1
|
Kis M, Smart JL, Maróti P. Probing ligands to reaction centers to limit the photocycle in photosynthetic bacterium Rubrivivax gelatinosus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112969. [PMID: 38959527 DOI: 10.1016/j.jphotobiol.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Light-induced electron flow between reaction center and cytochrome bc1 complexes is mediated by quinones and electron donors in purple photosynthetic bacteria. Upon high-intensity excitation, the contribution of the cytochrome bc1 complex is limited kinetically and the electron supply should be provided by the pool of reduced electron donors. The kinetic limitation of electron shuttle between reaction center and cytochrome bc1 complex and its consequences on the photocycle were studied by tracking the redox changes of the primary electron donor (BChl dimer) via absorption change and the opening of the closed reaction center via relaxation of the bacteriochlorophyll fluorescence in intact cells of wild type and pufC mutant strains of Rubrivivax gelatinosus. The results were simulated by a minimum model of reversible binding of different ligands (internal and external electron donors and inhibitors) to donor and acceptor sides of the reaction center. The calculated binding and kinetic parameters revealed that control of the rate of the photocycle is primarily due to 1) the light intensity, 2) the size and redox state of the donor pool, and 3) the unbinding rates of the oxidized donor and inhibitor from the reaction center. The similar kinetics of strains WT and pufC lacking the tetraheme cytochrome subunit attached to the reaction center raise the issue of the physiological importance of this subunit discussed from different points of view. SIGNIFICANCE: A crucial factor for the efficacy of electron donors in photosynthetic photocycle is not just the substantial size of the pool and large binding affinity (small dissociation constant KD = koff/kon) to the RC, but also the mean residence time (koff)-1 in the binding pocket. This is an important parameter that regulates the time of re-activation of the RC during multiple turnovers. The determination of koff has proven challenging and was performed by simulation of widespread experimental data on the kinetics of P+ and relaxation of fluorescence. This work is a step towards better understanding the complex pathways of electron transfer in proteins and simulation-based design of more effective electron transfer components in natural and artificial systems.
Collapse
Affiliation(s)
- M Kis
- Institute of Medical Physics, University of Szeged, Korányi Fasor 9, Szeged 6720, Hungary; HUN-REN Balaton Limnological Research Institute, Klebelsberg K. utca 3, Tihany 8237, Hungary
| | - J L Smart
- Department of Biological Sciences, University of Tennessee at Martin, Martin, TN 38238, USA
| | - P Maróti
- Institute of Medical Physics, University of Szeged, Korányi Fasor 9, Szeged 6720, Hungary.
| |
Collapse
|
2
|
Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. Photochem Photobiol Sci 2021; 21:13-22. [PMID: 34716892 DOI: 10.1007/s43630-021-00121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Photosynthetic biomaterials have attracted considerable attention at different levels of the biological organisation, from molecules to the biosphere, due to a variety of artificial application possibilities. During photosynthesis, the first steps of the conversion of light energy into chemical energy take place in a pigment-protein complex, called reaction centre (RC). In our experiments photosynthetic reaction centre protein, purified from Rhodobacter sphaeroides R-26 purple bacteria, was bound to porous silicon pillars (PSiP) after the electropolymerisation of aniline onto the surface. This new type of biohybrid material showed remarkable photoactivity in terms of measured photocurrent under light excitation in an electrochemical cell. The photocurrent was found to increase considerably after the addition of ubiquinone (UQ-0), an e--acceptor mediator of the RC. The photoactivity of the complex was found to decrease by the addition of terbutryn, the chemical which inhibits the e--transport on the acceptor side of the RC. In addition to the generation of sizeable light-induced photocurrents, using the PSiP/RC photoactive hybrid nanocomposite material, the system was found to be sensitive towards RC inhibitors and herbicides. This highly ordered patterned 3D structure opens new solution for designing low-power (bio-)optoelectronic, biophotonic and biosensing devices.
Collapse
|
3
|
Szabó T, Csekő R, Hajdu K, Nagy K, Sipos O, Galajda P, Garab G, Nagy L. Sensing photosynthetic herbicides in an electrochemical flow cell. PHOTOSYNTHESIS RESEARCH 2017; 132:127-134. [PMID: 27709414 DOI: 10.1007/s11120-016-0314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Specific inhibitory reactions of herbicides with photosynthetic reaction centers bound to working electrodes were monitored in a conventional electrochemical cell and a newly designed microfluidic electrochemical flow cell. In both cases, the bacterial reaction centers were bound to a transparent conductive metal oxide, indium-tin-oxide, electrode through carbon nanotubes. In the conventional cell, photocurrent densities of up to a few μA/cm2 could be measured routinely. The photocurrent could be blocked by the photosynthetic inhibitor terbutryn (I 50 = 0.38 ± 0.14 μM) and o-phenanthroline (I 50 = 63.9 ± 12.2 μM). The microfluidic flow cell device enabled us to reduce the sample volume and to simplify the electrode arrangement. The useful area of the electrodes remained the same (ca. 2 cm2), similar to the classical electrochemical cell; however, the size of the cell was reduced considerably. The microfluidic flow control enabled us monitoring in real time the binding/unbinding of the inhibitor and cofactor molecules at the secondary quinone site.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Richárd Csekő
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary
| | - Krisztina Nagy
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Orsolya Sipos
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Galajda
- Biological Research Centre, Institue of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Győző Garab
- Biological Research Centre, Institue of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
- Biofotonika R&D Ltd., Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, H-6720, Rerrich B. tér 1, Szeged, Hungary.
| |
Collapse
|
4
|
Kasuno M, Kimura H, Yasutomo H, Torimura M, Murakami D, Tsukatani Y, Hanada S, Matsushita T, Tao H. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes. SENSORS 2016; 16:438. [PMID: 27023553 PMCID: PMC4850952 DOI: 10.3390/s16040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
Abstract
Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I₀), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm(-3)). The I₀ decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I₀ or Ic. The utility of this electrode system for the detection of harmful compounds is discussed.
Collapse
Affiliation(s)
- Megumi Kasuno
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hiroki Kimura
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hisataka Yasutomo
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Masaki Torimura
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Daisuke Murakami
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Satoshi Hanada
- Institute for Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Takayuki Matsushita
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Hiroaki Tao
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| |
Collapse
|
5
|
Chatzipetrou M, Milano F, Giotta L, Chirizzi D, Trotta M, Massaouti M, Guascito M, Zergioti I. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
The rate of second electron transfer to Q B − in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:223-230. [DOI: 10.1016/j.bbabio.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
|
7
|
Swainsbury DJK, Scheidelaar S, van Grondelle R, Killian JA, Jones MR. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew Chem Int Ed Engl 2014; 53:11803-7. [PMID: 25212490 PMCID: PMC4271668 DOI: 10.1002/anie.201406412] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Indexed: 12/15/2022]
Abstract
Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD (UK)
| | | | | | | | | |
Collapse
|
8
|
Swainsbury DJK, Scheidelaar S, van Grondelle R, Killian JA, Jones MR. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Swainsbury DJK, Friebe VM, Frese RN, Jones MR. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron 2014; 58:172-8. [PMID: 24637165 PMCID: PMC4009402 DOI: 10.1016/j.bios.2014.02.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208 nM and 2.1 µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8 nM and 50 nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed. The Rhodobacter sphaeroides reaction centre was used as a biosensor for herbicides. Herbicide concentration was assessed through the attenuation of a photocurrent. The biosensor showed selectivity for triazine herbicides. The limit of detection of the biosensor was in the low nanomolar range. Photocurrent attenuation is a simple and direct basis for a herbicide biosensor.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Vincent M Friebe
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Raoul N Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
10
|
Fujitsuka M, Majima T. Photoinduced Electron Transfer Processes in Biological and Artificial Supramolecules. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Zheng Z, Dutton PL, Gunner MR. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Proteins 2010; 78:2638-54. [PMID: 20607696 DOI: 10.1002/prot.22779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron, and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality, and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of 10 oxidized, neutral benzoquinones were measured for the high affinity Q(A) site in the detergent-solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multiconformation Continuum Electrostatics was then used to calculate their relative binding free energies by grand canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand, and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics, and accessible surface area-dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled-ligand and side-chain motions. The calculations match experiment with an root mean square deviation (RMSD) of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using a solvent-accessible surface area-dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
12
|
Kocsis P, Asztalos E, Gingl Z, Maróti P. Kinetic bacteriochlorophyll fluorometer. PHOTOSYNTHESIS RESEARCH 2010; 105:73-82. [PMID: 20454858 DOI: 10.1007/s11120-010-9556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/25/2010] [Indexed: 05/29/2023]
Abstract
A pump and probe fluorometer with a laser diode as single light source has been constructed for measurement of fast induction and relaxation of the fluorescence yield in intact cells, chromatophores and isolated reaction centers of photosynthetic bacteria. The time resolution of the fluorometer is limited by the repetition time of the probing flashes to 20 micros. The apparatus offers high sensitivity, excellent performance and can become a versatile device for a range of demanding applications. Some of them are demonstrated here including fast and easy investigation of the (1) organization and redox state of the photosynthetic apparatus of the intact cells of different bacterial strains and mutants and (2) electron transfer reactions on donor and acceptor sides of isolated reaction centers. The compact design of the mechanics, optics, electronics, and data processing makes the device easy to use as outdoor instrument or to integrate into larger measuring systems.
Collapse
Affiliation(s)
- Péter Kocsis
- Department of Experimental Physics, University of Szeged, Rerrich Béla tér 1, Szeged 6720, Hungary
| | | | | | | |
Collapse
|
13
|
Brown AE, Gilbert CW, Guy R, Arntzen CJ. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A 2010; 81:6310-4. [PMID: 16593520 PMCID: PMC391913 DOI: 10.1073/pnas.81.20.6310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q(B) protein of chloroplast membranes.
Collapse
Affiliation(s)
- A E Brown
- Department of Botany and Microbiology, Auburn University, Auburn, AL 36849
| | | | | | | |
Collapse
|
14
|
Kasuno M, Torimura M, Tsukatani Y, Murakami D, Hanada S, Matsushita T, Tao H. Characterization of the photoinduced electron transfer reaction from the photosynthetic system in Rhodobacter sphaeroides to an exogenous electron acceptor. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Nagy L, Kiss V, Brumfeld V, Malkin S. Thermal and Structural Changes of Photosynthetic Reaction Centers Characterized by Photoacoustic Detection with a Broad Frequency Band Hydrophone¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740081tascop2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Mallardi A, Giustini M, Lopez F, Dezi M, Venturoli G, Palazzo G. Functionality of Photosynthetic Reaction Centers in Polyelectrolyte Multilayers: Toward an Herbicide Biosensor. J Phys Chem B 2007; 111:3304-14. [PMID: 17388474 DOI: 10.1021/jp068385g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial reaction center (RC), a membrane photosynthetic protein, has been adsorbed onto a glass surface by alternating deposition with the cationic polymer poly(dimethyldiallylammonium chloride) (PDDA) obtaining as an end result an ordinate polyelectrolyte multilayer (PEM) where the protein retains its integrity and photoactivity over a period of several months. Such a system has been characterized from the functional point of view by checking the protein photoactivity at different hydration conditions, from extensive drought to full hydration. The kinetic analysis of charge recombination indicates that incorporation of RCs into dehydrated PEM hinders the conformational dynamics gating QA- to QB electron-transfer leaving unchanged the protein relaxation that stabilizes the primary charge separated state P+QA-. The herbicide-induced inhibition of the QB activity was studied in some detail. By dipping the PEM in herbicide solutions for short times, kinetics of herbicide binding and release have been determined; binding isotherms have been studied using PEM immersed in herbicide solution. QB functionality of RC has been restored by rinsing the PEM with water, thus allowing the reuse of the same sample. This last point has been exploited to design a simple optical biosensor for herbicides. A suitable kinetic model has been proposed to describe the interplay between forward and back electron-transfer processes upon continuous illumination, and the use of the PDDA-RC multilayers in herbicide bioassays was successfully tested.
Collapse
Affiliation(s)
- Antonia Mallardi
- Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Gerencsér L, Maróti P. Uncoupling of electron and proton transfers in the photocycle of bacterial reaction centers under high light intensity. Biochemistry 2006; 45:5650-62. [PMID: 16634646 DOI: 10.1021/bi052071m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosynthetic reaction centers produce and export oxidizing and reducing equivalents in expense of absorbed light energy. The formation of fully reduced quinone (quinol) requires a strict (1:1) stoichiometric ratio between the electrons and H(+) ions entering the protein. The steady-state rates of both transports were measured separately under continuous illumination in the reaction center from the photosynthetic bacterium Rhodobacter sphaeroides. The uptake of the first proton was retarded by different methods and made the rate-limiting reaction in the photocycle. As expected, the rate constant of the observed proton binding remained constant (7 s(-)(1)), but that of the cytochrome photooxidation did show a remarkably large increase from 14 to 136 s(-)(1) upon increase of the exciting light intensity up to 5 W/cm(2) (808 nm) at pH 8.4 in the presence of NiCl(2). This corresponds to about 20:1 (e(-):H(+)) stoichiometric ratio. The observed enhancement is linearly proportional to the light intensity and the rate constant of the proton uptake by the acceptor complex and shows saturation character with quinone availability. For interpretation of the acceleration of cytochrome turnover, an extended model of the photocycle is proposed. A fraction of photochemically trapped RC can undergo fast (>10(3) s(-)(1)) conformational change where the semiquinone loses its high binding affinity (the dissociation constant increases by more than 5 orders of magnitude) and dissociates from the Q(B) binding site of the protein with a high rate of 4000 s(-)(1). Concomitantly, superoxide is being produced. No H(+) ion is taken up, and no quinol is created by the photocycle which is operating in about 25% of the reaction centers at the highest light intensity (5500 s(-)(1)) and slowest proton uptake (3.5 s(-)(1)) used in our experiments. The possible physical background of the light-induced conformational change and the relationship between the energies of dissociation and redox changes of the quinone in the Q(B) binding sites are discussed.
Collapse
Affiliation(s)
- László Gerencsér
- Department of Biophysics, University of Szeged, Egyetem utca 2, Szeged, Hungary H-6722
| | | |
Collapse
|
18
|
D'Amelio N, Gaggelli E, Mlynarz P, Molteni E, Valensin G, Lubitz W. NMR Structural Model of the Interaction of Herbicides with the Photosynthetic Reaction Center from Rhodobacter sphaeroides. Chembiochem 2004; 5:1237-44. [PMID: 15368575 DOI: 10.1002/cbic.200400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The interaction of the herbicides acifluorfen and paraquat with the photosynthetic reaction center from Rhodobacter sphaeroides has been studied by NMR relaxation measurements. Interaction in aqueous solution has been demonstrated by evaluating motional features of the bound form through cross-relaxation terms of protons at fixed distances on the herbicides. Contributions to longitudinal nonselective relaxation rates different from the proton-proton dipolar relaxation were inferred, most probably due to paramagnetic effects originating from the high-spin nonheme Fe(II) ion in the reaction center. Paramagnetic contributions to proton relaxation rates were converted into distance constraints in order to build a model for the interaction. The models place paraquat in the QB site, where most herbicides interact, in agreement with docking calculations, whereas acifluorfen was placed between the metal and the QB site, as also demonstrated by the induced paramagnetic shifts. Acifluorfen could therefore act to break the electron-transfer pathway between the QA and QB sites.
Collapse
Affiliation(s)
- Nicola D'Amelio
- Department of Chemistry and the NMR Center, University of Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Wakeham MC, Frolov D, Fyfe PK, van Grondelle R, Jones MR. Acquisition of photosynthetic capacity by a reaction centre that lacks the QA ubiquinone; possible insights into the evolution of reaction centres? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:53-63. [PMID: 14556913 DOI: 10.1016/j.bbabio.2003.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A photosynthetically impaired strain of Rhodobacter sphaeroides containing reaction centres with an alanine to tryptophan mutation at residue 260 of the M-polypeptide (AM260W) was incubated under photosynthetic growth conditions. This incubation produced photosynthetically competent strains containing suppressor mutations that changed residue M260 to glycine or cysteine. Spectroscopic analysis demonstrated that the loss of the Q(A) ubiquinone seen in the original AM260W mutant was reversed in the suppressor mutants. In the mutant where Trp M260 was replaced by Cys, the rate of reduction of the Q(A) ubiquinone by the adjacent (H(A)) bacteriopheophytin was reduced by three-fold. The findings of the experiment are discussed in light of the X-ray crystal structures of the wild-type and AM260W reaction centres, and the possible implications for the evolution of reaction centres as bioenergetic complexes are considered.
Collapse
Affiliation(s)
- Marion C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | | | | | | | | |
Collapse
|
20
|
Roberts AG, Gregor W, Britt RD, Kramer DM. Acceptor and donor-side interactions of phenolic inhibitors in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:23-32. [PMID: 12686418 DOI: 10.1016/s0005-2728(03)00021-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain phenolic compounds represent a distinct class of Photosystem (PS) II Q(B) site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of Q(B) sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified Q(A) to Q(B) electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of Q(B) site inhibitors, DCMU and atrazine. In the sensitive centers, the S(2)Q(A)(-) state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S(2)Q(A)(-) state than the S(1)Q(A) state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S(2)-multiline electron paramagnetic resonance (EPR) signal and the 'split' EPR signal, originating from the S(2)Y(Z) state showed no significant changes upon binding of phenolic inhibitors at the Q(B) site. We thus propose a working model where Q(A) redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the Q(B) niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the Q(B) site.
Collapse
Affiliation(s)
- Arthur G Roberts
- Institute of Biological Chemistry, Washington State University, Stadium Way, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
21
|
Sinning I, Michel H, Mathis P, Rutherford A. Terbutryn resistance in a purple bacterium can induce sensitivity toward the plant herbicide DCMU. FEBS Lett 2002. [DOI: 10.1016/0014-5793(89)81746-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Nagy L, Kiss V, Brumfeld V, Malkin S. Thermal and structural changes of photosynthetic reaction centers characterized by photoacoustic detection with a broad frequency band hydrophone. Photochem Photobiol 2001; 74:81-7. [PMID: 11460542 DOI: 10.1562/0031-8655(2001)074<0081:tascop>2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoacoustic measurements using a broad frequency band hydrophone were carried out in photosynthetic reaction centers (RC) isolated from Rhodobacter sphaeroides R-26 purple bacteria. Data were extracted on enthalpy and volume changes accompanying the primary steps after excitation in the range of 0-500 microseconds aimed at further characterizing the thermodynamic properties of the RC. Quinone titration showed that the volume contraction accompanying the electron transport is sensitive to the molecular species occupying the secondary quinone site. delta VM = 14.4, 7.7 and 4.3 cm3 molar volume contractions were calculated from the measured parameters for 1, 2 and 0.07 quinone/RC after light excitation. Comparing the enthalpy changes (delta H) to the Gibbs free energy data in the literature, a rather large (26%) entropic contribution to the free energy changes (delta G) is estimated for the P*QAQB-->P+QA-QB electron transport (where QA and QB represent primary and secondary quinones, respectively). This is in contrast to previous estimations that delta G = delta H in these processes. On the other hand, only a small (4%) entropic contribution to the delta G of the P*QAQB-->P+QAQB- process is estimated, in agreement with the literature data. Our results are in good agreement with the data obtained earlier (Edens et al. [2000] J. Am. Chem. Soc. 122, 1479-1485).
Collapse
Affiliation(s)
- L Nagy
- Department of Biophysics, Szeged University, Szeged Egyetem u. 2. H-6722, Hungary.
| | | | | | | |
Collapse
|
23
|
Ginet N, Lavergne J. Absorption changes induced by the binding of triazines to the QB pocket in reaction centers of Rhodobacter capsulatus. Biochemistry 2001; 40:2995-3001. [PMID: 11258912 DOI: 10.1021/bi002126e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors which block electron transfer from the primary (Q(A)) to the secondary (Q(B)) quinone of the bacterial reaction center are competing with the pool ubiquinones for binding at the Q(B) pocket. Due to the much greater stability of the semiquinone state Q(B)(-) compared with fully oxidized or reduced quinone, a displacement of the inhibitors takes place after one flash from state Q(A)(-)I to state Q(A)Q(B)(-). This process can be monitored from near-IR absorption changes which reflect local absorption shifts specific to Q(A)(-) and Q(B)(-). An anomalous behavior was observed when using triazines in chromatophores of R. capsulatus: the IR absorption change reflecting the formation of Q(B)(-) after one flash was absent. A normal transient decay of this signal was, however, triggered by a second flash, followed by a rapid return to the baseline. We show that this phenomenon is due to an absorption change induced by inhibitor binding (thus present in the dark baseline), with a spectrum close to that of Q(B)(-), so that the Q(B)(-) changes are canceled out during the inhibitor displacement process. On the second flash, one monitors the destruction of the semiquinone, leading transiently to the Q(A)Q(B) state, followed by inhibitor rebinding. This allows a direct measurement of the binding kinetics. This behavior was observed both in chromatophores and in isolated reaction centers from R. capsulatus, but not in R. sphaeroides.
Collapse
Affiliation(s)
- N Ginet
- CEA-Cadarache, DSV-DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 Saint-Paul-lez-Durance, France
| | | |
Collapse
|
24
|
Ginet N, Lavergne J. Equilibrium and kinetic parameters for the binding of inhibitors to the QB pocket in bacterial chromatophores: dependence on the state of QA. Biochemistry 2001; 40:1812-23. [PMID: 11327844 DOI: 10.1021/bi001686a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The equilibrium and kinetic parameters for the binding of various inhibitors to the Q(B) pocket of the bacterial reaction center were investigated in chromatophores from Rhodobacter capsulatus and Rhodobacter sphaeroides. By monitoring the near-IR absorption changes specific to Q(A)(-) and Q(B)(-), we measured the fraction of inhibited centers in the dark and the kinetics and extent of inhibitor displacement after one flash due to the formation of the Q(A)Q(B)(-) state. The inhibitor release rate was much faster for triazines and o-phenanthroline (t(1/2) in the 50 ms to 1 s range) than for stigmatellin (t(1/2) approximately 20 s). For inhibitors with a rapid release rate, the fast phase of P(+) decay observed in the absence of secondary donor reflects the competition between P(+)Q(A)(-) recombination and inhibitor release: it is thus faster than the P(+)Q(A)(-) recombination, and its relative extent is smaller than the fraction of initially inhibited centers. At appropriate inhibitor concentrations, one can have almost total binding in the dark and almost total inhibitor displacement after one flash. Under such conditions, a pair of closely spaced flashes resets the two-electron gate in a single state (Q(A)Q(B)(-)), irrespective of the initial state. The apparent dissociation constant of terbutryn was significantly increased (by a factor of 4-7) in the presence of Q(A)(-), in agreement with the conclusion of Wraight and co-workers [Stein, R. R., et al. (1984) J. Cell. Biochem. 24, 243-259]. We suggest that this effect is essentially due to a tighter binding of ubiquinone in the Q(A)(-) state.
Collapse
Affiliation(s)
- N Ginet
- CEA-Cadarache, DSV-DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 Saint-Paul-lez-Durance, France
| | | |
Collapse
|
25
|
Gerencsér L, Maróti P. Retardation of proton transfer caused by binding of the transition metal ion to the bacterial reaction center is due to pKa shifts of key protonatable residues. Biochemistry 2001; 40:1850-60. [PMID: 11327848 DOI: 10.1021/bi0021636] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal ions bind to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides and slow the light-induced electron and proton transfer to the secondary quinone, Q(B). We studied the properties of the metal ion-RC complex by measuring the pH dependence of the dissociation constant and the stoichiometry of proton release upon ligand formation. We investigated the mechanism of inhibition by measuring the stoichiometry and kinetics of flash-induced proton binding, the transfer of (first and second) electrons to Q(B), and the rate of steady-state turnover of the RC in the absence and presence of Cd(2+) and Ni(2+) on a wide pH range. The following results were obtained. (1) The complexation of transition metal ions Cd(2+) and Ni(2+) with the bacterial RC showed strong pH dependence. This observation was explained by different (pH-dependent) states of the metal-ligand cluster: the complex formation was strong when the ligand (Asp and His residues) was deprotonated and was much weaker if the ligand was partly (or fully) protonated. A direct consequence of the model was the pH-dependent proton release upon complexation. (2) The retardation of transfer of electrons and protons to Q(B) was also strongly pH-dependent. The effect was large in the neutral pH range and decreased toward the acidic and alkaline pH values. (3) Steady-state turnover measurements indicated that the rate of the second proton transfer was much less inhibited than that of the first one, which became the rate-limiting step in continuous turnover of the RC. (4) Sodium azide partly recovered the proton transfer rate. The effect is not due to removal of the bound metal ion by azide but probably by formation of a proton-transporting azide network similarly as water molecules may build up proton pathways. (5) We argue that the inhibition comes mainly from pK(a) shifts of key protonatable residues that control the proton transfer along the H-bond network to Q(B). The electrostatic interaction between the metal ion and these residues may result in acidic pK(a) shifts between 1.5 and 2.0 that account for the observed retardation of the electron and proton transfer.
Collapse
Affiliation(s)
- L Gerencsér
- Department of Biophysics, University of Szeged, P.O. Box 655, 6701 Szeged, Hungary
| | | |
Collapse
|
26
|
Ginet N, Lavergne J. Interactions between the donor and acceptor sides in bacterial reaction centers. Biochemistry 2000; 39:16252-62. [PMID: 11123956 DOI: 10.1021/bi001588p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The apparent equilibrium constant K'(2) for electron transfer between the primary (Q(A)) and secondary (Q(B)) quinone acceptors of the reaction center was measured in chromatophores of Rhodobacter capsulatus. In the presence of the oxidized primary donor P(+), we obtained a value of K'(2)(P(+)) approximately 100 at pH 7.2, based on the rates of recombination from P(+)Q(A-) and P(+)Q(B-). K'(2) was also measured in the presence of reduced P, from the damping of semiquinone oscillations during a series of single turnover flashes. A 5-fold smaller value, K'(2)(P) approximately 20, was found. Additional information on the interactions between the donor and acceptor sides was obtained by measuring the shift of the midpoint potential of P caused by the presence of Q(B-) or Q(A-)S (where S indicates the presence of the inhibitor stigmatellin). A stabilization of the oxidized state P(+) was observed in both instances, by 10 mV for Q(B-) and 30 mV for Q(A-)S. The larger stabilization of P(+)Q(A-)S with respect to P(+)Q(B-) does not account for the effect of P(+)/P on K'(2). Analysis of these results indicates that the interactions between P(+)/P and Q(A)/Q(A)(-) are markedly modified depending on the occupancy of the Q(B) pocket by ubiquinone or by stigmatellin. We propose that the large value of K'(2)(P(+)) results essentially from a conformational destabilization of the P(+)Q(A-) state, that is relieved when the proximal site of the Q(B) pocket is occupied by stigmatellin.
Collapse
Affiliation(s)
- N Ginet
- CEA-DEVM/LBC, Cadarache, 13108 Saint Paul-lez Durance, France
| | | |
Collapse
|
27
|
Spyridaki A, Fritzsch G, Kouimtzoglou E, Baciou L, Ghanotakis D. The natural product capsaicin inhibits photosynthetic electron transport at the reducing side of photosystem II and purple bacterial reaction center: structural details of capsaicin binding. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:69-76. [PMID: 10924900 DOI: 10.1016/s0005-2728(00)00114-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Capsaicin, a natural quinone analog, was found to block electron transport, in both plant photosystem II (PSII) and bacterial reaction center (RC) from Rhodobacter sphaeroides, at the QB site. The mode of action of capsaicin was investigated by O2 evolution measurements and fluoresence induction studies in the case of PSII, and flash-induced absorbance spectroscopy in the case of the bacterial RC. Structural details of capsaicin binding to the bacterial RC complex were determined by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- A Spyridaki
- Department of Chemistry, University of Crete, Heraklion, Greece
| | | | | | | | | |
Collapse
|
28
|
Gerencsér L, Laczkó G, Maróti P. Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover. Biochemistry 1999; 38:16866-75. [PMID: 10606520 DOI: 10.1021/bi991563u] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the details of rate limitation of turnover of the photosynthetic reaction center, photooxidation of horse heart cytochrome c by reaction center from Rhodobacter spheroides in detergent dispersion has been examined by intense continuous illumination under a wide variety of conditions of cytochrome concentration, ionic strength, viscosity, temperature, light intensity, and pH. The observed steady-state turnover rate of the cytochrome was not light intensity limited. In accordance with recent findings [Larson, J. W., Wells, T. A., and Wraight, C. A. (1998) Biophys. J. 74 (2), A76], the turnover rate increased with increasing bulk ionic strength in the range of 0-40 mM NaCl from 1000 up to 2300 s(-)(1) and then decreased at high ionic strength under conditions of excess cytochrome and ubiquinone and a photochemical rate constant of 4500 s(-)(1). Furthermore, we found the following: (i) The contribution of donor (cytochrome c) and acceptor (ubiquinone) sides as well as the binding of reduced and the release of oxidized cytochrome c could be separated in the observed kinetics. At neutral and acidic pH (when the proton transfer is not rate limiting) and at low or moderate ionic strength, the turnover rate of the reaction center was limited primarily by the low release rate of the photooxidized cytochrome c (product inhibition). At high ionic strength, however, the binding rate of the reduced cytochrome c decreased dramatically and became the bottleneck. The observed activation energy of the steady-state turnover rate reflected the changes in limiting mechanisms: 1.5 kcal/mol at 4 mM and 5.7 kcal/mol at 100 mM ionic strength. A similar distinction was observed in the viscosity dependence of the turnover rate: the decrease was steep (eta(-)(1)) at 40 and 100 mM ionic strengths and moderate (eta(-)(0.2)) under low-salt (4 mM) conditions. (ii) The rate of quinone exchange at the acceptor side with excess ubiquinone-30 or ubiquinone-50 was higher than the cytochrome exchange at the donor side and did not limit the observed rate of cytochrome turnover. (iii) Multivalent cations exerted effects not only through ionic strength (screening) but also by direct interaction with surface charge groups (ion-pair production). Heavy metal ion Cd(2+) bound to the RC with apparent dissociation constant of 14 microM. (iv) A two-state model of collisional interaction between reaction center and cytochrome c together with simple electrostatic considerations in the calculation of rate constants was generally sufficient to describe the kinetics of photooxidation of dimer and cytochrome c. (v) The pH dependence of cytochrome turnover rate indicated that the steady-state turnover rate of the cytochrome under high light conditions was not determined by the isoelectric point of the reaction center (pI = 6. 1) but by the carboxyl residues near the docking site.
Collapse
Affiliation(s)
- L Gerencsér
- Department of Biophysics, University of Szeged, Hungary
| | | | | |
Collapse
|
29
|
Kuglstatter A, Hellwig P, Fritzsch G, Wachtveitl J, Oesterhelt D, Mäntele W, Michel H. Identification of a hydrogen bond in the phe M197-->Tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. FEBS Lett 1999; 463:169-74. [PMID: 10601661 DOI: 10.1016/s0014-5793(99)01614-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In bacterial reaction centers the charge separation process across the photosynthetic membrane is predominantly driven by the excited state of the bacteriochlorophyll dimer (D). An X-ray structure analysis of the Phe M197-->Tyr mutant reaction center from Rhodobacter sphaeroides at 2.7 A resolution suggests the formation of a hydrogen bond as postulated by Wachtveitl et al. [Biochemistry 32, 12875-12886, 1993] between the Tyr M197 hydroxy group and one of the 2a-acetyl carbonyls of D. In combination with electrochemically induced FTIR difference spectra showing a split band of the pi-conjugated 9-keto carbonyl of D, there is clear evidence for the existence of such a hydrogen bond.
Collapse
Affiliation(s)
- A Kuglstatter
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt/M., Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Lancaster CR, Michel H. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol 1999; 286:883-98. [PMID: 10024457 DOI: 10.1006/jmbi.1998.2532] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a reaction of central importance to the energetics of photosynthetic bacteria, light-induced electron transfer in the reaction centre (RC) is coupled with the uptake of protons from the cytoplasm at the binding site of the secondary quinone (QB). It has been established by X-ray crystallography that the triazine herbicide terbutryn binds to the QB site. However, the exact description of protein-triazine interactions has had to await the refinement of higher-resolution structures. In addition, there is also interest in the role of chirality in the activity of herbicides. Here, we report the structural characterisation of triazine binding by crystallographic refinement of complexes of the RC either with the triazine inhibitor atrazine (Protein Data Bank (PDB) entry 5PRC) or with the chiral atrazine derivatives, DG-420314 (S(-) enantiomer, PDB entry 6PRC) or DG-420315 (R(+) enantiomer, PDB entry 7PRC). Due to the high quality of the data collected, it has been possible to describe the exact nature of triazine binding and its effect on the structure of the protein at high-resolution limits of 2.35 A (5PRC), 2.30 A (6PRC), and 2.65 A (7PRC), respectively. In addition to two previously implied hydrogen bonds, a third hydrogen bond, binding the distal side of the inhibitors to the protein, and four additional hydrogen bonds mediated by two tightly bound water molecules on the proximal side of the inhibitors, are apparent. Based on the high quality data collected on the RC complexes of the two chiral atrazine derivatives, unequivocal assignment of the structure at the chiral centres was possible, even though the differences in structures of the substituents are small. The structures provide explanations for the relative binding affinities of the two chiral compounds. Although it was not an explicit goal of this work, the new data were of sufficient quality to improve the original model also regarding the structure of the bound carotenoid 1,2-dihydroneurosporene. A carotenoid model with a cis double bond at the 15,15' position fits the electron density better than the original model with a 13,14-cis double bond.
Collapse
Affiliation(s)
- C R Lancaster
- Abteilung Molekulare Membranbiologie, Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Str. 7, Frankfurt am Main, D-60528, Germany
| | | |
Collapse
|
31
|
Shinkarev VP. The General Kinetic Model of Electron Transfer in Photosynthetic Reaction Centers Activated by Multiple Flashes. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb09474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Shinkarev VP. The General Kinetic Model of Electron Transfer in Photosynthetic Reaction Centers Activated by Multiple Flashes. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb09113.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Agalidis I, Ivancich A, Mattioli TA, Reiss-Husson F. Characterization of the Rhodocyclus tenuis photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Maróti P, Wraight CA. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein. Biophys J 1997; 73:367-81. [PMID: 9199801 PMCID: PMC1180938 DOI: 10.1016/s0006-3495(97)78077-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The kinetics of flash-induced H+ ion binding by isolated reaction centers (RCs) of Rhodobacter sphaeroides, strain R-26, were measured, using pH indicators and conductimetry, in the presence of terbutryn to block electron transfer between the primary and secondary quinones (QA and QB), and in the absence of exogenous electron donors to the oxidized primary donor, P+, i.e., the P+QA-state. Under these conditions, proton binding by RCs is to the protein rather than to any of the cofactors. After light activation to form P+QA-, the kinetics of proton binding were monoexponential at all pH values studied. At neutral pH, the apparent bimolecular rate constant was close to the diffusional limit for proton transfer in aqueous solution (approximately 10(11) M-1 s-1), but increased significantly in the alkaline pH range (e.g., 2 x 10(13) M-1 s-1 at pH 10). The average slope of the pH dependence was -0.4 instead of -1.0, as might be expected for a H+ diffusion-controlled process. High activation energy (0.54 eV at pH 8.0) and weak viscosity dependence showed that H+ ion uptake by RCs is not limited by diffusion. The salt dependence of the H+ ion binding rate and the pK values of the protonatable amino acid residues of the reaction center implicated surface charge influences, and Gouy-Chapman theory provided a workable description of the ionic effects as arising from modulation of the pH at the surface of the RC. Incubation in D2O caused small increases in the pKs of the protonatable groups and a small, pH (pD)-dependent slowing of the binding rate. The salt, pH, temperature, viscosity, and D2O dependences of the proton uptake by RCs in the P+QA- state were accounted for by three considerations: 1) parallel pathways of H+ delivery to the RC, contributing to the observed (net) H+ disappearance; 2) rate limitation of the protonation of target groups within the protein by conformational dynamics; and 3) electrostatic influences of charged groups in the protein, via the surface pH.
Collapse
Affiliation(s)
- P Maróti
- Center for Biophysics and Computational Biology, University of Illinois, Urbana 81801-3838, USA
| | | |
Collapse
|
35
|
Peters H, Schmidt-Dannert C, Schmid RD. The photoreaction center of Rhodobacter sphaeroides: a ‘biosensor protein’ for the determination of photosystem-II herbicides? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 1997. [DOI: 10.1016/s0928-4931(97)00005-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Tandori J, Nagy L, Puskás A, Droppa M, Horváth G, Maróti P. The Ile(L229) → Met mutation impairs the quinone binding to the QB-pocket in reaction centers of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 1995; 45:135-146. [PMID: 24301480 DOI: 10.1007/bf00032585] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 07/03/1995] [Indexed: 06/02/2023]
Abstract
A spontaneous mutant (R/89) of photosynthetic purple bacterium Rhodobacter sphaeroides R-26 was selected for resistance to 200 μM atrazin. It showed increased resistance to interquinone electron transfer inhibitors of o-phenanthroline (resistance factor, RF=20) in UQo reconstituted isolated reaction centers and terbutryne in reaction centers (RF=55) and in chromatophores (RF=85). The amino acid sequence of the QB binding protein of the photosynthetic reaction center (the L subunit) was determined by sequencing the corresponding pufL gene and a single mutation was found (Ile(L229) → Met). The changed amino acid of the mutant strain is in van der Waals contact with the secondary quinone QB. The binding and redox properties of QB in the mutant were characterized by kinetic (charge recombination) and multiple turnover (cytochrome oxidation and semiquinone oscillation) assays of the reaction center. The free energy for stabilization of QAQB (-) with respect to QA (-)QB was ΔGAB=-60 meV and 0 meV in reaction centers and ΔGAB=-85 meV and -46 meV in chromatophores of R-26 and R/89 strains at pH 8, respectively. The dissociation constants of the quinone UQo and semiquinone UQo (-) in reaction centers from R-26 and R/89 showed significant and different pH dependence. The observed changes in binding and redox properties of quinones are interpreted in terms of differential effects (electrostatics and mesomerism) of mutation on the oxidized and reduced states of QB.
Collapse
Affiliation(s)
- J Tandori
- Department of Biophysics, József Attila University, Egyetem u.2., H-6722, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Inhibition of electron transport through the Qp site in cytochrome bc1 complexes by acridones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90030-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Molecular Genetic Manipulation and Characterization of Mutant Photosynthetic Reaction Centers from Purple Nonsulfur Bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1569-2558(08)60398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Jockers R, Bier FF, Schmid RD, Wachtveitl J, Oesterhelt D. Herbicide biosensor based on photobleacing of the reaction centre of Rhodobacter sphaeroides. Anal Chim Acta 1993. [DOI: 10.1016/0003-2670(93)80464-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Egner U, Hoyer GA, Saenger W. The binding of triazine herbicides to the photosynthetic reaction center of Rhodopseudomonas viridis. Energy minimization studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:685-90. [PMID: 1606955 DOI: 10.1111/j.1432-1033.1992.tb16974.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding of six herbicides of the triazine family to the photosynthetic reaction center of Rhodopseudomonas viridis was investigated with energy-minimization techniques, in order to correlate experimental with calculated data. The inhibitors were modeled in the active site according to the X-ray structure analysis of the complex formed between the triazine terbutryn (2-ethylamino-4-t-butylamino-6-methylthio-s-triazine) and the reaction center of R. viridis [Michel, H., Epp. O. & Deisenhofer, J. (1986) EMBO J. 5, 2445-2451]. 40 different energy minimizations were carried out with varying cutoff radii, partial charges on inhibitor atoms and dielectric constants, i.e. 10 different combinations of these were tested. The impact of these parameters on the calculated binding and interaction energy was either examined for all protein/triazine complexes or, in the case of the dielectric constant, a smaller sample was used. The calculated energies are dominated by van der Waals interactions, which change by up to 20% when extending the cutoff radius from 0.8 nm to 1.5 nm. The use of uniform or distance-dependent dielectric constant or partial charges on the inhibitor atoms does not severely influence the resulting structures, but shows a great impact on the calculated energies. In the two groups of triazines, each containing three inhibitors with methoxy or methylthio substituents, correlations of biological and calculated data were found quite often, but only once with all six triazines. The energy-minimized structures were compared and analysed. A third hydrogen bond, not seen in the X-ray analysis of the reaction center/tertubryn complex, was found between the t-butylamino moiety of terbutryn (and equivalent moieties in the other triazines) and the carbonyl oxygen of TyrL222.
Collapse
Affiliation(s)
- U Egner
- Schering AG, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
41
|
Wang X, Cao J, Maróti P, Stilz HU, Finkele U, Lauterwasse C, Zinth W, Oesterhelt D, Govindjee, Wraight CA. Is bicarbonate in Photosystem II the equivalent of the glutamate ligand to the iron atom in bacterial reaction centers? BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1100:1-8. [PMID: 1314662 DOI: 10.1016/0005-2728(92)90119-m] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photosystem II of oxygen-evolving organisms exhibits a bicarbonate-reversible formate effect on electron transfer between the primary and secondary acceptor quinones, QA and QB. This effect is absent in the otherwise similar electron acceptor complex of purple bacteria, e.g., Rhodobacter sphaeroides. This distinction has led to the suggestion that the iron atom of the acceptor quinone complex in PS II might lack the fifth and sixth ligands provided in the bacterial reaction center (RC) by a glutamate residue at position 234 of the M-subunit in Rb. sphaeroides RCs (M232 in Rps. viridis). By site-directed mutagenesis we have altered GluM234 in RCs from Rb. sphaeroides, replacing it with valine, glutamine and glycine to form mutants M234EV, M234EQ and M234EG, respectively. These mutants grew competently under phototrophic conditions and were tested for the formate-bicarbonate effect. In chromatophores there were no detectable differences between wild type (Wt) and mutant M234EV with respect to cytochrome b-561 reduction following a flash, and no effect of bicarbonate depletion (by incubation with formate). In isolated RCs, several electron transfer activities were essentially unchanged in Wt and M234EV, M234EQ and M234EG mutants, and no formate-bicarbonate effect was observed on: (a) the fast or slow phases of recovery of the oxidized primary donor (P+) in the absence of exogenous donor, i.e., the recombination of P+Q-A or P+Q-B, respectively; (b) the kinetics of electron transfer from Q-A to QB; or (c) the flash dependent oscillations of semiquinone formation in the presence of donor to P+ (QB turnover). The absence of a formate-bicarbonate effect in these mutants suggests that GluM234 is not responsible for the absence of the formate-bicarbonate effect in Wt bacterial RCs, or at least that other factors must be taken into account. The mutant RCs were also examined for the fast primary electron transfer along the active (A-)branch of the pigment chain, leading to reduction of QA. The kinetics were resolved to reveal the reduction of the monomer bacteriochlorophyll (tau = 3.5 ps), followed by reduction of the bacteriopheophytin (tau = 0.9 ps). Both steps were essentially unaltered from the wild type. However, the rate of reduction of QA was slowed by a factor of 2 (tau = 410 +/- 30 and 47 +/- 30 ps for M234EQ and M234EV, respectively, compared to 220 ps in the wild type).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- X Wang
- University of Illinois, Urbana 61801
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Draber W, Kluth JF, Tietjen K, Trebst A. Herbizide in der Photosyntheseforschung. Angew Chem Int Ed Engl 1991. [DOI: 10.1002/ange.19911031210] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Jockers H, Schmid RD, Rieger H, Krohn K. Synthese langkettiger Benzo- und Naphthochinonaldehyde als Substrate für bakterielle Luciferasen. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/jlac.199119910155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Paddock ML, Feher G, Okamura MY. Reaction centers from three herbicide resistant mutants of Rhodobacter sphaeroides 2.4.1: Kinetics of electron transfer reactions. PHOTOSYNTHESIS RESEARCH 1991; 27:109-119. [PMID: 24414574 DOI: 10.1007/bf00033250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/1990] [Accepted: 11/05/1990] [Indexed: 06/03/2023]
Abstract
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229↦ Met), SP(L223) (Ser-L223↦ Pro) and YG(L222) (Tyr-L222↦ Gly). The electron transfer rate D(+)QA (-)QB↦D(+)QAQB (k AB) is slowed ∼3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D(+)QAQB (-) with respect to D(+)QAQB (-) (pH 8) was found to be eliminated in the IM(L229) mutant RCs (ΔG(0) ∼ 0 meV), was partially reduced in the SP(L223) mutant RCs (ΔG(0)=-30 meV), and was unaltered in the YG(L222) mutant RCs (ΔG(0)=-60 meV), compared to that observed in the native RCs (ΔG(0)=-60 meV). The pH dependences of the charge recombination rate D(+)QAQB (-)↦DQAQB (k BD) and the electron transfer from QA (-) (k QA (-)↦QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB (-) with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native ≥IM(L229) > YG(L222)≥ SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics, B-019, University of California, San Diego, 92093, La Jolla, CA, USA
| | | | | |
Collapse
|
45
|
Paterson DR, Wraight CA. Inhibition and labelling of isolated reaction centers from Rhodobacter sphaeroides by dicyclohexylcarbodiimide. PHOTOSYNTHESIS RESEARCH 1990; 26:195-201. [PMID: 24420584 DOI: 10.1007/bf00033132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/1990] [Accepted: 08/10/1990] [Indexed: 06/03/2023]
Abstract
The effect of dicyclohexylcarbodiimide (DCCD) on electron transfer in the acceptor quinone complex of reaction centers (RC) from Rhodobacter sphaeroides is reported. DCCD covalently labelled the RC over a wide concentration range. At low concentrations (<10 μM) the binding was specific for the L subunit. At relatively high concentrations (>100 μM) DCCD accelerated the rate of charge recombination of the P(+)QB (-) state, consistent with a decrease in the equilibrium constant between QA (-)QB and QAQB (-). At similar concentrations, in the presence of cytochrome c as exogenous donor, turnover of the RC was inhibited such that only three cytochromes were oxidized in a train of flashes. Both these inhibitory effects were fully reversed by dialysis, indicating that stable covalent binding was not involved. Possible mechanisms of action are discussed in terms of the putative role of specific residues in proton transfer and protonation and release of quinol from the RC.
Collapse
Affiliation(s)
- D R Paterson
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
| | | |
Collapse
|
46
|
Brown AE, Luttrell R, Highfill CT, Rushing AE. Characterization of Naturally Occurring Atrazine-Resistant Isolates of the Purple Non-Sulfur Bacteria. Appl Environ Microbiol 1990; 56:507-13. [PMID: 16348126 PMCID: PMC183369 DOI: 10.1128/aem.56.2.507-513.1990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six isolates of the purple non-sulfur bacteria, which upon primary isolation were naturally resistant to the herbicide atrazine, were characterized with respect to their taxonomic identity and the mechanism of their resistance. On the basis of electron microscopy, photopigment analysis, and other criteria, they were identified as strains of
Rhodopseudomonas acidophila, Rhodopseudomonas palustris
, or
Rhodocyclus gelatinosus
. These isolates exhibited degrees of atrazine resistance which ranged from 1.5 to about 4 times greater than that of cognate reference strains (American Type Culture Collection) tested. Furthermore, all of the reference strains tested were more intrinsically resistant to atrazine than was
Rhodobacter sphaeroides
. No unique plasmids which might encode for herbicide degradation or inactivation were found in these isolates. Resistance to the herbicide in these isolates was not the result of diminished binding of the herbicide to the L subunit of the bacterial reaction center. Differences in herbicide resistance among the various species of this group may be the result of compositional and chemical differences in the individual reaction centers. However, the increase in atrazine resistance for the isolates characterized in this study probably occurs by undefined mechanisms and not necessarily by changes in the binding of the herbicide to the L subunit of the photosynthetic reaction center.
Collapse
Affiliation(s)
- A E Brown
- Department of Botany and Microbiology, Auburn University, Auburn, Alabama 36849-5407
| | | | | | | |
Collapse
|
47
|
McComb JC, Stein RR, Wraight CA. Investigations on the influence of headgroup substitution and isoprene side-chain length in the function of primary and secondary quinones of bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1015:156-71. [PMID: 2404516 DOI: 10.1016/0005-2728(90)90227-u] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contributions of headgroup and side-chain in the binding and function of the primary (QA) and secondary (QB) quinones of isolated reaction centers (RCs) from Rhodobacter sphaeroides were investigated. Various ubiquinones and structurally similar quinones were reconstituted into RCs depleted of one (1Q-RCs) or both (0Q-RCs) quinones. The influence of partition coefficients on the apparent binding affinities was minimized by expressing dissociation constants in terms of the mole fraction of quinone partitioned into the detergent. It was then apparent that the size of the isoprenyl side-chain was of little consequence in determining the binding affinity or the functional competence of either QA or QB, although an alkyl chain of equivalent size was a poor substitute. The degree of substitution of the headgroup, however, was a sensitive determinant of binding. For both quinone sites, the trisubstituted plastoquinones bond more weakly than the fully substituted ubiquinones. Similarly, for binding to the QA site, duroquinone (tetramethylbenzoquinone) bound much more strongly than trimethylbenzoquinone. The affinity of the QA site for ubiquinones was about 20-times stronger than the QB site, but the QB site is probably not more specific than the QA site. However, QB function depends on a suitable redox free-energy drop from QA as well as binding, and of all the quinones tested only the ubiquinones simultaneously supported full QA and QB activity. Even plastoquinone-A, which fills both roles in Photosystem II, was unable to do so in bacterial RCs, although it did bind. The unique ability of ubiquinones to both bind and provide the appropriate redox span is discussed. The temperature dependence of binding of the isoprenyl ubiquinones at the QA site changed markedly with chain length. For Q-10-Q-7, the binding enthalpy was positive and net binding was entirely driven by entropic factors. For the shorter-chain ubiquinones, Q-6-Q-1, both entropy and enthalpy of binding were favorable. This strong entropy-enthalpy compensation is suggested to arise from antagonistic interactions (anticooperativity) between headgroup and tail binding. For QB function by hydrophobic quinones, the temperature dependence of the micelle properties prevented easy access to thermodynamic parameters. However, for water-soluble Q-0, binding to the QB site was determined to be enthalpically driven.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J C McComb
- Department of Physiology and Biophysics, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
48
|
Recent Advances in the Structure Analysis of Rhodopseudomonas viridis Reaction Center Mutants. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-3-642-61297-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Kondrashin AA, Semenov AYu, Mamedov MD, Drachev LA, Zakharova NI. Orientation of reaction center complexes from Rhodobacter sphaeroides in proteoliposomes and the effect of o-phenanthroline on electrogenesis during primary photochemical reaction. J Bioenerg Biomembr 1989; 21:519-26. [PMID: 2681179 DOI: 10.1007/bf00762523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The orientation of Rhodobacter sphaeroides reaction center complexes (RC complexes) in proteoliposomal membranes was investigated by a direct electrometric method. Conditions were found that allow monitoring of only that RC complex fraction that is oriented with its donor side to the inner part of the proteoliposome. It is shown that o-phenanthroline, an inhibitor of electron transfer between primary (QA) and secondary (QB) quinone acceptors, can also inhibit the photoinduced QA reduction. The efficiency of this inhibition depends on the concentration of added ubiquinone. It is assumed that the laser flash-induced o-phenanthroline inhibition of primary dipole (P-870+.QA-) formation is of a competitive nature.
Collapse
|
50
|
Shopes RJ, Blubaugh DJ, Wraight CA, Govindjee. Absence of a bicarbonate-depletion effect in electron transfer between quinones in chromatophores and reaction centers of Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:114-8. [PMID: 2647143 DOI: 10.1016/s0005-2728(89)80171-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Higher plants, algae, and cyanobacteria are known to require bicarbonate ions for electron flow from the first stable electron acceptor quinone QA to the second electron acceptor quinone QB, and to the intersystem quinone pool. It has been suggested that in Photosystem II of oxygenic photosynthesis, bicarbonate ion functions to maintain the reaction center in a proper conformation and, perhaps, to provide the protons needed to stabilize the semiquinone (QB-). In this paper, we show that bicarbonate ions do not influence the electron flow, from the quinone QA to QB and beyond, in the photosynthetic bacterium Rhodobacter sphaeroides. No measurable effect of bicarbonate depletion, obtained by competition with formate, was observed on cytochrome b-561 reduction in chromatophores; on the flash-dependent oscillation of semiquinone formation in reaction centers; on electron transfer from QA- to QB; or on either the fast or slow recovery of the oxidized primary donor (P+) which reflects the P+QA- ----PQA or the P+QB- ----PQB reaction. The lack of an observed effect in Rhodobacter sphaeroides in contrast to the effect seen in Photosystem II is suggested to be due to the amino-acid sequence differences between the reaction centers of the two systems.
Collapse
Affiliation(s)
- R J Shopes
- Department of Physiology and Biophysics, University of Illinois, Urbana
| | | | | | | |
Collapse
|