1
|
Mikulasova A, Gillespie LK, Ambrose RL, Aktepe TE, Trenerry AM, Liebscher S, Mackenzie JM. A Putative Lipid-Associating Motif in the West Nile Virus NS4A Protein Is Required for Efficient Virus Replication. Front Cell Dev Biol 2021; 9:655606. [PMID: 34055786 PMCID: PMC8149610 DOI: 10.3389/fcell.2021.655606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Flavivirus replication is intimately associated with re-organized cellular membranes. These virus-induced changes in membrane architecture form three distinct membranous “organelles” that have specific functions during the flavivirus life cycle. One of these structures is the replication complex in which the flaviviral RNA is replicated to produce progeny genomes. We have previously observed that this process is strictly dependent on cellular cholesterol. In this study we have identified a putative cholesterol recognition/interaction amino acid consensus (CRAC) motif within the West Nile virus strain Kunjin virus (WNVKUN) NS4A protein. Site-directed mutagenesis of this motif within a WNVKUN infectious clone severely attenuated virus replication and the capacity of the mutant viruses to form the replication complex. Replication of the mutant viruses also displayed reduced co-localization with cellular markers recruited to replication sites during wild-type virus replication. In addition, we observed that the mutant viruses were significantly impaired in their ability to remodel cytoplasmic membranes. However, after extensive analysis we are unable to conclusively reveal a role for the CRAC motif in direct cholesterol binding to NS4A, suggesting additional complex lipid-protein and protein-protein interactions. We believe this study highlights the crucial role for this region within NS4A protein in recruitment of cellular and viral proteins to specialized subdomains on membrane platforms to promote efficient virus replication.
Collapse
Affiliation(s)
- Andrea Mikulasova
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Leah K Gillespie
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca L Ambrose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Susann Liebscher
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
3
|
Giantin Is Required for Post-Alcohol Recovery of Golgi in Liver Cells. Biomolecules 2018; 8:biom8040150. [PMID: 30453527 PMCID: PMC6316505 DOI: 10.3390/biom8040150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
In hepatocytes and alcohol-metabolizing cultured cells, Golgi undergoes ethanol (EtOH)-induced disorganization. Perinuclear and organized Golgi is important in liver homeostasis, but how the Golgi remains intact is unknown. Work from our laboratories showed that EtOH-altered cellular function could be reversed after alcohol removal; we wanted to determine whether this recovery would apply to Golgi. We used alcohol-metabolizing HepG2 (VA-13) cells (cultured with or without EtOH for 72 h) and rat hepatocytes (control and EtOH-fed (Lieber–DeCarli diet)). For recovery, EtOH was removed and replenished with control medium (48 h for VA-13 cells) or control diet (10 days for rats). Results: EtOH-induced Golgi disassembly was associated with de-dimerization of the largest Golgi matrix protein giantin, along with impaired transport of selected hepatic proteins. After recovery from EtOH, Golgi regained their compact structure, and alterations in giantin and protein transport were restored. In VA-13 cells, when we knocked down giantin, Rab6a GTPase or non-muscle myosin IIB, minimal changes were observed in control conditions, but post-EtOH recovery was impaired. Conclusions: These data provide a link between Golgi organization and plasma membrane protein expression and identify several proteins whose expression is important to maintain Golgi structure during the recovery phase after EtOH administration.
Collapse
|
4
|
UDP-GalNAc: polypeptide α-N-acetygalactosaminyltransferase 2 Localized on Both cis and trans Side of Golgi Stacks in SGC7901 Cells*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Ungar D. Golgi linked protein glycosylation and associated diseases. Semin Cell Dev Biol 2009; 20:762-9. [PMID: 19508859 DOI: 10.1016/j.semcdb.2009.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/17/2022]
Abstract
One of the Golgi's main functions is the glycosylation of secreted proteins. A large variety of glycan chains can be synthesized in the Golgi, and it is increasingly clear that these are critical in basic cellular functions as well as the development of multicellular organisms. The structurally best-documented glycans are N-glycans, yet these are also the most enigmatic in their function. In contrast, O-glycan function is far better understood, but here the structures and biosynthetic pathways are very incomplete. The critical importance of glycans is highlighted by the broad spectrum of diseases they are associated with, such as a number of inherited diseases, but also cancers or diabetes. The molecular clues to these, however, are only just being elucidated. Although some glycan structures are known to be involved in signaling or adhesion to the extracellular matrix, for most the functions are not yet known. This review aims at summarizing current knowledge as much as to point out critical areas key for future progress.
Collapse
Affiliation(s)
- Daniel Ungar
- University of York, Department of Biology (area 9), PO Box 373, York YO10 5YW, UK.
| |
Collapse
|
6
|
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220:144-54. [PMID: 19277980 DOI: 10.1002/jcp.21744] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N-glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 microM CQ) is sufficient to markedly impair terminal alpha(2,3)-sialylation of an N-glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding alpha(2,3)-sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair alpha(2,6)-sialylation, or the proximal glycosylation steps such as beta(1,4)-galactosylation or acquisition of Endo H resistance, and the steady-state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N-glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases.
Collapse
Affiliation(s)
- Antti Rivinoja
- Department of Biochemistry and The Finnish Glycoscience Graduate School, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
7
|
Singh M, Kalla NR, Kanwar SS, Sanyal SN. Alterations in Oxidative Stress-Related Parameters in Rat Testis Following Monensin Administration. Toxicol Mech Methods 2008; 16:307-12. [DOI: 10.1080/15376520600616834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Yamazaki Y, Sejima H, Yuguchi M, Shinozuka K, Isokawa K. Cellular origin of microfibrils explored by monensin-induced perturbation of secretory activity in embryonic primary cultures. J Oral Sci 2008; 49:107-14. [PMID: 17634722 DOI: 10.2334/josnusd.49.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Fibrillin is a primary component of elastin-associated microfibrils. Since microfibrils are distributed rather ubiquitously in embryonic tissues, attention has focused on the types of cells responsible for producing fibrillin. To clarify this issue, we employed monensin-induced perturbation of secretory activity in embryonic primary cultures, as this would allow examination of both the secreted protein and the formation of extracellular fibrils in the same culture. Micromasses of avian limb bud mesoderm, its ectodermal covering and several explants from other sources were cultured in the presence and absence of monensin, and evaluated immunohistochemically using antibodies against fibrillin and cell lineage markers. The results indicated that monensin perturbation induced intracellular accumulation of fibrillin and prevented the formation of microfibrils. It was shown specifically that not only mesodermally derived fibrogenic cells and myogenic cells of skeletal and smooth muscle cell lineage, but also epithelial-type cells such as endothelial and ectodermal cells, are producers of fibrillin. This dual cellular origin of fibrillin at the ectomesenchymal interface is considered significant for understanding the formation and remodeling of microfibrils originating from the basal lamina.
Collapse
Affiliation(s)
- Yosuke Yamazaki
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Li Y, Yang X, Nguyen AHT, Brockhausen I. Requirement of N-glycosylation for the secretion of recombinant extracellular domain of human Fas in HeLa cells. Int J Biochem Cell Biol 2007; 39:1625-36. [PMID: 17544837 DOI: 10.1016/j.biocel.2007.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Apoptosis has been shown to be associated with altered glycosylation patterns and biosynthesis of glycoproteins. A major cell surface receptor involved in the induction of apoptosis is Fas that is activated by binding Fas ligand but can also be activated by binding anti-Fas antibody. In order to determine whether the Fas receptor is glycosylated, the extracellular domain of human Fas (shFas) was expressed as a cleavable fusion protein (shFas-Fc) in HeLa cells. These cells were shown to express activities of glycosyltransferases involved in N- and O-glycan biosynthesis. The secreted shFas-Fc was shown to be a glycoprotein with heterogeneous glycan chains. MALDI mass spectrometry revealed a disperse molecular weight of shFas with an average of 23.4kDa. Western blots of shFas-Fc secreted from tunicamycin treated transfected HeLa cells showed that only N-glycosylated glycoforms were secreted, while the unglycosylated shFas-Fc remained intracellular. The results suggest that both N-glycosylation sites of the extracellular domain of Fas are occupied with large N-glycans that play a role in the expression of the glycoprotein.
Collapse
Affiliation(s)
- Yi Li
- Department of Medicine, Division of Rheumatology, Human Mobility Research Center and The Arthritis Center, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
10
|
Schaub BE, Berger B, Berger EG, Rohrer J. Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated. Mol Biol Cell 2006; 17:5153-62. [PMID: 17021253 PMCID: PMC1679680 DOI: 10.1091/mbc.e06-08-0665] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Golgi apparatus (GA) is the organelle where complex glycan formation takes place. In addition, it is a major sorting site for proteins destined for various subcellular compartments or for secretion. Here we investigate beta1,4-galactosyltransferase 1 (galT) and alpha2,6-sialyltransferase 1 (siaT), two trans-Golgi glycosyltransferases, with respect to their different pathways in monensin-treated cells. Upon addition of monensin galT dissociates from siaT and the GA and accumulates in swollen vesicles derived from the trans-Golgi network (TGN), as shown by colocalization with TGN46, a specific TGN marker. We analyzed various chimeric constructs of galT and siaT by confocal fluorescence microscopy and time-lapse videomicroscopy as well as Optiprep density gradient fractionation. We show that the first 13 amino acids of the cytoplasmic tail of galT are necessary for its localization to swollen vesicles induced by monensin. We also show that the monensin sensitivity resulting from the cytoplasmic tail can be conferred to siaT, which leads to the rapid accumulation of the galT-siaT chimera in swollen vesicles upon monensin treatment. On the basis of these data, we suggest that cycling between the trans-Golgi cisterna and the trans-Golgi network of galT is signal mediated.
Collapse
Affiliation(s)
- Beat E. Schaub
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bea Berger
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Eric G. Berger
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jack Rohrer
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
11
|
Lecca MR, Wagner U, Patrignani A, Berger EG, Hennet T. Genome‐wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type‐I patients. FASEB J 2004; 19:240-2. [PMID: 15545299 DOI: 10.1096/fj.04-2397fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a family of diseases characterized by defects of N-linked glycosylation. In CDG-I, several genetic defects cause a shortage of dolichol-linked oligosaccharides, which leads to underglycosylation of nascent glycoproteins. N-linked glycosylation is important for proper folding and trafficking of glycoproteins. Inhibition of glycosylation results in the buildup of misfolded proteins in the endoplasmic reticulum, which induces a protective reaction known as the unfolded protein response (UPR). To investigate whether UPR components are induced in CDG, we have performed a transcriptome analysis of primary fibroblasts from unaffected control subjects and from CDG-I patients using oligonucleotide gene expression arrays. The stress imposed by CDG was also compared with the stress induced by tunicamycin and glucose deprivation. Whereas tunicamycin elicited a strong transcriptional response typical for the UPR, CDG fibroblasts displayed a qualitatively similar yet moderate induction of genes encoding components of the UPR. Among these genes, the PERK kinase inhibitor DNAJC3/P58(IPK) gene showed the highest induction throughout all CDG-I types tested. This was paralleled by elevated expression of genes involved in amino acid biosynthesis and transport, which defined a new component of the cellular response to glycosylation stress.
Collapse
Affiliation(s)
- M Rita Lecca
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Abstract
The following review on galactosyltransferase (gal-T1) intends to cover genetic, biochemical, structural, biotechnological, cell biological and medical aspects of this enzyme in a comprehensive manner from discovery to the present day which have brought to light a genetic defect of this enzyme. Early work has only been included if it appeared relevant to ongoing issues. Following the evolution of a research topic over 40 years is in itself a fascinating endeavor as it permits to observe the ins and outs of hypotheses, fashions and errors. Gal-T1 is a beautiful example as it has been involved in almost every aspect of life science. Importantly, there is a future to this enzyme as a research topic, since many questions still remain unanswered: to which extent is it a representative Golgi protein? What is the role of the gene family of gal-Ts? Does gal-T1 exert any functions other than a catalytic one? Why is it phosphorylated? Does it form homodimers in vivo? Surely, there is room for further work, which is likely to reveal further insights into cellular trafficking and signaling and, in the context of the gene family, shall contribute to understanding development and morphogenesis.
Collapse
Affiliation(s)
- E G Berger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
13
|
Donadio S, Dubois C, Fichant G, Roybon L, Guillemot JC, Breton C, Ronin C. Recognition of cell surface acceptors by two human alpha-2,6-sialyltransferases produced in CHO cells. Biochimie 2003; 85:311-21. [PMID: 12770770 DOI: 10.1016/s0300-9084(03)00080-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The action of sialyltransferases (STs) on cell surface glycoconjugates is a key process in shaping cell phenotype in a variety of cells mostly involved in migratory and adhesive pathways. The factors determining cell-specific pattern of glycosylation are so far poorly understood. Most STs are resident proteins of the Golgi apparatus, where acceptors are sialylated while they are in transit to the cell surface. To identify putative structural features that may account for their acceptor preference, we analyzed 53 cloned animal and human STs. We could identify conserved regions and peptide motifs representative of ST subfamilies, located at the C-terminal end of the hypervariable region upstream from the L-sialyl motif. Residues 93-100 in human ST6Gal I (hST6Gal I) were shown to be crucial for enzymatic activity when deleted and expressed in CHO cells. The Delta100 hST6Gal I mutant protein was fully recognized by polyclonal anti-hST6Gal I antibodies and followed the intracellular secretory pathway. This indicated that the conserved QVWxKDS sequence is essential for the whole catalytic domain to acquire a biologically active conformation. When full-length epitope-tagged hST6Gal I and hST6GalNAc I constructs were transfected in CHO cells, the alpha-2,6 sialylated glycotope was found to be largely restricted to intracellular resident acceptors and enzymatic activity based on fluorescent lectin staining. In contrast, both enzymes deprived of their membrane anchor and part of the hypervariable region but still possessing the conserved domains exhibited a very efficient transfer of sialic acid to cell surface glycoconjugates. Colocalization of the ST6Gal I mutant proteins with early and late Golgi markers such as giantin or rab6 proteins confirmed that soluble STs migrate forward in these subcompartments where they can act upon newly synthesized acceptors and follow the secretory pathway. It is thus concluded that downstream from the transmembrane domain, native STs possess peptide sequences that allow them to sialylate glycoprotein acceptors selectively along their transit within Golgi stacks.
Collapse
Affiliation(s)
- Sandrine Donadio
- Laboratoire de Neuroglycobiologie, Institut du Cerveau, UMR 6149 CNRS et Université de Provence, GLM-CNRS, IFR du Cerveau, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Susumu N, Kawakami H, Aoki D, Suzuki N, Suzuki A, Uejima T, Hirano H, Nozawa S. Subcellular Localization of Galactosyltransferase Associated with Tumors in Endometrial and Ovarian Cancer Cells. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nobuyuki Susumu
- Department of Obstetrics and Gynecology, School of Medicine, Keio University
| | | | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University
| | - Atsushi Suzuki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University
| | | | - Hiroshi Hirano
- Department of Anatomy, Kyorin University School of Medicine
- Nittai Jusei Medical College for Judo Therapeutics
| | - Shiro Nozawa
- Department of Obstetrics and Gynecology, School of Medicine, Keio University
| |
Collapse
|
15
|
Abstract
Glycosyltransferases involved in N- and O-glycan chain elongation and termination are localized in the Golgi apparatus. Early evidence in support of this rule was based on fractionation techniques and was corroborated by numerous immunocytochemical studies. Usually these studies were confined to cultured cell lines exhibiting little differentiation features, such as HeLa cells. However, localization studies conducted in primary cell cultures (e.g., human umbilical vein endothelial cells), cells obtained ex vivo (e.g., sperm cells), and tissue sections (e.g., intestinal, renal, or hepatic tissue) often reveal ectopic localizations of glycosyltransferases usually at post-Golgi sites, including the plasma membrane. Hence, extracellular cues resulting from specific adhesion sites may influence post-Golgi trafficking routes, which may be reflected by ectopic localization of Golgi enzymes.
Collapse
Affiliation(s)
- Eric G Berger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Bragonzi A, Distefano G, Buckberry LD, Acerbis G, Foglieni C, Lamotte D, Campi G, Marc A, Soria MR, Jenkins N, Monaco L. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:273-82. [PMID: 10779678 DOI: 10.1016/s0304-4165(00)00023-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely employed to produce glycosylated recombinant proteins. Our group as well as others have demonstrated that the sialylation defect of CHO cells can be corrected by transfecting the alpha2,6-sialyltransferase (alpha2,6-ST) cDNA. Glycoproteins produced by such CHO cells display both alpha2,6- and alpha2,3-linked terminal sialic acid residues, similar to human glycoproteins. Here, we have established a CHO cell line stably expressing alpha2,6-ST, providing a universal host for further transfections of human genes. Several relevant parameters of the universal host cell line were studied, demonstrating that the alpha2,6-ST transgene was stably integrated into the CHO cell genome, that transgene expression was stable in the absence of selective pressure, that the recombinant sialyltransferase was correctly localized in the Golgi and, finally, that the bioreactor growth parameters of the universal host were comparable to those of the parental cell line. A second step consisted in the stable transfection into the universal host of cDNAs for human glycoproteins of therapeutic interest, i.e. interferon-gamma and the tissue inhibitor of metalloproteinases-1. Interferon-gamma purified from the universal host carried 40.4% alpha2,6- and 59.6% alpha2,3-sialic acid residues and showed improved pharmacokinetics in clearance studies when compared to interferon-gamma produced by normal CHO cells.
Collapse
Affiliation(s)
- A Bragonzi
- DIBIT, Department of Biological and Technological Research, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Malissard M, Zeng S, Berger EG. Expression of functional soluble forms of human beta-1, 4-galactosyltransferase I, alpha-2,6-sialyltransferase, and alpha-1, 3-fucosyltransferase VI in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 2000; 267:169-73. [PMID: 10623593 DOI: 10.1006/bbrc.1999.1946] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNAs encoding soluble forms of human beta-1, 4-galactosyltransferase I (EC 2.4.1.22), alpha-2,6-sialyltransferase (EC 2.4.99.1), and alpha-1,3-fucosyltransferase VI (EC 2.4.1.65), respectively, have been expressed in the methylotrophic yeast Pichia pastoris. The vector pPIC9 was used, which contains the N-terminal signal sequence of Saccharomyces cerevisiae alpha-factor to allow entry into the secretory pathway. The recombinant enzymes had similar kinetic properties as their native counterparts. Their identity was confirmed by Western blotting. Recombinant enzymes may be used for in vitro synthesis of oligosaccharides.
Collapse
Affiliation(s)
- M Malissard
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland.
| | | | | |
Collapse
|
18
|
Borsig L, Imbach T, Höchli M, Berger EG. alpha1,3Fucosyltransferase VI is expressed in HepG2 cells and codistributed with beta1,4galactosyltransferase I in the golgi apparatus and monensin-induced swollen vesicles. Glycobiology 1999; 9:1273-80. [PMID: 10536043 DOI: 10.1093/glycob/9.11.1273] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major alpha1,3fucosyltransferase activity in plasma, liver, and kidney is related to fucosyltransferase VI which is encoded by the FUT6 gene. Here we demonstrate the presence of alpha1, 3fucosyltransferase VI (alpha3-FucT VI) in the human HepG2 hepatoma cell line by specific activity assays, detection of transcripts, and the use of specific antibodies. First, FucT activity in HepG2 cell lysates was shown to prefer sialyl-N-acetyllactosamine as acceptor substrate indicating expression of alpha3-FucT VI. RT-PCR analysis further confirmed the exclusive presence of the alpha3-FucT VI transcripts among the five human alpha3-FucTs cloned to date. alpha3-FucT VI was colocalized with beta1,4galactosyltransferase I (beta4-GalT I) to the Golgi apparatus by dual confocal immunostaining. Pulse/chase analysis of metabolically labeled alpha3-FucT VI showed maturation of alpha3-FucT VI from the early 43 kDa form to the mature, endoglycosidase H-resistant form of 47 kDa which was detected after 2 h of chase. alpha3-FucT VI was released to the medium and accounted for 50% of overall cell-associated and released enzyme activity. Release occurred by proteolytical cleavage which produced a soluble form of 43 kDa. Monensin treatment segregated alpha3-FucT VI from the Golgi apparatus to swollen peripheral vesicles where it was colocalized with beta4-GalT I while alpha2,6(N)sialyltransferase remained associated with the Golgi apparatus. Both constitutive secretion of alpha3-FucT VI and its monensin-induced relocation to vesicles analogous to beta4-GalT I suggest a similar post-Golgi pathway of both alpha3-FucT VI and beta4-GalT I.
Collapse
Affiliation(s)
- L Borsig
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
19
|
Li CM, Joshee N, Adler KB, Cheng PW. Development of monoclonal antibodies against bovine mucin core 2 beta6 N-acetylglucosaminyltransferase. Glycoconj J 1999; 16:555-62. [PMID: 10815992 DOI: 10.1023/a:1007030223118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular cloning techniques have been used to produce abundant amounts of recombinant glycosyltransferases for biochemical studies. We recently cloned a cDNA which encoded bovine mucin core 2 beta6N-acetylglucosaminyl transferase (C2TF). Poly-histidine-C2TF fusion protein was generated from the cloned cDNA in the E. coli Xpress system and used to produce monoclonal antibodies (MAbs). We obtained seven hybridomas which secreted MAbs against bovine C2TF in mouse ascites with titers ranging from 1:1280 to 1:40960 as assessed by immunofluorescence assay (IF). Isotyping revealed that all seven MAbs were IgG (4 IgG1, 2 IgG2b and 1 IgG2a). The affinity constants (M(-1)) for these MAbs range from 5.4 x 10(7) to 1.2 x 10(9). These MAbs recognized bovine C2TF in tissue sections and on Western blottings. Six of these MAbs reacted with human core 2-M enzyme and one with both core 2-L and core 2-M enzymes on Western blottings. Therefore, these antibodies should be useful for further study of bovine and human core 2 enzymes.
Collapse
Affiliation(s)
- C M Li
- Department of Pediatrics, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
20
|
Keusch J, Lydyard PM, Berger EG, Delves PJ. B lymphocyte galactosyltransferase protein levels in normal individuals and in patients with rheumatoid arthritis. Glycoconj J 1998; 15:1093-7. [PMID: 10386894 DOI: 10.1023/a:1006957711557] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have quantified the level of beta4-galactosyltransferase protein in human B lymphocytes using an ELISA-based assay. Between 1-10ng of beta4-galactosyltransferase was detected per mg total cellular protein, indicating that this enzyme constitutes <0.001% of B lymphocyte cellular protein. Akin to previous studies, individuals with rheumatoid arthritis exhibited reduced lymphocytic galactosyltransferase enzyme activity compared with normal controls when using ovalbumin as the acceptor substrate. The levels of enzyme protein present in B lymphocytes from patients with rheumatoid arthritis was, however, not reduced suggesting that the B lymphocyte galactosyltransferase catalytic activity may be regulated post-translationally.
Collapse
Affiliation(s)
- J Keusch
- Department of Immunology, University College London, UK
| | | | | | | |
Collapse
|
21
|
Du X, Stoops JD, Mertz JR, Stanley CM, Dixon JL. Identification of two regions in apolipoprotein B100 that are exposed on the cytosolic side of the endoplasmic reticulum membrane. J Cell Biol 1998; 141:585-99. [PMID: 9566961 PMCID: PMC2132751 DOI: 10.1083/jcb.141.3.585] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Revised: 03/23/1998] [Indexed: 02/07/2023] Open
Abstract
Protease protection assays of apolipoprotein B100 (apoB) in digitonin-permeabilized HepG2 cells indicated that multiple domains of apoB are exposed to the cytosol through an extensive portion of the secretory pathway. The intracellular orientation of apoB in the secretory pathway was confirmed by immunocytochemistry using antibodies recognizing specific domains of apoB in streptolysin-O (STP-O)- and saponin-permeabilized HepG2 cells. Lumenal epitopes on marker proteins in secretory pathway compartments (p63, p53, and galactosyltransferase) were not stained by antibodies in STP-O-treated cells, but were brightly stained in saponin-treated cells, confirming that internal membranes were not perforated in STP-O-treated cells. An anti-apoB peptide antibody (B4) recognizing amino acids 3221-3240 caused intense staining in close proximity to the nuclear membrane, and less intensely throughout the secretory pathway in STP-O-permeabilized cells. Staining with this antibody was similar in STP-O- and saponin-treated cells, indicating that this epitope in apoB is exposed to the cytosol at the site of apoB synthesis and throughout most of the remaining secretory pathway. Similar results indicating a cytosolic orientation were obtained with monoclonal antibody CC3.4, which recognizes amino acids 690-797 (79-91 kD) in apoB. Two polyclonal antibodies made to human LDL and two monoclonal antibodies recognizing amino acids 1878-2148 (D7.2) and 3214-3506 (B1B6) in apoB did not produce a strong reticular signal for apoB in STP-O-treated cells. The anti-LDL and B1B6 antibodies produced almost identical punctate patterns in STP-O-treated cells that overlapped with LAMP-1, a membrane marker for lysosomes. These observations suggest that the B1B6 epitope of apoB is exposed on the surface of the lysosome. The results identify two specific regions in apoB that are exposed to the cytosol in the secretory pathway.
Collapse
Affiliation(s)
- X Du
- Department of Food Science and Human Nutrition, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Berger EG, Burger P, Borsig L, Malissard M, Felner KM, Zeng S, Dinter A. Immunodetection of glycosyltransferases: prospects and pitfalls. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:119-32. [PMID: 9498071 DOI: 10.1007/978-1-4615-5383-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- E G Berger
- Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Linstedt AD, Mehta A, Suhan J, Reggio H, Hauri HP. Sequence and overexpression of GPP130/GIMPc: evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein. Mol Biol Cell 1997; 8:1073-87. [PMID: 9201717 PMCID: PMC305715 DOI: 10.1091/mbc.8.6.1073] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is thought that residents of the Golgi stack are localized by a retention mechanism that prevents their forward progress. Nevertheless, some early Golgi proteins acquire late Golgi modifications. Herein, we describe GPP130 (Golgi phosphoprotein of 130 kDa), a 130-kDa phosphorylated and glycosylated integral membrane protein localized to the cis/medial Golgi. GPP130 appears to be the human counterpart of rat Golgi integral membrane protein, cis (GIMPc), a previously identified early Golgi antigen that acquires late Golgi carbohydrate modifications. The sequence of cDNAs encoding GPP130 indicate that it is a type II membrane protein with a predicted molecular weight of 81,880 and an unusually acidic lumenal domain. On the basis of the alignment with several rod-shaped proteins and the presence of multiple predicted coiled-coil regions, GPP130 may form a flexible rod in the Golgi lumen. In contrast to the behavior of previously studied type II Golgi proteins, overexpression of GPP130 led to a pronounced accumulation in endocytotic vesicles, and endogenous GPP130 reversibly redistributed to endocytotic vesicles after chloroquine treatment. Thus, localization of GPP130 to the early Golgi involves steps that are saturable and sensitive to lumenal pH, and GPP130 contains targeting information that specifies its return to the Golgi after chloroquine washout. Given that GIMPc acquires late Golgi modifications in untreated cells, it seems likely that GPP130/GIMPc continuously cycles between the early Golgi and distal compartments and that an unidentified retrieval mechanism is important for its targeting.
Collapse
Affiliation(s)
- A D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
24
|
Novelli A, Gambella G, Casu A, Paltrinieri F, Persi A, Canepa M, Carta L, Nanni G. Impairment of vitamin A uptake by rat hepatocytes and fat storing cells determined by Monensin--morphological observations. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1995; 47:413-20. [PMID: 8871076 DOI: 10.1016/s0940-2993(11)80362-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The action of the Na+/H+ antiport monensin on vitamin A uptake by rat liver has been studied in vivo. The quickfading autofluorescence of vitamin A has been used for the determination of vitamin A uptake by the liver. Pretreatment of rats intraperitoneally with monensin decreases the uptake of vitamin A by hepatocytes and its transfer for storage to fat storing cells. Pretreatment of rats intraperitoneally with vitamin A for a short time, then with monensin, shows that the hepatocytes no longer transfer vitamin A to fat storing cells for storage. These results might indicate that monensin impairs the uptake of vitamin A by the hepatocytes and might also impair the transport of vitamin A from parenchymal to perisinusoidal cells.
Collapse
Affiliation(s)
- A Novelli
- Institute of General Pathology, University of Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 1995; 108 ( Pt 4):1617-27. [PMID: 7615680 DOI: 10.1242/jcs.108.4.1617] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of beta 1,2 N-acetylglucosaminyltransferase I (NAGT I), alpha 1,3-1,6 mannosidase II (Mann II), beta 1,4 galactosyltransferase (GalT), alpha 2,6 sialyltransferase (SialylT) was determined by immuno-labelling of cryo-sections from HeLa cell lines. Antibody labelling in the HeLa cell line was made possible by stable expression of epitope-tagged forms of these proteins or forms from species to which specific antibodies were available. NAGT I and Mann II had the same distribution occupying the medial and trans cisternae of the stack. GalT and SialylT also had the same distribution but they occupied the trans cisterna and the trans-Golgi network (TGN). These results generalise our earlier observations on the overlapping distribution of Golgi enzymes and show that each of the trans compartments of the Golgi apparatus in HeLa cells contains unique mixtures of those Golgi enzymes involved in the construction of complex, N-linked oligosaccharides.
Collapse
Affiliation(s)
- C Rabouille
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Chapter 5 Biosynthesis 2c. Glycosyltransferases Involved in the Synthesis of N-Glycan Antennae. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
27
|
Dinter A, Berger EG. The regulation of cell- and tissue-specific expression of glycans by glycosyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 376:53-82. [PMID: 8597263 DOI: 10.1007/978-1-4615-1885-3_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Dinter
- Institute of Physiology, University of Zurich, Switzerland
| | | |
Collapse
|
28
|
Reaves B, Banting G. Vacuolar ATPase inactivation blocks recycling to the trans-Golgi network from the plasma membrane. FEBS Lett 1994; 345:61-6. [PMID: 8194602 DOI: 10.1016/0014-5793(94)00437-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TGN38/41 is an integral membrane protein which recycles between the trans-Golgi network (TGN) and the cell surface but is predominantly located in the TGN of rat (NRK) cells at steady state. As part of our studies on the mechanism and route of recycling between the TGN and the cell surface we have used chloroquine or Bafilomycin A1 to modulate the lumenal pH of endocytic organelles. The data we present demonstrate that inactivation of the proton pump which maintains the acidic environment within the lumen of endocytic organelles leads to an accumulation of TGN38/41 in early endosomes. These data confirm the observation that TGN38/41 recycles between the plasma membrane and the TGN and identifies a specific block in that recycling pathway.
Collapse
Affiliation(s)
- B Reaves
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
29
|
Krezdorn CH, Kleene RB, Watzele M, Ivanov SX, Hokke CH, Kamerling JP, Berger EG. Human beta 1,4 galactosyltransferase and alpha 2,6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:809-17. [PMID: 8143735 DOI: 10.1111/j.1432-1033.1994.tb18683.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biosynthesis and intracellular transport of recombinant human full-length beta 1,4 galactosyltransferase (GT) and full-length alpha 2,6 sialyltransferase (ST) were investigated in Saccharomyces cerevisiae. Recently, enzymic activity of recombinant GT (rGT) in crude homogenates of S. cerevisiae could successfully be demonstrated [Krezdorn, C., Watzele, G., Kleene, R. B., Ivanov, S. X. & Berger, E. G. (1993) Eur. J. Biochem. 212, 113-120]. In the present work, we show that, in yeast strains transformed with plasmid pDPSIA containing the cDNA coding for human ST, rST enzymic activity using asialo-fetuin or N-acetyllactosamine as acceptor substrates could readily be detected. Analysis by 1H-NMR spectroscopy of the disaccharide product of rGT, as recently reported, and the trisaccharide product of rST demonstrated that only the expected glycosidic linkages were formed. Following mechanical disruption of yeast cells, both enzymes sedimented with a fraction enriched in membranes of the endoplasmic reticulum (ER) and were activated by Triton X-100 3-5-fold. rGT and rST could be immunoprecipitated from their [35S]Met-labelled transformed yeast extracts using polyclonal antibodies raised against fusion proteins consisting of beta-galactosidase-GT or beta-galactosidase-ST, respectively, expressed in Escherichia coli. For rGT a single glycosylated form of apparent molecular mass 48 kDa was reported, but for rST two main bands corresponding to apparent molecular masses of 48 kDa and 44 kDa, respectively, were detected. Immunoprecipitation from either tunicamycin-treated [35S]Met-labelled transformed yeast cells or labelling with radio-active sugars both indicated that the 44-kDa form of rST was non-glycosylated and that the 48-kDa form of rST was core N-glycosylated. In addition, core glycosylation of both recombinant enzymes demonstrated that they were competent for translocation across the ER membranes. However, the 44-kDa form of rST was converted to the 48-kDa glycosylated form only slowly, suggesting a mechanism of posttranslational translocation. Absence of hyperglycosylation of rST and rGT in wild type and lack of the Golgi-specific man-alpha 1,6-man epitope suggest that the recombinant enzymes did not enter the yeast Golgi apparatus. These results indicated that both rGT and rST are retained as enzymically active enzymes in the ER of yeast and suggest a ribonucleoprotein-independent import of rST into the ER.
Collapse
Affiliation(s)
- C H Krezdorn
- Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Kleene R, Berger EG. The molecular and cell biology of glycosyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:283-325. [PMID: 8280744 DOI: 10.1016/0304-4157(93)90003-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R Kleene
- Institute of Physiology, University of Zurich, Switzerland
| | | |
Collapse
|