of programmed necrosis/necroptosis. However, the biological role and clinical significance of RIP3 in prostate cancer remain obscure. Methods Western blotting and QRT-PCR were performed to detect the level of RIP3 in prostate cancer cells. Fixed cancer tissue and normal tissue specimens were subjected to immunohistochemical analysis of RIP3. Cell migration and invasion abilities were evaluated by transwell assays. In vitro proliferative ability was examed by MTS. And in vivo nude mice model were used to evaluate the effect of RIP3 ectopic expression on proliferative capability. Cell cycle of prostate cancer cells were analyzed by flow cytometry. Changes in some related proteins caused by RIP3 overexpression were explored using Western blotting. Results RIP3 was significantly down-regulated in prostate cancer cell lines and clinical prostate tumor samples. And over-expressing RIP3 suppressed the migration and invasion of prostate cancer cells. Two important matrix metalloproteinases MMP2, MMP9 which enables the destruction of the histological barrier of tumor cell invasion and three mesenchymal markers Vimentin, fibronectin, and N-cadherin were under-expressed due to the overexpression of RIP3, but the E-cadherin level which is the epithelial marker was increased. Furthermore, our results also showed that RIP3 can inhibit the proliferation and tumorigenicity of prostate cancer cells both in vitro and in vivo by phosphorylating MLKL, which were reversed by MLKL inhibitor treatment, indicating that necroptosis was involved in cell death. Conclusion Taken together, these findings indicated that RIP3 is responsible for the progression of prostate cancer, suggesting that RIP3 might have the potential to be a prognostic marker or a therapeutic target against prostate cancer.
Collapse
Affiliation(s)
- Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kai-Yun Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Medical School, Ningbo University, Ningbo, China
| | - Hui-Zhi Zhang
- Department of Pathology, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ping Wang
- Medical School, Ningbo University, Ningbo, China
| | - Jun-Hui Jiang
- Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Li J, Huang S, Zeng L, Li K, Yang L, Gao S, Guan C, Zhang S, Lao X, Liao G, Liang Y. Necroptosis in head and neck squamous cell carcinoma: characterization of clinicopathological relevance and in vitro cell model. Cell Death Dis 2020; 11:391. [PMID: 32444644 PMCID: PMC7244585 DOI: 10.1038/s41419-020-2538-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Necroptosis is a recently discovered form of programmed cell death (PCD) having necrotic-like morphology. However, its presence and potential impact with respect to head and neck squamous cell carcinoma (HNSCC) are still unknown. The aim of this study was to reveal the necroptosis status and its clinicopathological relevance in HNSCC and to establish an in vitro model. We first analyzed the level of p-MLKL, MLKL, and tumor necrosis in HNSCC patient tissues as well as their correlation with clinicopathological features. Results showed that approximately half of the tumor necrosis can be attributed to necroptosis, and the extent of necroptosis is an independent prognostic marker for patient's overall survival and progression-free survival. Then we established and thoroughly verified an in vitro model of necroptosis in two HNSCC cell lines using combined treatment of TNF-α, Smac mimetic and zVAD-fmk (TSZ). At last, we adopted this model and demonstrated that necroptosis can promote migration and invasion of HNSCC cells by releasing damage-associated molecular patterns. In conclusion, our study unveiled the necroptotic status in HNSCC for the first time and provided a novel in vitro model of necroptosis in two HNSCC cell lines. In addition, our results indicated that necroptosis may be a potential cancer promoter in HNSCC. This study may serve as the foundation for future researches of necroptosis in HNSCC.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sihui Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lijuan Zeng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Siyong Gao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chenyu Guan
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaomei Lao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K. FBXW7 promotes pathological cardiac hypertrophy by targeting EZH2-SIX1 signaling. Exp Cell Res 2020; 393:112059. [PMID: 32380038 DOI: 10.1016/j.yexcr.2020.112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) is an E3-ubiquitin ligase, which serves as one of the components of the SKP1, CUL1, and F-box protein type ubiquitin ligase (SCF) complex. Previous studies reveal that FBXW7 participates in cancer, inflammation and Parkinson's disease. FBXW7 also contributes to angiogenesis of endothelial cells. However, the function of FBXW7 in cardiac homeostasis remains to elucidate. Here we identified the critical role of FBXW7 during cardiac hypertrophy in humans and rodents. Quantitative real-time PCR (qRT-PCR) and Western blot revealed that the mRNA and protein levels of FBXW7 were upregulated significantly in hypertrophic hearts in human and mouse as well as Angiotensin II (Ang II)-induced hypertrophic neonatal rat cardiomyocytes (NRCM). Gain-of-function (adenovirus) and loss-of-function (siRNA) experiments provided evidence that FBXW7 promoted Ang II-induced cardiomyocyte hypertrophy as demonstrated by the increase in the size of cardiomyocytes and overexpression of hypertrophic fetal genes myosin heavy chain 7 (Myh7) natriuretic peptide a (Nppa), brain natriuretic peptide (Nppb). Further mechanism study revealed that FBXW7 promoted the expression of sine oculis homeobox homolog 1 (SIX1) in cardiomyocytes, which relied on regulation of the stability of the histone methyltransferase EZH2 (Enhancer of zeste homolog 2). Previous work revealed the pro-hypertrophic role of the EZH2-SIX1 axis in rodents. Indeed, our genetic and pharmacological evidence showed that the EZH2-SIX1 signaling was critically involved in FBXW7 functions in Ang II-induced cardiomyocyte hypertrophy. Therefore, we identified FBWX7 as an important regulator of cardiac hypertrophy via modulating the EZH2-SIX1 axis.
Collapse
Affiliation(s)
- Weinian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Na Guo
- Department of Cardiology, Shijiazhuang Translational Chinese Medicine Hospital, Shijiazhuang, 050000, China
| | - Shuguang Zhao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Ziying Chen
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenli Zhang
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fang Yan
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongjuan Liao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
21
|
Jantas D, Chwastek J, Grygier B, Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress-Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox Res 2020; 37:525-542. [PMID: 31960265 PMCID: PMC7062871 DOI: 10.1007/s12640-020-00164-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress–induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10–40 μM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress–induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type–specific interplay between necroptosis and apoptosis has been demonstrated.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
22
|
Malebari AM, Fayne D, Nathwani SM, O'Connell F, Noorani S, Twamley B, O'Boyle NM, O'Sullivan J, Zisterer DM, Meegan MJ. β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur J Med Chem 2020; 189:112050. [PMID: 31954879 DOI: 10.1016/j.ejmech.2020.112050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of β-lactams with alternative substituents e.g. F, Cl, Br, I, CH3. The 3-phenyl-β-lactam 11 and 3-hydroxy-β-lactam 46 demonstrate improved activity over CA-4 in CA-4 resistant HT-29 colon cancer cells (IC50 = 9 nM and 3 nM respectively compared with IC50 = 4.16 μM for CA-4), while retaining potency in MCF-7 breast cancer cells (IC50 = 17 nM and 22 nM respectively compared with IC50 = for 4 nM for CA-4). Compound 46 binds at the colchicine site of tubulin, and strongly inhibits tubulin assembly at micromolar concentrations comparable to CA-4. In addition, compound 46 induced mitotic arrest at low concentration in both cell lines MCF-7 and HT-29 together with downregulation of expression of antiapoptotic proteins Mcl-1, Bcl-2 and survivin in MCF-7 cells. These novel antiproliferative and antiapoptotic β-lactams are potentially useful scaffolds in the development of tubulin-targeting agents for the treatment of breast cancers and chemoresistant colon cancers.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Seema M Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Fiona O'Connell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin 2, Ireland
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
23
|
Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biol 2019; 29:101408. [PMID: 31926631 PMCID: PMC6938857 DOI: 10.1016/j.redox.2019.101408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Under physiological conditions, vitamin C is the main antioxidant found in the central nervous system and is found in two states: reduced as ascorbic acid (AA) and oxidized as dehydroascorbic acid (DHA). However, under pathophysiological conditions, AA is oxidized to DHA. The oxidation of AA and subsequent production of DHA in neurons are associated with a decrease in GSH concentrations, alterations in glucose metabolism and neuronal death. To date, the endogenous molecules that act as intrinsic regulators of neuronal necroptosis under conditions of oxidative stress are unknown. Here, we show that treatment with AA regulates the expression of pro- and antiapoptotic genes. Vitamin C also regulates the expression of RIPK1/MLKL, whereas the oxidation of AA in neurons induces morphological alterations consistent with necroptosis and MLKL activation. The activation of necroptosis by AA oxidation in neurons results in bubble formation, loss of membrane integrity, and ultimately, cellular explosion. These data suggest that necroptosis is a target for cell death induced by vitamin C.
Collapse
|
24
|
Ou L, Sun T, Cheng Y, Huang L, Zhan X, Zhang P, Yang J, Zhang Y, Zhou Z. MicroRNA-214 contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated periodontitis. J Cell Biochem 2019; 120:14791-14803. [PMID: 31090954 DOI: 10.1002/jcb.28740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Diabetes and periodontal diseases have a mutual promoting relationship that induces severe tissue damage and cell death. The potential roles of microRNAs (miRNAs) and the type of cell death involved in diabetes-associated periodontitis are obscure. The gingival tissues of patients were obtained and MC3T3-E1 cells were costimulated with high glucose and lipopolysaccharide (LPS). Osseous morphometric analysis was evaluated with micro-CT, and histological characteristics were measured by hematoxylin/eosin and immunohistochemical staining. Cytokine secretion was confirmed by enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) was measured using a DCFH-DA probe kit. Gene expression was measured by real-time quantitative reverse transcription PCR (qRT-PCR), and protein expression was assessed by Western blot and immunofluorescence analysis. The miR-214 level, receptor-interacting serine-threonine protein (RIP) 1, RIP3, and phospho-mixed lineage kinase domain-like (p-MLKL) protein expression were elevated in the inflamed gingival tissues of diabetes-associated periodontitis patients, with activating transcription factor 4 (ATF4) expression showing the opposite effect. The high glucose (22 mM) could not induce significant increase of RIP1, RIP3, and p-MLKL; however, the high glucose and LPS (500-1000 ng/mL) cotreatment resulted in increase in the number of RIP1, RIP3, and p-MLKL in MC3T3-E1 cells. NAC (ROS inhibitor) inhibited RIP1, RIP3, and increased ATF4; however, necrostatin-1 (Nec-1) (RIP1 inhibitor) specifically inhibited the protein expression of RIP1 and RIP3 and had no influence on ATF4. The use of antagomir-214 suppressed the expression of miR-214, RIP1, RIP3, and p-MLKL, but increased ATF4 protein level in glucose and LPS-induced cells. ATF4 knockdown by ATF4 small interfering RNA offset the effect of antagomir-214. RIP1- and RIP3-dependent necroptosis was confirmed in the inflamed gingival tissues of diabetes-associated periodontitis patients and high glucose- and LPS- cotreated cells. It was suggested that miR-214-targeted ATF4 participated in the regulation of necroptosis in vivo and in vitro.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Ting Sun
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yaodong Cheng
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Linwei Huang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Xiaozhen Zhan
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Peng Zhang
- Department of Pathology, Medical School of Yichun University, Yichun, Jiangxi, P.R. China
| | - Junjie Yang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Ye Zhang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Zhiying Zhou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| |
Collapse
|
25
|
Liu C, Yao X, Li M, Xi Y, Zhao L. USP39 regulates the cell cycle, survival, and growth of human leukemia cells. Biosci Rep 2019; 39:BSR20190040. [PMID: 30898977 PMCID: PMC6449567 DOI: 10.1042/bsr20190040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Ubiquitin-specific peptidase 39 (USP39) is one member of the cysteine proteases of the USP family, which represents the largest group of DeUbiquitinases with more than 50 members in humans. The roles of USP39 in human cancer have been widely investigated. However, the roles of USP39 in human leukemia and the underlying mechanism remain unknown. Here we reported the function of USP39 in human leukemia. We observed that the expression of USP39 was up-regulated in human leukemia cells and the high expression of USP39 was correlated with poor survival of the patients with leukemia. Lentivirus-mediated knockdown of USP39 repressed the proliferation and colony formation of human leukemia cell lines HL-60 and Jurkat cells. Mechanism study showed that USP39 knockdown induced the arrest of cell cycle and apoptosis of leukemia cells. In addition, our microarray and bioinformatic analysis demonstrated that USP39 regulated diverse cellular signaling pathways that were involved in tumor biology, and several pivotal genes (IRF1, Caspase 8, and SP1) have been validated by quantitative real-time polymerase chain reaction. Knockdown or IRF1 partially restored the proliferation rate of leukemia cells with USP39 knockdown. Taken together, our findings implicate that USP39 promotes the development of human leukemia by regulating cell cycle, survival, and proliferation of the cells.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaojian Yao
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming Li
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yaming Xi
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Li Zhao
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
26
|
Bulnesia sarmientoi Supercritical Fluid Extract Exhibits Necroptotic Effects and Anti-Metastatic Activity on Lung Cancer Cells. Molecules 2018; 23:molecules23123304. [PMID: 30551590 PMCID: PMC6320997 DOI: 10.3390/molecules23123304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Bulnesia sarmientoi (BS) has long been used as an analgesic, wound-healing and anti-inflammatory medicinal plant. The aqueous extract of its bark has been demonstrated to have anti-cancer activity. This study investigated the anti-proliferative and anti-metastatic effects of BS supercritical fluid extract (BSE) on the A549 and H661 lung cancer cell lines. The cytotoxicity on cancer cells was assessed by an MTT assay. After 72 h treatment of A549 and H661 cells, the IC50 values were 18.1 and 24.7 μg/mL, respectively. The cytotoxicity on MRC-5 normal cells was relatively lower (IC50 = 61.1 μg/mL). BSE arrested lung cancer cells at the S and G2/M growth phase. Necrosis of A549 and H661 cells was detected by flow cytometry with Annexin V-FITC/PI double staining. Moreover, the cytotoxic effect of BSE on cancer cells was significantly reverted by Nec-1 pretreatment, and BSE induced TNF-α and RIP-1 expression in the absence of caspase-8 activity. These evidences further support that BSE exhibited necroptotic effects on lung cancer cells. By wound healing and Boyden chamber assays, the inhibitory effects of BSE on the migration and invasion of lung cancer cells were elucidated. Furthermore, the chemical composition of BSE was examined by gas chromatography-mass analysis where ten constituents of BSE were identified. α-Guaiene, (−)-guaiol and β-caryophyllene are responsible for most of the cytotoxic activity of BSE against these two cancer cell lines. Since BSE possesses significant cytotoxicity and anti-metastatic activity on A549 and H661 cells, it may serve as a potential target for the treatment of lung cancer.
Collapse
|
27
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
28
|
Xing J, Ying Y, Mao C, Liu Y, Wang T, Zhao Q, Zhang X, Yan F, Zhang H. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun 2018; 9:2020. [PMID: 29789585 PMCID: PMC5964076 DOI: 10.1038/s41467-018-04453-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
Systemic chronic hypoxia is a feature of many diseases and may influence the communication between bone marrow (BM) and gut microbiota. Here we analyse patients with cyanotic congenital heart disease (CCHD) who are experiencing chronic hypoxia and characterize the association between bone marrow mesenchymal stem cells (BMSCs) and gut microbiome under systemic hypoxia. We observe premature senescence of BMSCs and abnormal d-galactose accumulation in patients with CCHD. The hypoxia that these patients experience results in an altered diversity of gut microbial communities, with a remarkable decrease in the number of Lactobacilli and a noticeable reduction in the amount of enzyme-degraded d-galactose. Replenishing chronic hypoxic rats with Lactobacillus reduced the accumulation of d-galactose and restored the deficient BMSCs. Together, our findings show that chronic hypoxia predisposes BMSCs to premature senescence, which may be due to gut dysbiosis and thus induced d-galactose accumulation. Systemic chronic hypoxia is a feature of many diseases and may influence the communication between bone marrow and gut microbiota. Here, the authors show that chronic hypoxia predisposes bone marrow stem cells to premature senescence, which may be due to gut dysbiosis and gut microbiota-derived d-galactose accumulation.
Collapse
Affiliation(s)
- Junyue Xing
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission, Fuwai Hospital, Beijing, 100037, China.,Center for Pediatric Cardiac Surgery, Fuwai Hospital, CAMS&PUMC, Beijing, 100037, China
| | - Yongquan Ying
- Department of Thoracic and Cardiovascular Surgery, Taizhou Hospital, Zhejiang, 317000, China
| | - Chenxi Mao
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325006, China
| | - Yiwei Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission, Fuwai Hospital, Beijing, 100037, China
| | - Tingting Wang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission, Fuwai Hospital, Beijing, 100037, China
| | - Qian Zhao
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiaoling Zhang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission, Fuwai Hospital, Beijing, 100037, China
| | - Fuxia Yan
- Center for Pediatric Cardiac Surgery, Fuwai Hospital, CAMS&PUMC, Beijing, 100037, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission, Fuwai Hospital, Beijing, 100037, China. .,Center for Pediatric Cardiac Surgery, Fuwai Hospital, CAMS&PUMC, Beijing, 100037, China.
| |
Collapse
|
29
|
Jing YH, Yan JL, Wang QJ, Chen HC, Ma XZ, Yin J, Gao LP. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro. Exp Gerontol 2018; 108:77-86. [PMID: 29649571 DOI: 10.1016/j.exger.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Changes in mitochondrial structure and function are the initial factors of cell aging. Spermidine has an antiaging effect, but its effect on neuronal aging and mitochondrial mechanisms is unclear. In this study, mouse neuroblastoma (N2a) cells were treated with d‑galactose (d‑Gal) to establish cell aging to investigate the antiaging effect and mechanisms of spermidine. Changes in the cell cycle and β-galactosidase activity were analyzed to evaluate the extent of cell aging. Stabilities of mitochondrial mRNA and mitochondrial membrane potential (MMP) were evaluated in the process of cell aging under different treatments. The mitochondrial function was also evaluated using the Seahorse Metabolic Analysis System combined with ATP production. The unfolded protein response (UPR) of the N2a cells was analyzed under different treatments. Results showed that spermidine pretreatment could delay the cell aging and could maintain the mitochondrial stability during d‑Gal treatment. Spermidine increased the proportion of cells in the S phase and maintained the MMP. The oxygen utilization and ATP production in the N2a cells were reduced by d‑Gal treatment but were partially rescued by the spermidine pretreatment. Spermidine ameliorated the N2a cell aging by promoting the autophagy and inhibiting the apoptosis except the UPR. These results showed that spermidine could ameliorate the N2a cell aging by maintaining the mitochondrial mRNA transcription, MMP and oxygen utilization during the d‑Gal treatment.
Collapse
Affiliation(s)
- Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Ji-Long Yan
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Hai-Chao Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Xue-Zhu Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China.
| |
Collapse
|
30
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Hsu WH, Lin YC, Chen BR, Wu SC, Lee BH. The neuronal protection of a zinc-binding protein isolated from oyster. Food Chem Toxicol 2018; 114:61-68. [PMID: 29432843 DOI: 10.1016/j.fct.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Mitochondrial function is applied as oxidative stress and neuronal damage index. In this study, d-galactose was used to induce free radicals production and neuronal damage in HN-h cells, and the effect of novel 43 kDa protein isolated from oyster on anti-mitochondrial dysfunction and zinc-binding ability were evaluated. Crystal violet stain results indicated zinc-binding protein of oyster (ZPO) attenuated neuronal cell death induced by 100 mM of d-galactose on HN-h cells in a dose-dependent manner. ZPO alleviated mitochondrial inactivation, mitochondrial membrane potential decreasing, oxidative stress, and fusion/fission state in non-cytotoxic concentration of d-galactose (50 mM)-treated HN-h cells. ZPO treatment recovered metallathionein-3 (MT-3) decrease and inhibited β- and γ-secretase as well as amyloid beta (Aβ) accumulation in HN-h cells caused by d-galactose induction. These results suggest ZPO could avoid oxidative stress and is a functional protein for zinc concentration maintainability, which has potential for development of functional foods for neuronal protection.
Collapse
Affiliation(s)
- Wei-Hsuan Hsu
- Biochemical Process Technology Department, Center of Excellence for Drug Development, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| | - Yu-Chun Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Bo-Rui Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan, ROC
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan, ROC.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC; Department of Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
32
|
Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1684-1692. [PMID: 29408595 DOI: 10.1016/j.bbadis.2018.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/14/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Abstract
Syntaxin 3, also known as STX3, is a protein encoded by the STX3 gene in humans. This protein is one of the fundamental components of the exocytotic machinery required for the docking and fusion of secretory granules with the plasma membrane. The roles of STX3 in human breast cancer remains elusive. Here we report that STX3 acts as an oncogenic protein in human breast cancer. We analyzed the expression of STX3 in 148 patients with breast cancer. The mRNA and protein levels of STX3 are significantly up-regulated in human breast cancer compared with matched adjacent non-cancer tissues. The up-regulation of STX3 is correlated with high disease stage and predicts overall and disease-free survival in patients with breast cancer. Lentivirus-mediated knockdown of STX3 represses in vitro proliferation and colony formation and in vivo growth of breast cancer cells, whereas STX3 overexpression promotes the growth of breast cancer cells in vitro and in vivo. We find that STX3 promotes the proliferation of breast cancer cells by increasing the activation of the Akt-mTOR signaling, and Akt inhibitor Ipatasertib or MK-2206 represses STX3 effects on the growth of breast cancer cells. Further mechanism study shows that STX3 binds to PTEN and increases PTEN ubiquitination and degradation, thus leading to activation of the PI3K-Akt-mTOR signaling. Therefore, STX3 promotes the growth of breast cancer cells by regulating the PTEN-PI3K-Akt-mTOR signaling.
Collapse
Affiliation(s)
- Haocheng Nan
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lili Han
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jiequn Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Rujuan Su
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jianjun He
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
33
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
34
|
Shen SH, Yu N, Liu XY, Tan GW, Wang ZX. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling. Biochem Biophys Res Commun 2016; 471:616-20. [DOI: 10.1016/j.bbrc.2016.01.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
|
35
|
Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci Rep 2016; 6:21145. [PMID: 26892033 PMCID: PMC4759694 DOI: 10.1038/srep21145] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer.
Collapse
|
36
|
Zhao H, Wang C, Lu B, Zhou Z, Jin Y, Wang Z, Zheng L, Liu K, Luo T, Zhu D, Chi G, Luo Y, Ge P. Pristimerin triggers AIF-dependent programmed necrosis in glioma cells via activation of JNK. Cancer Lett 2016; 374:136-148. [PMID: 26854718 DOI: 10.1016/j.canlet.2016.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023]
Abstract
Programmed necrosis is established as a new form of programmed cell death and is emerging as a new strategy of treatment for cancers. Pristimerin is a natural chemical with anti-tumor effect despite the fact that its mechanism remains poorly understood. In this study, we used glioma cell lines and mice model of xenograft glioma to investigate the effect of pristimerin on glioma and its underlying mechanism. We found that pristimerin inhibited the viabilities of glioma cells in vitro and the growth of xenograft gliomas in vivo, which was accompanied by upregulation of JNK and phosphor-JNK, nuclear accumulation of AIF, and elevation in the ratio of Bax/Bcl-2. In vitro studies showed that pristimerin induced necrosis in glioma cells, as well as mitochondrial depolarization, overproduction of ROS and reduction of GSH. Ablation of AIF level with SiRNA mitigated pristimerin-induced nuclear accumulation of AIF and prevented necrosis in glioma cells. Moreover, pharmacological inhibition of JNK with SP600125 or knockdown of its level with SiRNA reversed mitochondrial depolarization attenuated the elevation of Bax/Bcl-2 and suppressed nuclear accumulation of AIF. Further, inhibition of ROS with NAC not only rescued glioma cell necrosis but also suppressed JNK activation, mitigated Bax/Bcl-2 ratio, maintained mitochondrial membrane potential, and inhibited AIF translocation into nucleus. Therefore, we demonstrated first in this study that pristimerin triggered AIF-dependent necroptosis in glioma cells via induction of mitochondrial dysfunction by activation of JNK through overproduction of ROS. These results suggest that pristimerin has potential therapeutic effects on glioma.
Collapse
Affiliation(s)
- Hongwei Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chen Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Bin Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yong Jin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zongqi Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Linjie Zheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kai Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China; Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Dong Zhu
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China
| | - Guangfan Chi
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
37
|
Liu H, Hua N, Xie K, Zhao T, Yu Y. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury. Mol Med Rep 2015; 12:2495-502. [PMID: 25954991 PMCID: PMC4464386 DOI: 10.3892/mmr.2015.3731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ning Hua
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Medical University Eye Hospital, Tianjin 300052, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tingting Zhao
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
38
|
Shao D, Ni J, Shen Y, Liu J, Zhou L, Xue H, Huang Y, Zhang W, Lu L. CHOP mediates XBP1S-induced renal mesangial cell necrosis following high glucose treatment. Eur J Pharmacol 2015; 758:89-96. [PMID: 25857226 DOI: 10.1016/j.ejphar.2015.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
Abstract
High glucose (HG)-induced apoptosis in mesangial cells (MCs) is a critical determinant during the pathogenesis of diabetic nephropathy. The signaling cascade inducing MCs apoptosis by HG involves overproduction of reactive oxygen species. Our previous studies have demonstrated that HG-induced oxidative stress is mediated by suppression of spliced/active X-box binding protein 1 (XBP1S), suggesting the importance of XBP1S in HG-induced MCs apoptosis. CHOP, an endoplasmic reticulum stress-associated proapoptotic signal, is involved in downstream of XBP1S. In the present study, we explored the effect of XBP1S in modulating HG-induced apoptosis in renal MCs and then identified the role of CHOP in these processes. Apoptosis and necrosis were quantified by flow cytometry; protein levels of XBP1S, caspase3, Bax, Bcl2, BNIP3, and CHOP were analyzed by Western blotting. The cellular localization of XBP1S was determined by immunofluorescence histochemistry. The binding of XBP1 to CHOP promoter was determined by chromatin immunoprecipitation assays. In addition, adenoviruses harboring XBP1S gene (Ad-XBP1S) were used to overexpress XBP1S, whereas the knockdown of CHOP was achieved by small interference RNA. HG suppressed nuclear distribution of XBP1S and induced apoptosis and necrosis in MCs. Ad-XBP1S infection enhanced the nuclear translocation of XBP1S and reduced MCs apoptosis and necrosis. XBP1S bound to the promoter region of CHOP and upregulated CHOP expression. Conversely, CHOP expression was reduced upon HG exposure and knockdown of CHOP increased necrosis but not apoptosis in MCs. These results suggest that XBP1S protected MCs from HG-induced apoptosis and necrosis, and CHOP participates in XBP1S-regulated necrosis but not apoptosis.
Collapse
Affiliation(s)
- Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China; The Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015; 14:48. [PMID: 25743109 PMCID: PMC4343053 DOI: 10.1186/s12943-015-0321-5] [Citation(s) in RCA: 679] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, China. .,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
40
|
Chen Z, Ye X, Tang N, Shen S, Li Z, Niu X, Lu S, Xu L. The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. Br J Pharmacol 2015; 171:3196-211. [PMID: 24571482 DOI: 10.1111/bph.12661] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The histone acetyltransferase MOF is a member of the MYST family. In mammals, MOF plays critical roles by acetylating histone H4 at K16 and non-histone substrates such as p53. Here we have investigated the role of MOF in human lung cancer and possible new substrates of hMOF. EXPERIMENTAL APPROACH Samples of human non-small cell lung cancer (NSCLC) were used to correlate MOF with clinicopathological parameters and NF-E2-related factor 2 (Nrf2) downstream genes. 293T-cells were used to study interactions between MOF and Nrf2, and acetylation of Nrf2 by MOF. Mouse embryonic fibroblast and A549 cells were utilized to assess involvement of MOF in antioxidative and anti-drug responses. A549 cells were used to analysis the role of MOF in anti-drug response in vitro and in vivo. KEY RESULTS hMOF was overexpressed in human NSCLC tissues and was associated with large tumour size, advanced disease stage and metastasis, and with poor prognosis. hMOF levels were positively correlated with Nrf2-downstream genes. MOF/hMOF physically interacted with and acetylated Nrf2 at Lys(588) . MOF-mediated acetylation increased nuclear retention of Nrf2 and transcription of its downstream genes. Importantly, MOF/hMOF was essential for anti-oxidative and anti-drug responses in vitro and regulated tumour growth and drug resistance in vivo in an Nrf2-dependent manner. CONCLUSION AND IMPLICATIONS hMOF was overexpressed in human NSCLC and was a predictor of poor survival. hMOF-mediated Nrf2 acetylation and nuclear retention are essential for anti-oxidative and anti-drug responses. hMOF may provide a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang L, Wei D, Han X, Zhang W, Fan C, Zhang J, Mo C, Yang M, Li J, Wang Z, Zhou Q, Xiao H. The Combinational Effect of Vincristine and Berberine on Growth Inhibition and Apoptosis Induction in Hepatoma Cells. J Cell Biochem 2014; 115:721-30. [PMID: 24243568 DOI: 10.1002/jcb.24715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Wang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Dandan Wei
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Xiaojuan Han
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Wei Zhang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Chengzhong Fan
- Department of Radiology; West China Hospital; Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Jie Zhang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Chunfen Mo
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Ming Yang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Junhong Li
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Zhe Wang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Qin Zhou
- Core Facility of Genetically Engineered Mice; West China Hospital; Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Hengyi Xiao
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| |
Collapse
|
42
|
Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis. Biochem Biophys Res Commun 2013; 441:661-7. [DOI: 10.1016/j.bbrc.2013.10.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
|
43
|
Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids Health Dis 2013; 12:104. [PMID: 23866690 PMCID: PMC3723881 DOI: 10.1186/1476-511x-12-104] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023] Open
Abstract
Background Excessive circular fatty acid, particlarly saturated fatty acid, can result in insulin resistance in skeletal muscle, but other adverse effects of fatty acid accumulation in myocytes remain unclear. Methods Differentiated C2C12 myotubes were used. The effects of palmitate on cell viability, glucose uptake, gene expression and myotube loss were evaluated by MTT assay, 2NBDG uptake, qRT-PCR, Western Blot and crystal staining-based myotube counting, respectively. In some expreiments, oleate was administrated, or the inhibitors of signaling pathways were applied. Results Palmitate-induced cellular insulin resistance was clarified by the reduced Akt phosphorylation, glucose uptake and Glut4 expression. Palmitate-caused myotube loss was clearly observed under microscope and proved by myotube counting and expression analysis of myotube marker genes. Moreover, palmitate-induced transcriptional suppression of three health benefit myokine genes (FNDC5, CTRP15 and FGF21) was found, and the different involvement of p38 and PI3K in the transcription of these genes was noticed. Conclusions Palmitate-induced insulin resistance accompanys myotube loss and the impaired expression of FNDC5, CTRP15 and FGF21genes in C2C12 myotubes. These results provide novel evidence indicating the negative role of high concentration of palmitate in myotubes.
Collapse
|
44
|
Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One 2013; 8:e66326. [PMID: 23840441 PMCID: PMC3695975 DOI: 10.1371/journal.pone.0066326] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Shikonin was reported to induce necroptosis in leukemia cells, but apoptosis in glioma cell lines. Thus, it is needed to clarify whether shikonin could cause necroptosis in glioma cells and investigate its underlying mechanisms. METHODS Shikonin and rat C6 glioma cell line and Human U87 glioma cell line were used in this study. The cellular viability was assayed by MTT. Flow cytometry with annexin V-FITC and PI double staining was used to analyze cellular death modes. Morphological alterations in C6 glioma cells treated with shikoinin were evaluated by electronic transmission microscopy and fluorescence microscopy with Hoechst 33342 and PI double staining. The level of reactive oxygen species was assessed by using redox-sensitive dye DCFH-DA. The expressional level of necroptosis associated protein RIP-1 was analyzed by western blotting. RESULTS Shikonin induced cell death in C6 and U87 glioma cells in a dose and time dependent manner. The cell death in C6 and U87 glioma cells could be inhibited by necroptosis inhibitor necrotatin-1, not by pan-caspase inhibitor z-VAD-fmk. Shikonin treated C6 glioma cells presented electron-lucent cytoplasm, loss of plasma membrane integrity and intact nuclear membrane in morphology. The increased ROS level caused by shikonin was attenuated by necrostatin-1 and blocking ROS by anti-oxidant NAC rescued shikonin-induced cell death in both C6 and U87 glioma cells. Moreover, the expressional level of RIP-1 was up-regulated by shikonin in a dose and time dependent manner as well, but NAC suppressed RIP-1 expression. CONCLUSIONS We demonstrated that the cell death caused by shikonin in C6 and U87 glioma cells was mainly via necroptosis. Moreover, not only RIP-1 pathway, but also oxidative stress participated in the activation of shikonin induced necroptosis.
Collapse
|
45
|
Piao JL, Cui ZG, Furusawa Y, Ahmed K, Rehman MU, Tabuchi Y, Kadowaki M, Kondo T. The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells. Chem Biol Interact 2013; 205:119-27. [PMID: 23811387 DOI: 10.1016/j.cbi.2013.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/01/2023]
Abstract
Shikonin (SHK), a natural naphthoquinone derived from the Chinese medical herb Lithospermum erythrorhizon, induces both apoptosis and necroptosis in several cancer cell lines. However, the detailed molecular mechanisms involved in the initiation of cell death are still unclear. In the present study, caspase-dependent apoptosis was induced by SHK treatment at 1μM after 6h in U937 cells, with increase in DNA fragmentation, generation of intracellular reactive oxygen species (ROS), fraction of cells with low mitochondrial membrane potential (MMP), and in the expression of BH3 only proteins Noxa and tBid. Interestingly, caspase-independent cell death was also detected with SHK treatment at 10μM, observed as increase in SYTOX® Green staining and release of lactate dehydrogenase (LDH). Necrostatin-1 (Nec-1) completely inhibited the SHK-induced leakage of LDH and SYTOX® Green staining. Cell permeable exogenous glutathione (GSH) completely inhibited 1μM SHK-induced apoptosis and converted 10μM SHK-induced necroptosis to apoptosis. Gene expression profiling revealed that 353 genes were found to be significantly regulated by 1μM and 85 genes by 10μM of SHK treatment, respectively. Among these genes, the transcription factor 3 (ATF3) and DNA-damage-inducible transcript 3 (DDIT3) were highly expressed at 1μM of SHK treatment, while tumor necrosis factor (TNF) expression mainly increased at 10μM treatment. These findings provide novel information for the molecular mechanism of SHK-induced apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jin-Lan Piao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|