1
|
Ghodrati F, Parivar K, Amiri I, Roodbari NH. Exploring miR-34a, miR-449, and ADAM2/ADAM7 Expressions as Potential Biomarkers in Male Infertility: A Combined In Silico and Experimental Approach. Biochem Genet 2025:10.1007/s10528-025-11050-1. [PMID: 39928278 DOI: 10.1007/s10528-025-11050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
miR-34a and miR-449 are key miRNAs involved in sperm function and male fertility, with their dysregulation potentially contributing to male infertility. ADAM proteins, specifically ADAM2 and ADAM7, are also implicated in sperm function. This study investigates the interactions between miR-34a, miR-449, and ADAM2/ADAM7, exploring their roles in male infertility through both experimental analyses and molecular docking. In this case-control study, 15 infertile males and 15 healthy controls were included. Gene expression levels of miR-34a, miR-449, and SOX30 were measured using real-time PCR, while protein levels of ADAM7 and ADAM2 in sperm were assessed through western blotting. Additionally, molecular docking was performed to analyze the binding affinities between miR-34a/miR-449 and ADAM2/ADAM7, with docking scores and confidence levels evaluated. Expression levels of ADAM7 and ADAM2 proteins in sperm from the infertile group showed significant differences compared with the control group (P ≤ 0.05). A significant difference was observed in the expression of miR-449, miR-34a, and SOX30 genes between the control and infertile groups (P < 0.05). A significant correlation between miR-34a expression, ADAM7 protein expression, and sperm morphology was observed. However, no statistically significant correlation was found between miR-34a expression and sperm motility, sperm count, blastocyst, or embryo rates in ICSI and IVF (P ≥ 0.05). Molecular docking and dynamics studies revealed strong interactions between miR-34a/miR-449 and ADAM proteins. The ADAM7/miR-34a complex showed the highest binding affinity with a docking score of - 372.40 and a confidence score of 0.9884, followed by ADAM7/miR-449. Hydrogen bond analysis indicated stable binding, with 9 bonds for ADAM2/miR-34a and 7 for ADAM7/miR-34a. These interactions suggest a significant role in regulating sperm morphology and function.miR-34a, miR-449, ADAM7, and ADAM2 protein expression appear to be involved in the molecular mechanisms of male infertility. These parameters show potential as biomarkers in assisted reproductive technology techniques, particularly by influencing sperm morphology and function.
Collapse
Affiliation(s)
- Fariba Ghodrati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Iraj Amiri
- Department of Anatomy and Embryology, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03594-7. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
4
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
6
|
Adriansyah RF, Margiana R, Supardi S, Narulita P. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev Rep 2023; 19:2073-2093. [PMID: 37440145 DOI: 10.1007/s12015-023-10577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Infertility has become one of the most common issues worldwide, which has negatively affected society and infertile couples. Meanwhile, male infertility is responsible for about 50% of infertility. Accordingly, a great number of researchers have focused on its treatment during the last few years; however, current therapies such as assisted reproductive technology (ART) are not effective enough in treating male infertility. Because of their self-renewal and differentiation capabilities and unlimited sources, stem cells have recently raised great hope in the treatment of reproductive system disorders. Stem cells are undifferentiated cells that can induce different numbers of specific cells, such as male and female gametes, demonstrating their potential application in the treatment of infertility. The present review aimed at identifying the causes and potential factors that influence male fertility. Besides, we highlighted the recent studies that investigated the efficiency of stem cells such as spermatogonial stem cells (SSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) in the treatment of various types of male infertility.
Collapse
Affiliation(s)
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
7
|
Cai Y, Liu Z, Zhang G, Yang Y, Zhang Y, Wang F, Deng M. miR-101-5p overexpression suppresses the proliferation of goat spermatogonial stem cells by targeting EZH2. Anim Reprod Sci 2023; 255:107281. [PMID: 37352705 DOI: 10.1016/j.anireprosci.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
MicroRNAs (miRNAs), as post-transcriptional gene mediators, regulate the biological characteristics of spermatogonial stem cells (SSCs), including proliferation, differentiation and apoptosis. However, the potential roles and mechanisms by which miR-101-5p affected the biological characters of goat SSCs have not been fully elucidated. Herein, we reported that miR-101-5p overexpression decreased cell viability (P < 0.01), arrested cell cycle in the G1 phase (P < 0.05), and aggravated apoptosis of goat SSCs (P < 0.01) compared with negative control (NC), as determined by CCK-8 assay and flow cytometry analysis. Additionally, PCNA protein expression was attenuated by miR-101-5p overexpression (P < 0.05). Notably, the expression of SSCs specific genes Oct4 (P < 0.05), PLZF (P < 0.01) and DAZL (P < 0.01) were decreased in miR-101-5p overexpressed SSCs. Furthermore, the dual luciferase reporter assay showed that, when co-transfected with miR-101-5p mimics, the relative luciferase activity of EZH2 wide-type (WT) was inhibited (P < 0.05) compared with the transfection of EZH2 mutant (MUT). EZH2 expression was negatively correlated with miR-101-5p expression in goat SSCs. Collectively, our data implicates that miR-101-5p overexpression aggravates cell apoptosis, and suppresses cell proliferation of goat SSCs via targeting EZH2, which may impair spermatogenesis.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Zhao M, Zhou G, Wang J, Zhang Y, Xue J, Liu J, Xie J, Ren L, Zhou X. MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells. Nanotoxicology 2023:1-13. [PMID: 37315217 DOI: 10.1080/17435390.2023.2223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.
Collapse
Affiliation(s)
- Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Yao B, Kang Y, An K, Tan Y, Hou Q, Zhang D, Su J. Comparative analysis of microRNA and messengerRNA expression profiles in plateau zokor testicular cells under reproductive suppression. Front Vet Sci 2023; 10:1184120. [PMID: 37275617 PMCID: PMC10235463 DOI: 10.3389/fvets.2023.1184120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Reproductive suppression is an adaptive strategy that affects the success rate and reproductive efficiency in animals, which in turn affects population continuation and evolution. However, no studies on the miRNAs in testicular development and spermatogenesis regulatory mechanisms under reproductive suppression have been reported. Methods In this study, the differentially expressed (DE) miRNAs, miRNA-mRNA interaction network and function of the plateau zokor testicular cells of non-breeders and breeders during the breeding season were comprehensively analyzed by transcriptomics. Results In total, 381 known and 94 novel miRNAs were determined. Compared with that in the breeders, 70 downregulated and 68 upregulated DE miRNAs were identified in the non-breeders. We predicted 1670 significant target mRNAs by analyzing the miRNA and mRNA expression profiles. According to the miRNA-mRNA interaction network, the target mRNAs of the DE miRNAs were related to testicular development and spermatogenesis. GO indicate that the target mRNAs were related to testicular development and spermatogenesis. KEGG indicate that pathways of target mRNAs enrichment related to testicular development, spermatogenesis, and energy metabolism. PROK2 was determined as the target mRNA of rno-miR-143-3p. Discussion Our study offers a basis for the regulatory mechanisms of miRNAs in testicular development and spermatogenesis in plateau zokor under reproductive suppression and offers a reference for reproductive regulation.
Collapse
Affiliation(s)
- Baohui Yao
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Kang An
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Qiqi Hou
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Degang Zhang
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Coen S, Keogh K, Lonergan P, Fair S, Kenny DA. Early life nutrition affects the molecular ontogeny of testicular development in the young bull calf. Sci Rep 2023; 13:6748. [PMID: 37185277 PMCID: PMC10130005 DOI: 10.1038/s41598-022-23743-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023] Open
Abstract
Enhanced early life nutrition accelerates sexual development in the bull calf through neuroendocrine-signalling mediated via the hypothalamic-pituitary-testicular axis. Our aim was to assess the impact of contrasting feeding regimes in bull calves during the first 12 weeks of life on the testes transcriptome and proteome. Holstein-Friesian bull calves were offered either a high (HI) or moderate (MOD) plane of nutrition, designed to support target growth rates of 1.0 and 0.5 kg/day, respectively. At 12 weeks of age all calves were euthanized, testicular parenchyma sampled, and global transcriptome (miRNAseq and mRNAseq) and proteome analyses undertaken. Bioinformatic analyses revealed 7 differentially expressed (DE) miRNA and 20 DE mRNA. There were no differentially abundant proteins between the two dietary groups. Integration of omics results highlighted a potential role for the cadherin gene, CDH13, in earlier reproductive development. Furthermore, co-regulatory network analysis of the proteomic data revealed CDH13 as a hub protein within a network enriched for processes related to insulin, IGF-1, androgen and Sertoli cell junction signalling pathways as well as cholesterol biosynthesis. Overall, results highlight a potential role for CDH13 in mediating earlier reproductive development as a consequence of enhanced early life nutrition in the bull calf.
Collapse
Affiliation(s)
- Stephen Coen
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate Keogh
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
11
|
Wang B, Zhai C, Li Y, Ma B, Li Z, Wang J. Sertoli cells-derived exosomal miR-30a-5p regulates ubiquitin E3 ligase Zeb2 to affect the spermatogonial stem cells proliferation and differentiation. Reprod Toxicol 2023; 117:108340. [PMID: 36731640 DOI: 10.1016/j.reprotox.2023.108340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
The role of spermatogonial stem cells (SSCs) is crucial in spermatogenesis, and extracellular vesicles (EVs) have been the focus of research as an important intercellular communication mechanism. Various endogenous regulatory factors secreted by Sertoli cells (SCs) can affect the self-maintenance and regeneration of SSCs, but little is known about the roles of SCs-derived exosomal microRNAs (miRNAs) on SSCs. In this study, we aimed to explore the regulation of the SCs-derived exosomal miR-30a-5p on SSCs proliferation and differentiation. EVs from the SCs were detected by electron microscopy and nanoparticle tracking analysis (NTA). Subsequently, the SSCs were treated with the SCs-derived extracellular vesicles (SCs-EVs). CCK-8 assay and EdU staining was applied to detect the cell proliferation, and the results indicated that SCs-EVs promoted the SSCs proliferation. Western blot detection of the SSCs markers (Gfrα1, Plzf, Stra8, and C-kit) indicated that SCs-EVs promoted the SSCs differentiation. Additionally, we found that SCs-EVs secreted miR-30a-5p to show the promoting effects. Besides, we discovered that miR-30a-5p targeted zinc finger E-box binding homeobox 2 (Zeb2) to regulate the ubiquitination of fibroblast growth factor 9 (Fgf9) in SSCs. miR-30a-3p/Zeb2/Fgf9 promoted the SSCs proliferation and differentiation by activating the mitogen‑activated protein kinase (MAPK) signaling pathway. Taken together, our study showed that SCs-EVs can transport miR-30a-5p to SSCs and affect SSCs proliferation and differentiation by regulating the MAPK signaling pathway via Zeb2/Fgf9. This paper disclosed a novel molecular mechanism that regulates SSCs proliferation and differentiation, which could be valuable for the treatment of male infertility.
Collapse
Affiliation(s)
- Bin Wang
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Chengxi Zhai
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Yingzhong Li
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Bo Ma
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Zhu Li
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Jian Wang
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China.
| |
Collapse
|
12
|
Zhong D, Zhang L, Huang K, Chen M, Chen Y, Liu Q, Shi D, Li H. circRNA-miRNA-mRNA network analysis to explore the pathogenesis of abnormal spermatogenesis due to aberrant m6A methylation. Cell Tissue Res 2023; 392:605-620. [PMID: 36656346 DOI: 10.1007/s00441-022-03725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/10/2022] [Indexed: 01/20/2023]
Abstract
Many studies have shown that circRNAs and miRNAs play important roles in many different life processes. However, the function of circRNAs in spermatogenesis remains unknown. Here, we aimed to explore the mechanisms whereby circRNA-miRNAs-mRNAs regulate abnormal m6A methylation in GC-1spg spermatogonia. We first reduced m6A methylation in GC-1spg whole cells after knocking down the m6A methyltransferase enzyme, METTL3. Then, we performed circRNA- and miRNA-seq on GC-1spg cells with low m6A methylation and identified 48 and 50 differentially expressed circRNAs and miRNAs, respectively. We also predicted the targets of the differentially expressed miRNAs by using Miranda software and further constructed the differentially expressed circRNA-differentially expressed miRNA-mRNA ceRNA network. GO analysis was performed on the differentially expressed circRNAs and miRNA-targeted mRNAs, and an interaction network between the proteins of interest was constructed using Cytoscape. The final GO analysis showed that the target mRNAs were involved in sperm formation. Therefore, a PPI network was subsequently constructed and 2 hub genes (H2afx and Dnmt3a) were identified. In this study, we constructed a ceRNA network and explored the regulatory roles of circRNAs and miRNAs in the pathogenesis of abnormal spermatogenesis caused by low levels of methylated m6A. Also, we identified two pivotal genes that may be key factors in infertility caused by abnormal m6A methylation. This may provide some ideas for the treatment of infertility resulting from abnormal spermatogenesis.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China. .,Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Sethi S, Mehta P, Pandey A, Gupta G, Rajender S. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod Sci 2022; 29:3477-3493. [PMID: 35715552 DOI: 10.1007/s43032-022-01005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 - miRNAs found exclusively in one stage and absent in the other two stages; class 2 - miRNAs found in any two stages but absent in the third stage; class 3 - miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.
Collapse
Affiliation(s)
- Shruti Sethi
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Aastha Pandey
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Gopal Gupta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India.
| |
Collapse
|
14
|
Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of Spermatogonial Stem Cells in Spermatogenesis and Fertility Restoration. Front Endocrinol (Lausanne) 2022; 13:895528. [PMID: 35634498 PMCID: PMC9135128 DOI: 10.3389/fendo.2022.895528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the regulatory network of SSCs is of great significance in understanding the fundamental molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-based therapy for assisted reproduction. This review summarizes the latest research progress on the regulation of SSCs, and the potential application of SSCs for fertility restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro spermatogenesis from SSCs sets the stage for the production of SSCs from induced pluripotent stem cells (iPSCs) and subsequent spermatogenesis.
Collapse
Affiliation(s)
- Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | | | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renee A. Reijo Pera
- McLaughlin Research Institute, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
- Research Division, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
| |
Collapse
|
15
|
Jia B, Zhang L, Ma F, Wang X, Li J, Diao N, Leng X, Shi K, Zeng F, Zong Y, Liu F, Gong Q, Cai R, Yang F, Du R, Chang Z. Comparison of miRNA and mRNA Expression in Sika Deer Testes With Age. Front Vet Sci 2022; 9:854503. [PMID: 35464385 PMCID: PMC9019638 DOI: 10.3389/fvets.2022.854503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Linlin Zhang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fuquan Ma
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Naichao Diao
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fanli Zeng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ruopeng Cai
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Zhiguang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
16
|
Mu H, Liu S, Tian S, Chen B, Liu Z, Fan Y, Liu Y, Ma W, Zhang W, Fu M, Song X. Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active Compounds of Eucommiae Folium in Mice. Front Pharmacol 2022; 13:851930. [PMID: 35392568 PMCID: PMC8981153 DOI: 10.3389/fphar.2022.851930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Spermatogenesis directly determines the reproductive capacity of male animals. With the development of society, the increasing pressure on people’s lives and changes in the living environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional Chinese medicine as a tonic. In recent years, EF has been reported to improve spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice. Chemical components related to spermatogenesis in EF were predicted by network pharmacology. The biological activity of the predicted chemical components was measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid (CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was used to detect the effect of key genes on cell biological activity. Western blotting, qRT–PCR and immunofluorescence staining were used to analyse the molecular mechanism of related biological activities. The results showed that EFEE and CGA could improve spermatogenesis in mice. Furthermore, the main mechanism was that CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by promoting the expression of SHP2 and activating the downstream signaling pathways involved in these biological processes. This study provided strong evidence for elucidating the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical basis for dealing with the decrease in male reproductive capacity.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
LncRNA HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. In Vitro Cell Dev Biol Anim 2022; 58:295-306. [PMID: 35426065 DOI: 10.1007/s11626-022-00657-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
LncRNA HOX antisense intergenic RNA (HOTAIR) can regulate cancer-related gene expression and promote stem cell and tumor cell proliferation via mechanisms including the competing endogenous RNA (ceRNA) mechanism. HOTAIR is abundantly expressed in the genital tubercle of E11.5, E12.5, and E13.5 embryos, whereas it became barely detectable at E13.5 and expressed again in adult mouse testis. However, the underlying function and mechanism of HOTAIR in spermatogenesis have not been elucidated. Interestingly, other researchers reported that the function of gene Nanos C2HC-Type Zinc Finger 2 (nanos2) includes the maintenance of both the primordial germ cells (PGCs) and germline stem cells, and Nanos2 protein and transcripts (NANOS2) were detected only in PGCs from day E11.5 and undifferentiated spermatogonia in spermatogenesis. We therefore investigated the relationship between HOTAIR and NANOS2 in maintaining spermatogonial stem cell population. We found that, compared to the adult mouse, the expression levels of HOTAIR and NANOS2 in embryo mouse were significantly higher and miR-761expression level was lower. In mouse GC-1 spermatogonia cells, overexpression of miRNA-761 significantly inhibited the expression of NANOS2 and HOTAIR, suppressed the proliferation, and promotes apoptosis of cells. Knock down and overexpression of HOTAIR indicated that HOTAIR expression was positively correlated with NANOS2 expression; overexpressed HOTAIR could promote proliferation and suppresses apoptosis of GC-1 cells. By a rescue experiment and dual luciferase reporter assay, miR-761 was identified as a direct target of HOTAIR, and NANOS2 was identified as the direct target of miR-761. The above results indicate that HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. Our findings elucidate one of possible mechanisms and importance of HOTAIR in maintaining spermatogonial stem cell population, and provide new candidate genes and possible pathogenesis for male infertility.
Collapse
|
18
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
19
|
Walker WH. Regulation of mammalian spermatogenesis by miRNAs. Semin Cell Dev Biol 2022; 121:24-31. [PMID: 34006455 PMCID: PMC8591147 DOI: 10.1016/j.semcdb.2021.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Male fertility requires the continual production of sperm by the process of spermatogenesis. This process requires the correct timing of regulatory signals to germ cells during each phase of their development. MicroRNAs (miRNAs) in germ cells and supporting Sertoli cells respond to regulatory signals and cause down- or upregulation of mRNAs and proteins required to produce proteins that act in various pathways to support spermatogenesis. The targets and functional consequences of altered miRNA expression in undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and Sertoli cells are discussed. Mechanisms are reviewed by which miRNAs contribute to decisions that promote spermatogonia stem cell self-renewal versus differentiation, entry into and progression through meiosis, differentiation of spermatids, as well as the regulation of Sertoli cell proliferation and differentiation. Also discussed are miRNA actions providing the very first signals for the differentiation of spermatogonia stem cells in a non-human primate model of puberty initiation.
Collapse
Affiliation(s)
- William H. Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
21
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
22
|
Sperm miR-34c-5p Transcript Content and Its Association with Sperm Parameters in Unexplained Infertile Men. Reprod Sci 2021; 29:84-90. [PMID: 34494232 DOI: 10.1007/s43032-021-00733-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) play an essential role in regulatory functions during gametogenesis. There is evidence that dysregulation of miR-34c-5p is implicated in the pathogenesis of male infertility. Whether miR-34c-5p expression could represent the semen quality and be useful in prediction of the fertilizing ability in normozoospermic men was examined in this study. Normozoospermic infertile patients (n = 15) and fertile men (n = 15) were recruited from the Infertility Clinic of Ahvaz, Iran. Sperm contents of miR-34c-5p transcript in were assessed using real-time polymerase chain reaction. No significant differences were seen in semen characteristics between patients and fertile men. Infertile patients showed significant (p = 0.019) lower contents of sperm miR-34c-5p than fertile controls. Men with lower transcript contents of miR-34c-5p exhibit lower sperm motility and normal morphology. Sperm miR-34c-5p transcript with a relatively good diagnostic power discriminated unexplained infertile men (AUC = 0.751, 95% CI: 0.568-0.934; p = 0.019). Our findings show that sperm contents of miR-34c-5p transcript could reflect the quality of spermatozoa in etiology of unexplained male infertility and be helpful in predicting a successful pregnancy.
Collapse
|
23
|
Khanehzad M, Abolhasani F, Hassanzadeh G, Nourashrafeddin SM, Hedayatpour A. Determination of the Excitatory Effects of MicroRNA-30 in the Self-Renewal and Differentiation Process of Neonatal Mouse Spermatogonial Stem Cells. Galen Med J 2021; 9:e1829. [PMID: 34466599 PMCID: PMC8344142 DOI: 10.31661/gmj.v9i0.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. Materials and Methods: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. Results: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). Conclusion: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhasani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Azim Hedayatpour Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Telephone Number: +982166419072 Email Address:
| |
Collapse
|
24
|
Khanehzad M, Nourashrafeddin SM, Abolhassani F, Kazemzadeh S, Madadi S, Shiri E, Khanlari P, Khosravizadeh Z, Hedayatpour A. MicroRNA-30a-5p promotes differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod Biol Endocrinol 2021; 19:85. [PMID: 34108007 PMCID: PMC8188658 DOI: 10.1186/s12958-021-00758-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The importance of spermatogonial stem cells (SSCs) in spermatogenesis is crucial and intrinsic factors and extrinsic signals mediate fate decisions of SSCs. Among endogenous regulators, microRNAs (miRNAs) play critical role in spermatogenesis. However, the mechanisms which individual miRNAs regulate self- renewal and differentiation of SSCs are unknown. The aim of this study was to investigate effects of miRNA-30a-5p inhibitor on fate determinations of SSCs. METHODS SSCs were isolated from testes of neonate mice (3-6 days old) and their purities were performed by flow cytometry with ID4 and Thy1 markers. Cultured cells were transfected with miRNA- 30a-5p inhibitor. Evaluation of the proliferation (GFRA1, PLZF and ID4) and differentiation (C-Kit & STRA8) markers of SSCs were accomplished by immunocytochemistry and western blot 48 h after transfection. RESULTS Based on the results of flow cytometry with ID4 and Thy1 markers, percentage of purity of SSCs was about 84.3 and 97.4 % respectively. It was found that expression of differentiation markers after transfection was significantly higher in miRNA-30a- 5p inhibitor group compared to other groups. The results of proliferation markers evaluation also showed decrease of GFRA1, PLZF and ID4 protein in SSCs transfected with miRNA-30a-5p inhibitor compared to the other groups. CONCLUSIONS It can be concluded that inhibition of miRNA-30a-5p by overexpression of differentiation markers promotes differentiation of Spermatogonial Stem Cells.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Shiri
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
25
|
Khanlari P, Khanehzad M, Khosravizadeh Z, Sobhani A, Barakzai S, Kazemzadeh S, Hedayatpour A. Effect of miR-30a-5p on Apoptosis, Colonization, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank 2021; 19:258-268. [PMID: 33913738 DOI: 10.1089/bio.2020.0121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is a useful method for fertility preservation in preadolescent children suffering from cancer. However, SSCs may become damaged during cryopreservation due to the generation of reactive oxygen species (ROS). For this reason, various antioxidant agents have been used to protect SSCs from cryopreservation-induced damages. Recently, it has been reported that miR-30a-5p has antiapoptotic and antioxidant activity. The aim of this study was to assess the antiapoptotic and antioxidant effects of miR-30a-5p mimics in frozen-thawed SSCs. To this end, SSCs were isolated from male BALB/C mice (3-6 days old) and cultivated for 14 days. After the detection of optimum concentration, a miR-30a-5p mimic or miR-30a-5p inhibitor with Lipofectamine was transfected into SSCs and, finally, the cell groups were frozen for 1 week. After thawing, different properties, including cell viability (using MTT), colonization of SSCs (number and diameter of colonies), ROS generation (using DCFH-DA assay), levels of malondialdehyde (MDA) and superoxide dismutase (SOD), and gene expression of Bcl-2 and BAXBax (using quantitative real-time PCR), were investigated. The transfection of SSCs with miR-30a-5p mimics before the freezing-thawing process significantly increased the viability, number, and diameter of SSCs colonies. Also, the miR-30a-5p mimic decreased the levels of ROS production and MDA, but it increased the SOD levels. Moreover, the miR-30a-5p mimic decreased BAX and increased Bcl-2 expression in frozen-thawed SSCs. The transfection of SSCs with the miR-30a-5p mimic can increase cell viability and antioxidant defense, and it can decrease apoptosis during the freezing-thawing process. If SSC is able to produce spermatozoa after the transfection of miR-30a-5p and the freezing-thawing process, it can be suggested as a promising strategy for the cryopreservation of SSCs in prepubertal boys suffering from cancer.
Collapse
Affiliation(s)
- Parastoo Khanlari
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aligholi Sobhani
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azim Hedayatpour
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Yue W, Sun J, Zhang J, Chang Y, Shen Q, Zhu Z, Yu S, Wu X, Peng S, Li N, Hua J. Mir-34c affects the proliferation and pluripotency of porcine induced pluripotent stem cell (piPSC)-like cells by targeting c-Myc. Cells Dev 2021; 166:203665. [PMID: 33994350 DOI: 10.1016/j.cdev.2021.203665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
MicroRNAs are important regulators in stem cells, which involve in gene regulation, including cell proliferation, differentiation and apoptosis. As an important one, miR-34c participates in various processes by targeting protein-coding genes. It is generally considered as a tumor suppressor and cell adhesion inhibitor. However, whether miR-34c has effects on pluripotent stem cells is not clear. Here, by mir-34c mimics transfection, the function of miR-34c on porcine induced pluripotent stem cell (piPSC)-like cells was investigated. Bioinformatics analyses showed that c-Myc is miR-34c's candidate target, which was confirmed by dual Luciferase assay. The knockout of miR-34c indicated that mir-34c affects the proliferation and pluripotency of piPSC-like cells by targeting c-Myc. Our study explored the regulatory mechanism of miR-34c on piPSC-like cells, providing a reference for the establishment of true porcine PSCs.
Collapse
Affiliation(s)
- Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongxing Chang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim 2021; 56:555-576. [PMID: 33438262 DOI: 10.1111/rda.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiankang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuxin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
28
|
Zhou F, Chen W, Cui Y, Liu B, Yuan Q, Li Z, He Z. miRNA-122-5p stimulates the proliferation and DNA synthesis and inhibits the early apoptosis of human spermatogonial stem cells by targeting CBL and competing with lncRNA CASC7. Aging (Albany NY) 2020; 12:25528-25546. [PMID: 33231565 PMCID: PMC7803487 DOI: 10.18632/aging.104158] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic regulators of human spermatogonia stem cells (SSCs) remain largely unknown. We found that miRNA-122-5p was upregulated in human spermatogonia from obstructive azoospermia (OA) patients compared with non-obstructive azoospermia (NOA). MiRNA-122-5p stimulated the proliferation and DNA synthesis of human SSCs, whereas it inhibited the early apoptosis of human SSCs. CBL was predicted and identified as a direct target of miRNA-122-5p in human SSCs. CBL silencing led to an enhancement of cell proliferation and DNA synthesis and neutralized the effect of miRNA-122-5p inhibitor on the DNA synthesis of human SSCs. The decrease in the early apoptosis of human SSCs was observed after CBL knockdown. By comparing the profiles of lncRNAs between OA and NOA spermatogonia, CASC7 was significantly deficient in OA spermatogonia, and it had a direct association with miRNA-122-5p. LncRNA CASC7 competed with miRNA-122-5p, and it suppressed the inhibition of CBL. Collectively, these results implicate that miRNA-122-5p enhances the proliferation and DNA synthesis and inhibits the early apoptosis of human SSCs by targeting CBL and competing with lncRNA CASC7. Therefore, this study provides novel insights into epigenetic regulation of fate determinations of human SSCs, and it offers new targets for gene therapy of male infertility that is associated with aging.
Collapse
Affiliation(s)
- Fan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Plastic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Yinghong Cui
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Bang Liu
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Plastic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Zuping He
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China.,The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, Hunan, China
| |
Collapse
|
29
|
Lei JH, Yan W, Luo CH, Guo YM, Zhang YY, Wang XH, Su XJ. Cytotoxicity of nonylphenol on spermatogonial stem cells via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. World J Stem Cells 2020; 12:500-513. [PMID: 32742567 PMCID: PMC7360990 DOI: 10.4252/wjsc.v12.i6.500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With continuous advancement of industrial society, environmental pollution has become more and more serious. There has been an increase in infertility caused by environmental factors. Nonylphenol (NP) is a stable degradation product widely used in daily life and production and has been proven to affect male fertility. However, the underlying mechanisms therein are unclear. Thus, it is necessary to study the effect and mechanism of NP on spermatogonial stem cells (SSCs).
AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway.
METHODS SSCs were treated with NP at 0, 10, 20 or 30 µmol. MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs. Flow cytometry was conducted to measure SSC apoptosis. The expression of Bad, Bcl-2, cytochrome-c, pro-Caspase 9, SOX-2, OCT-4, Nanog, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot, and the mRNA expression of SOX-2, OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.
RESULTS Compared with untreated cells (0 μmol NP), SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2, Nanog, OCT-4, SOX-2, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, and PLZF (P < 0.05), whereas the expression of Bad, cytochrome-c, and pro-Caspase 9 increased significantly (P < 0.05). We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K, AKT, mTORC1, and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs (P < 0.05). NP exerted the greatest effect at 30 μmol among all NP concentrations.
CONCLUSION NP attenuated the proliferation, differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress. The associated mechanism may be related to the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jun-Hao Lei
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wen Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chun-Hua Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yang-Yang Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
- Center for Evidence-based and Translational Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin-Jun Su
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
30
|
Shi S, Shi Q, Sun Y. The effect of sperm miR-34c on human embryonic development kinetics and clinical outcomes. Life Sci 2020; 256:117895. [PMID: 32502545 DOI: 10.1016/j.lfs.2020.117895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023]
Abstract
AIMS We aimed to investigate the effect of sperm miR-34c on early human embryonic development kinetics and clinical outcomes of in vitro fertilization (IVF) patients. MATERIALS AND METHODS After oocyte insemination, residual sperm specimens were collected from 58 patients undergoing IVF. miR-34c expression levels in sperm, oocytes, zygotes, and embryos/blastocysts were detected with qRT-PCR, and embryonic development kinetics were observed using time-lapse technology. To confirm the role of miR-34c in regulation of early embryonic development, miR-34c siRNA was injected into zygotes obtained from in vitro-matured oocytes. A ROC curve was used to determine the cutoff value. Comparisons of embryonic development kinetics and clinical outcomes were performed according to the cutoff value. KEY FINDINGS The miR-34c expression level was highest in 3PN zygotes, but was not expressed in human oocytes. In the miR-34c siRNA group, embryonic development kinetic parameters t2, t3, t4, and t5 were significantly prolonged, but the cleavage rate and high-quality embryo rate were lower than in the control group. The levels of sperm miR-34c were negatively correlated with t5 and positively correlated with rates of blastocyst formation, high-quality blastocysts, and pregnancy. The miR-34c levels and the blastocyst formation rate were higher in the pregnancy group (p < 0.05). Logistic regression analysis showed that sperm miR-34c level was significantly correlated with pregnancy (OR: 5.056, 95% CI: 1.560-16.384; p = 0.007). SIGNIFICANCE The sperm miR-34c expression level is associated with embryonic development kinetics and clinical outcomes. Thus, miR-34c expression is beneficial to embryonic development and may be used as an indicator of IVF outcomes.
Collapse
Affiliation(s)
- Senlin Shi
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qiongyao Shi
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yingpu Sun
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
31
|
Finocchi F, Pelloni M, Balercia G, Pallotti F, Radicioni AF, Lenzi A, Lombardo F, Paoli D. Seminal plasma miRNAs in Klinefelter syndrome and in obstructive and non-obstructive azoospermia. Mol Biol Rep 2020; 47:4373-4382. [DOI: 10.1007/s11033-020-05552-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
|
32
|
MiRNAs Expression Profiling of Bovine ( Bos taurus) Testes and Effect of bta-miR-146b on Proliferation and Apoptosis in Bovine Male Germline Stem Cells. Int J Mol Sci 2020; 21:ijms21113846. [PMID: 32481702 PMCID: PMC7312616 DOI: 10.3390/ijms21113846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis is a complex biological process regulated by well-coordinated gene regulation, including MicroRNAs (miRNAs). miRNAs are endogenous non-coding ribonucleic acids (ncRNAs) that mainly regulate the gene expression at post-transcriptional levels. Several studies have reported miRNAs expression in bull sperm and the process of spermatogenic arrest in cattle and yak. However, studies for the identification of differential miRNA expression and its mechanisms during the developmental stages of testis still remain uncertain. In the current study, we comprehensively analyzed the expression of miRNA in bovine testes at neonatal (3 days after birth, n = 3) and mature (13 months, n = 3) stages by RNA-seq. Moreover, the role of bta-miR-146b was also investigated in regulating the proliferation and apoptosis of bovine male germline stem cells (mGSCs) followed by a series of experiments. A total of 652 miRNAs (566 known and 86 novel miRNAs) were identified, whereas 223 miRNAs were differentially expressed between the two stages. Moreover, an elevated expression level of bta-miR-146b was found in bovine testis among nine tissues, and the functional studies indicated that the overexpression of bta-miR-146b inhibited the proliferation of bovine mGSCs and promoted apoptosis. Conversely, regulation of bta-miR-146b inhibitor promoted bovine mGSCs proliferation. This study provides a basis for understanding the regulation roles of miRNAs in bovine testis development and spermatogenesis.
Collapse
|
33
|
Xu C, Shah MA, Mipam T, Wu S, Yi C, Luo H, Yuan M, Chai Z, Zhao W, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Int J Biol Sci 2020; 16:239-250. [PMID: 31929752 PMCID: PMC6949159 DOI: 10.7150/ijbs.38232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
34
|
Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, Pang W. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharmacol 2019; 863:172708. [PMID: 31568785 DOI: 10.1016/j.ejphar.2019.172708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a serious public health problem characterized by abnormal or excessive fat accumulation, which is caused by an energy imbalance between calories consumed and calories expended. MiRNAs have been involved in the regulation of occurrence and progression of obesity. This study aims to investigate the role of miR-324-5p in regulating the adipose tissue mass and preliminarily probe into its effect on progression of obesity. MiR-324-5p was upregulated in the epididymal white adipose tissues (eWAT), inguinal white adipose tissues (iWAT) and brown adipose tissues (BAT) of the mice fed with high fat diet (HFD). Under room temperature (RT) or thermoneutrality (TN) condition, when tail intravenously injected with miR-324-5p antagomir (anta-miR-324-5p), the fat mass and total weight of mice were both significantly suppressed. The suppressive effect was more distinct under TN than RT. The weight of iWAT and BAT were both inhibited by anta-miR-324-5p under TN. Moreover, PM20D1 was a direct target gene of miR-324-5p. In primary iWAT cells, the expression of PM20D1 was significantly increased by anta-miR-324-5p, whereas decreased by the miR-324-5p mimic. Furthermore, anta-miR-324-5p noticeably increased the cellular oxygen consumption in primary BAT and iWAT cells. Our findings indicated that inhibition of miR-324-5p increased PM20D1-mediated fat consumption and reduced body weight in mice, suggesting that miR-324-5p may be a novel therapeutic target against obesity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Yang Liu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wei Gao
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Rongrong Yuan
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Mengdi Zhang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wuyan Pang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China.
| |
Collapse
|
35
|
Ren L, Zhang J, Wang J, Wei J, Liu J, Li X, Zhu Y, Li Y, Guo C, Duan J, Sun Z, Zhou X. Silica nanoparticles induce spermatocyte cell apoptosis through microRNA-2861 targeting death receptor pathway. CHEMOSPHERE 2019; 228:709-720. [PMID: 31071558 DOI: 10.1016/j.chemosphere.2019.04.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Silica nanoparticles (SiNPs) are found in the environmental particulate matter and have been proved to pose an adverse effect on fertility. However, the relationship between miRNA and apoptosis induced by SiNPs in spermatogenesis and its underlying mechanism remains confusing. Therefore, the present study was designed to investigate the toxic effects of SiNPs on spermatogenic cells mediated through miRNAs. Spermatocyte cells were divided into 0 μg/mL and 5 μg/mL SiNPs groups, and the cells were collected and analyzed after passaging for 1, 10, 20, and 30 generations. miRNA profile and mRNA profile of spermatocyte cells were measured after exposure to SiNPs for 30 generations. Further, mimics and inhibitors of miRNA were used to verify the relationship between miRNA and their predicted target genes in the 30th-generation cells. The results showed that the degree of cell apoptosis in the SiNPs group significantly increased in the 30th generation. After exposure to SiNPs for 30 generations, the expression of 15 miRNAs was altered, including 5 upregulated miRNAs and 10 downregulated miRNAs. Of the 15 miRNAs, miR-138 and miR-2861 were related to the death receptor pathway. The miR-2861 mimic could target to regulate the mRNA expression of fas/fasl/ripk1 and increase the protein expression of Fas/FasL/RIPK1/FADD/caspase-8/caspase-3 of spermatogenic cells in the 30th generation, while the miR-138 inhibitor could not. In conclusion, SiNPs could cause apoptosis of spermatocyte cells by inhibiting the expression of miRNA-2861, thereby resulting in the upregulation of mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells. miRNA-2861 could be considered a biomarker of the toxic effect of SiNPs on spermatocyte cells. The main finding: Silica nanoparticles induce apoptosis in spermatocyte cells through microRNA-2861 inhibition, thereby upregulating mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells.
Collapse
Affiliation(s)
- Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; School of Nursing, Peking University, Beijing, 100191, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
36
|
Clotaire DZJ, Wei Y, Yu X, Ousman T, Hua J. Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reprod Fertil Dev 2019; 31:1315-1320. [PMID: 31009592 DOI: 10.1071/rd18252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/16/2019] [Indexed: 01/12/2023] Open
Abstract
Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.
Collapse
Affiliation(s)
- Daguia Zambe John Clotaire
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, Bangui, 999111, Central Africa
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tamgue Ousman
- Department of Biochemistry, University of Douala, Douala, 999108, Cameroon
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Corresponding author
| |
Collapse
|
37
|
Zhang J, Han X, Wang J, Liu BZ, Wei JL, Zhang WJ, Sun ZH, Chang YQ. Molecular Cloning and Sexually Dimorphic Expression Analysis of nanos2 in the Sea Urchin, Mesocentrotus nudus. Int J Mol Sci 2019; 20:ijms20112705. [PMID: 31159444 PMCID: PMC6600436 DOI: 10.3390/ijms20112705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in China and the gonads are the solely edible parts to human. The molecular mechanisms of gonad development have attracted increasing attention in recent years. Although the nanos2 gene has been identified as a germ cell marker in several invertebrates, little is known about nanos2 in adult sea urchins. Hereinto, we report the characterization of Mnnano2, an M. nudus nanos2 homology gene. Mnnanos2 is a maternal factor and can be detected continuously during embryogenesis and early ontogeny. Real-time quantitative PCR (RT-qPCR) and section in situ hybridization (ISH) analysis revealed a dynamic and sexually dimorphic expression pattern of Mnnano2 in the gonads. Its expression reached the maximal level at Stage 2 along with the gonad development in both ovary and testis. In the ovary, Mnnanos2 is specifically expressed in germ cells. In contrast, Mnnanos2 is expressed in both nutritive phagocytes (NP) cells and male germ cells in testis. Moreover, knocking down of Mnnanos2 by means of RNA interference (RNAi) reduced nanos2 and boule expression but conversely increased the expression of foxl2. Therefore, our data suggest that Mnnanos2 may serve as a female germ cell marker during gametogenesis and provide chances to uncover its function in adult sea urchin.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Xiao Han
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Bing-Zheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Wei-Jie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
38
|
Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res 2019; 4:54-62. [PMID: 31193491 PMCID: PMC6531869 DOI: 10.1016/j.ncrna.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are crucial regulatory elements in most biological processes and reproduction is also controlled by them. The different types of ncRNAs, as well as the high complexity of these regulatory pathways, present a complex scenario; however, recent studies have shed some light on these questions, discovering the regulatory function of specific ncRNAs on concrete reproductive biology processes. This mini review will focus on the role of ncRNAs in spermatogenesis and oogenesis, and their potential use as biomarkers for reproductive diseases or for reproduction success.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Santander, Spain
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain
- Corresponding author. Planta de Cultivos el Bocal, IEO, Barrio Corbanera, Monte, Santander, 39012, Spain.
| | | | | |
Collapse
|
39
|
Mobasheri MB, Babatunde KA. Testicular miRNAs in relation to spermatogenesis, spermatogonial stem cells and cancer/testis genes. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
40
|
Wang Y, Li X, Gong X, Zhao Y, Wu J. MicroRNA-322 Regulates Self-renewal of Mouse Spermatogonial Stem Cells through Rassf8. Int J Biol Sci 2019; 15:857-869. [PMID: 30906216 PMCID: PMC6429012 DOI: 10.7150/ijbs.30611] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for spermatogenesis and male fertility. MicroRNAs (miRs) are key regulators of gene expression involved in self-renewal, differentiation, and apoptosis. However, the function and mechanisms of individual miR in regulating self-renewal and differentiation of SSCs remain unclear. Here, we report for the first time that miR-322 regulates self-renewal of SSCs. Functional assays revealed that miR-322 was essential for SSC self-renewal. Mechanistically, miR-322 promoted SSC self-renewal by targeting RASSF8 (ras association domain family 8). Moreover, the WNT/β-catenin signaling pathway was involved in the miR-322-mediated regulation. Furthermore, miR-322 overexpression increased GFRα1, ETV5 and PLZF expression but decreased STRA8, C-KIT and BCL6 expression. Our study provides not only a novel insight into molecular mechanisms regulating SSC self-renewal but also a basis for the diagnosis, treatment, and prevention of male infertility.
Collapse
Affiliation(s)
- Yinjuan Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowen Gong
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongqiang Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| |
Collapse
|
41
|
A Novel Regulatory Axis, CHD1L-MicroRNA 486-Matrix Metalloproteinase 2, Controls Spermatogonial Stem Cell Properties. Mol Cell Biol 2019; 39:MCB.00357-18. [PMID: 30455250 DOI: 10.1128/mcb.00357-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating β-catenin signaling by cleaving N-cadherin and increasing β-catenin nuclear translocation. Our data demonstrate that Chd1l-miR-486-MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.
Collapse
|
42
|
Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS One 2019; 14:e0211739. [PMID: 30707741 PMCID: PMC6358104 DOI: 10.1371/journal.pone.0211739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in multiple aspects of biology. Dicer, an RNase III endonuclease, is essential for the biogenesis of miRNAs, and the germ cell-specific Dicer1 knockout mouse shows severe defects in gametogenesis. How miRNAs regulate germ cell development is still not fully understood. In this study, we identified germ cell-specific miRNAs (miR-741-3p, miR-871-3p, miR-880-3p) by analyzing published RNA-seq data of mouse. These miRNA genes are contiguously located on the X chromosome near other miRNA genes. We named them X chromosome-linked miRNAs (XmiRs). To elucidate the functions of XmiRs, we generated knockout mice of these miRNA genes using the CRISPR/Cas9-mediated genome editing system. Although no histological abnormalities were observed in testes of F0 mice in which each miRNA gene was disrupted, a deletion covering miR-871 and miR-880 or covering all XmiRs (ΔXmiRs) resulted in arrested spermatogenesis in meiosis in a few seminiferous tubules, indicating their redundant functions in spermatogenesis. Among candidate targets of XmiRs, we found increased expression of a gene encoding a WNT receptor, FZD4, in ΔXmiRs testis compared with that in wildtype testis. miR-871-3p and miR-880-3p repressed the expression of Fzd4 via the 3′-untranslated region of its mRNA. In addition, downstream genes of the WNT/β-catenin pathway were upregulated in ΔXmiRs testis. We also found that miR-871, miR-880, and Fzd4 were expressed in spermatogonia, spermatocytes and spermatids, and overexpression of miR-871 and miR-880 in germ stem cells in culture repressed their increase in number and Fzd4 expression. Previous studies indicated that the WNT/β-catenin pathway enhances and represses proliferation and differentiation of spermatogonia, respectively, and our results consistently showed that stable β-catenin enhanced GSC number. In addition, stable β-catenin partially rescued reduced GSC number by overexpression of miR-871 and miR-880. The results together suggest that miR-871 and miR-880 cooperatively regulate the WNT/β-catenin pathway during testicular germ cell development.
Collapse
|
43
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Ge S, Zhao P, Liu X, Zhao Z, Liu M. Necessity to Evaluate Epigenetic Quality of the Sperm for Assisted Reproductive Technology. Reprod Sci 2018; 26:315-322. [DOI: 10.1177/1933719118808907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaoqin Ge
- Hebei University Health Science Center, Baoding, China
- The Institute for Reproductive Medicine of Hebei University, Baoding, China
- The Center for Reproductive Medicine of Affiliated Hospital of Hebei University, Baoding, China
| | - Penghui Zhao
- Hebei University Health Science Center, Baoding, China
| | - Xuanchen Liu
- Hebei University Health Science Center, Baoding, China
| | - Zhenghui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiyun Liu
- The Center for Reproductive Medicine of Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
45
|
Huang Z, Tang D, Gao J, Dou X, Cheng P, Peng D, Zhang Y, Mao J, Zhang L, Zhang X. miR-34c disrupts spermatogonial stem cell homeostasis in cryptorchid testes by targeting Nanos2. Reprod Biol Endocrinol 2018; 16:97. [PMID: 30322389 PMCID: PMC6190564 DOI: 10.1186/s12958-018-0417-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cryptorchidism as a common genitourinary malformation with the serious complication of male infertility draws widespread attention. With several reported miRNAs playing critical roles in spermatogonial stem cells (SSCs), we aimed to explore the fundamental function of the highly conserved miR-34c in cryptorchidism. METHODS To explore whether miR-34c participates in spermatogenesis by regulating Nanos2, we examined the effect of overexpression and inhibition for miR-34c on Nanos2 expression in GC-1 cells. Moreover, the expression levels of miR-34c and Nanos2 with cryptorchidism in humans and mice were examined. Furthermore, the homeostasis of SSCs was evaluated through counting the number of promyelocytic leukemia zinc finger (PLZF) positive spermatogonia in murine cryptorchid testes. RESULTS In the present study, we show that miR-34c could inhibit the expression of Nanos2 in GC-1 cells. Meanwhile, miR-34c significantly decreased in both the testicular tissues of patients with cryptorchidism and surgery-induced murine model of cryptorchidism. Western blot revealed that the protein level of Nanos2 was up-regulated and showed to be negatively correlated to the expression of miR-34c in our model. The abnormal expression of miR-34c/Nanos2 disrupted the balance between SSC self-renewal and differentiation, eventually damaging the spermatogenesis of cryptorchid testes. CONCLUSIONS The miR-34c/Nanos2 pathway provides new insight into the mechanism of male infertility caused by cryptorchidism. Our results indicate that miR-34c may serve as a biological marker for treatment of infertility caused by cryptorchidism.
Collapse
Affiliation(s)
- Zhenyu Huang
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Dongdong Tang
- 0000 0004 1771 3402grid.412679.fReproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- 0000 0000 9490 772Xgrid.186775.aAnhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032 China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, 230022 China
| | - Jingjing Gao
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Xianming Dou
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Peng Cheng
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Dangwei Peng
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Yao Zhang
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Jun Mao
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Li Zhang
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Xiansheng Zhang
- 0000 0004 1771 3402grid.412679.fDepartment of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| |
Collapse
|
46
|
Li C, Yang B, Pan P, Ma Q, Wu Y, Zhang Z, Guo X, Ye J, Gui Y. MicroRNA-130a inhibits spermatogenesis by directly targeting androgen receptor in mouse Sertoli cells. Mol Reprod Dev 2018; 85:768-777. [PMID: 30191667 DOI: 10.1002/mrd.23058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) have been shown to play a key role in spermatogenesis. However, whether the miRNAs influence androgen/androgen receptor (AR) signaling during spermatogenesis remains unclear. Using a bioinformatic approach, a potential miRNA, miR-130a, which could bind to Ar-3'untranslated region directly was identified. The expression pattern of miR-130a was further characterized by quantitative real-time polymerase chain reaction. It was found that miR-130a was abundant in testis and its expression level was negatively correlated with age. Overexpression of miR-130a could inhibit AR expression both in vitro and in vivo. Moreover, the mice with an intratesticular injection of miR-130a showed defects in spermatogenesis and increased germ cell apoptosis. Taken together, these results suggest that miR-130a could negatively regulate AR expression in mouse Sertoli cell, which further cause defects in spermatogenesis.
Collapse
Affiliation(s)
- Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Peng Pan
- Reproductive Medicine Center, Jinling Hospital affiliated of Nanjing University, Nanjing, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Yong Wu
- Reproductive Center, Jingzhou Central Hospital affiliated of The Second Clinical Medical College, Yangze University, Jingzhou, China
| | - Zeng Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Xin Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
47
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
48
|
Zhang W, Bi Y, Wang Y, Wang M, Li D, Cheng S, Jin J, Li T, Li B, Zhang Y. Nanos2 promotes differentiation of male germ cells basing on the negative regulation of Foxd3 and the treatment of 5-Azadc and TSA. J Cell Physiol 2018; 234:3762-3774. [PMID: 30146792 DOI: 10.1002/jcp.27139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/09/2018] [Indexed: 11/07/2022]
Abstract
The transcription factor positioning in promoter regions relate to gene regulation, and the level of DNA methylation and histone acetylation also impact the promoter activity. In this study, we tested and verified the core promoter region and key transcription factor of Nanos2 which is a male-critical gene in the differentiation of embryonic stem cells to male germ cells, meanwhile, epigenetic effects by mean of 5-Aza-2'-deoxycytidine (5-Azadc) and Trichostin A (TSA) on the activity of Nanos2 promoter were detected. The results reveal that key transcription factor Foxd3 is a negative regulator of Nanos2, which suggests that loss-of-function of Foxd3 causes strong expression of Nanos2 responsive to large amounts of primordial germ cells and spermatogonial stem cells,whereas its overexpression causes the opposite effect. Furthermore, both 5-Azadc and TSA can provoke responses of Nanos2, but the combination effect of the two is better.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Yingjie Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Man Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Dong Li
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shaoze Cheng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Jing Jin
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou, Jiangsu, China
| |
Collapse
|
49
|
miRNA editing landscape reveals miR-34c regulated spermatogenesis through structure and target change in pig and mouse. Biochem Biophys Res Commun 2018; 502:486-492. [DOI: 10.1016/j.bbrc.2018.05.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
|
50
|
Ran M, Weng B, Cao R, Li Z, Peng F, Luo H, Gao H, Chen B. miR-26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene. Reprod Domest Anim 2018; 53:1375-1385. [PMID: 30024056 DOI: 10.1111/rda.13254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Accumulating reports have demonstrated that microRNAs (miRNAs) participate in regulating the complex processes of animal testis development and spermatogenesis; yet, the mechanisms by which miRNAs regulate spermatogenesis are poorly understood. miR-26a was identified as a miRNA that is differentially expressed among different pig testicular tissue developmental stages in our previous study. In this study, p21 activated kinase 2 (PAK2) gene was determined as one target gene of miR-26a by luciferase reporter assay, and miR-26a repressed the PAK2 mRNA abundance in porcine Sertoli cells. The Cell Counting Kit-8 (CCK8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and annexin V-FITC/PI staining assay results showed that miR-26a overexpression inhibited proliferation and promoted apoptosis in porcine Sertoli cells. These phenomena were similar to the siRNA-mediated knockdown of the PAK2 gene. Taken together, our results demonstrate that miR-26a inhibits proliferation and promotes apoptosis in porcine Sertoli cells by targeting the PAK2 gene, which may be a regulator of porcine spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Rong Cao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hui Luo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| |
Collapse
|