1
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
2
|
Fu M, Chen Y, Yang A. Ochratoxin A induces mitochondrial dysfunction, oxidative stress, and apoptosis of retinal ganglion cells (RGCs), leading to retinal damage in mice. Int Ophthalmol 2024; 44:72. [PMID: 38349605 PMCID: PMC10864473 DOI: 10.1007/s10792-024-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE Ochratoxin A (OTA) contamination of food and feed is a serious problem worldwide. OTA is considered a carcinogen and immunotoxic, nephrotoxic, and neurotoxic mycotoxin. The present study aims to determine the toxic effects of OTA on retinal ganglion cells (RGCs) and assess the resulting impairment of retinal function in mice. METHODS RGC-5 cells were exposed to OTA (100 and 200 μg/L) for 3 days, and the mice were fed OTA-contain (100 and 200 μg/kg) diets for 4 weeks. Antioxidant indices were detected by spectrophotometer. The apoptosis of RGC-5 cells was determined by flow cytometry. Mitochondrial morphology and mitochondrial membrane potential were detected by immunofluorescence. RGC survival was determined by immunofluorescence staining with Brn3a. Flash electroretinography (ERG) was conducted to assess visual function. RESULTS The oxidative-antioxidant balance suggested that OTA-induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the OTA-exposed RGC-5 cells, and the reduced activity of superoxide dismutase (SOD) and glutathione-S-transferase (GST) in the OTA exposed group. Furthermore, OTA exposure led to remarkable apoptosis in RGC-5 cells. The mitochondrial detection showed that OTA caused significant mitochondrial membrane potential reduction and mitochondrial fragmentation, which may be the cause of apoptosis of RGC-5 cells. Additionally, in vivo experiments demonstrated that OTA resulted in significant death of RGCs and subsequent retinal dysfunction in mice. CONCLUSION Ochratoxin A induces mitochondrial dysfunction, oxidative stress, and RGCs death in mice.
Collapse
Affiliation(s)
- Miao Fu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanyuan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anhuai Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Ding L, Han M, Wang X, Guo Y. Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins (Basel) 2023; 15:565. [PMID: 37755991 PMCID: PMC10534725 DOI: 10.3390/toxins15090565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.
Collapse
Affiliation(s)
| | | | | | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (L.D.); (M.H.); (X.W.)
| |
Collapse
|
4
|
Erdal İ, Yalçın SS. The relationship between ochratoxin A and blood pressure in adolescents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103959. [PMID: 35987497 DOI: 10.1016/j.etap.2022.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a chemical produced by some fungal species, and although its toxic effects have been shown in many animal studies, there are limited studies in humans. We aimed to examine the relationship between OTA and hypertension. 50 newly diagnosed hypertensive patients and 33 healthy individuals aged between 12 and 14 were included in the study. Anthropometric measurements, blood pressure measurements, complete blood count, blood biochemical parameters, urine lead level and urine OTA level were measured. OTA was detected in the urine samples of 90.9% of the control group, 100% of the hypertensive group and 85.7% of the obese+hypertensive group. Median urinary OTA was 32.9 ng/g creatinine for hypertensive group, 32.2 ng/g creatinine for hypertensive+obese group, 18.8 ng/g creatinine for the control group. Multivariate logistic regression analysis revealed a positive association between last quartile of urinary OTA level and being hypertensive [AOR:5.93 (95%CI: 1.27-27.61)] in adolescents without obesity. Hypertensive cases could be evaluated for OTA exposure in further studies.
Collapse
Affiliation(s)
- İzzet Erdal
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - S Songül Yalçın
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Longobardi C, Ferrara G, Andretta E, Montagnaro S, Damiano S, Ciarcia R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine-A Review. Toxins (Basel) 2022; 14:398. [PMID: 35737059 PMCID: PMC9231272 DOI: 10.3390/toxins14060398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The problem of residues of toxic contaminants in food products has assumed considerable importance in terms of food safety. Naturally occurring contaminants, such as mycotoxins, are monitored routinely in the agricultural and food industries. Unfortunately, the consequences of the presence of mycotoxins in foodstuffs are evident in livestock farms, where both subacute and chronic effects on animal health are observed and could have non-negligible effects on human health. Ochratoxin A (OTA) is a common mycotoxin that contaminates food and feeds. Due to its thermal stability, the eradication of OTA from the food chain is very difficult. Consequently, humans and animals are frequently exposed to OTA in daily life. In this review article, we will devote time to highlighting the redox-based nephrotoxicity that occurs during OTA intoxication. In the past few decades, the literature has improved on the main molecules and enzymes involved in the redox signaling pathway as well as on some new antioxidant compounds as therapeutic strategies to counteract oxidative stress. The knowledge shown in this work will address the use of nutraceutical substances as dietary supplements, which would in turn improve the prophylactic and pharmacological treatment of redox-associated kidney diseases during OTA exposure, and will attempt to promote animal feed supplementation.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| |
Collapse
|
6
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
7
|
Longobardi C, Damiano S, Andretta E, Prisco F, Russo V, Pagnini F, Florio S, Ciarcia R. Curcumin Modulates Nitrosative Stress, Inflammation, and DNA Damage and Protects against Ochratoxin A-Induced Hepatotoxicity and Nephrotoxicity in Rats. Antioxidants (Basel) 2021; 10:antiox10081239. [PMID: 34439487 PMCID: PMC8389288 DOI: 10.3390/antiox10081239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023] Open
Abstract
Ochratoxin A (OTA) is a fungal toxin of critical concern for food safety both for human health and several animal species, also representing a cancer threat to humans. Curcumin (CURC) is a natural polyphenol that has anti-apoptotic, anti-inflammatory, and antioxidant effects. The aim of this study was to investigate the cytoprotective effect of CURC against OTA-induced nephrotoxicity and hepatotoxicity through the study of the nitrosative stress, pro-inflammatory cytokines, and deoxyribonucleic acid (DNA) damage. Sprague Dawley rats were daily treated with CURC (100 mg/kg b.w.), OTA (0.5 mg/kg b.w), or CURC with OTA by oral gavage for 14 days. Our results demonstrated that OTA exposure was associated with significant increase of pro-inflammatory and DNA oxidative-damage biomarkers. Moreover, OTA induced the inducible nitric oxide synthase, (iNOS) resulting in increased nitric oxide (NO) levels both in kidney and liver. The co-treatment OTA + CURC counteracted the harmful effects of chronic OTA treatment by regulating inflammation, reducing NO levels and oxidative DNA damage in kidney and liver tissues. Histology revealed that OTA + CURC treatment determinates mainly an Iba1+ macrophagic infiltration with fewer CD3+ T-lymphocytes in the tissues. In conclusion, we evidenced that CURC exerted cytoprotective and antioxidant activities against OTA-induced toxicity in rats.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Largo Madonna delle Grazie 1, 80138 Napoli, Italy;
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| |
Collapse
|
8
|
Gan F, Hou L, Lin Z, Ge L, Liu D, Li H, Chen X, Huang K. Effects of Selenium-enriched probiotics on ochratoxin A-induced kidney injury and DNMTs expressions in piglets. Res Vet Sci 2021; 139:94-101. [PMID: 34273745 DOI: 10.1016/j.rvsc.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022]
Abstract
Effects of Selenium-enriched probiotics (SP) on ochratoxin A-induced kidney injury, growth performance, antioxidant injury, selenoprotein and DNA methylation transferases (DNMTs) expression of piglets were investigated in the article. A total of 48 piglets were randomly divided into 4 groups and fed with basal diet (Con, 0.15 mg Se/kg and OTA at 0.00 mg/kg), basal diets added with OTA (OTA, 0.40 mg OTA/kg), SP and OTA (SP1, 0.15 mg Se/kg and 0.40 mg OTA/kg), SP and OTA (SP2, 0.30 mg Se/kg and 0.40 mg OTA/kg) respectively for 42 days. From each group, six piglets were randomly selected for blood collection on Days 0 and 42 and three piglets were selected for tissue collection on Day 42.The results showed that OTA at 0.40 mg /kg significantly decreased growth performance of pigs, induced the histopathological lesions of kidney and increased urea and creatine levels of serum, decreased GPx and SOD activities, and increased MDA levels. OTA decreased GPx1, GPx4 and SelS expressions, and increased TR1, DNMT 1, DNMT3a and SOCS3 expressions. Both SP1 and SP2 improved OTA-induced poor growth performance, kidney injury, poor antioxidant statues, GPx1, SelS, TR1, SOCS3, DNMT1 and DNMT3a expressions in kidney of pigs. The effects of SP2 on the above parameters changes were better than that of SP1. SP increased GPx and SOD activities and decreased MDA levels changes induced by OTA treatment. These results suggest that SP may serve as a better feed additive for piglets under mycotoxin contamination environments.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
9
|
Combined protective effects of icariin and selenomethionine on novel chronic tubulointerstitial nephropathy models in vivo and in vitro. Br J Nutr 2021; 127:12-22. [PMID: 33663624 DOI: 10.1017/s0007114521000787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic tubulointerstitial nephropathy (CTIN) is one of the most common kidney diseases. However, treatment for CTIN has multiple limits. Adjuvant therapy through nutritional regulation has become a hot research topic at present. Icariin (ICA), an extraction of Chinese herbal medicine epimedium, has many pharmacological functions including anti-inflammation and tonifying kidney. Selenomethionine (SeMet) possesses the effects of antioxidant and lightening nephrotoxicity. However, little is known about the combined nephroprotection of them. This study was investigated to evaluate the joint effects of ICA and SeMet on CTIN and explore the mechanism. Based on a novel CTIN model developed in our previous study, mice were randomly divided into five groups (a: control; b: model; c: model + ICA; d: model + SeMet; e: model + ICA + SeMet). Renal tubule epithelial cells were treated with cyclosporine A and ochratoxin A without/with ICA or/and SeMet. The results showed that ICA or/and SeMet ameliorated CTIN by inhibiting the uptrends of blood urine nitrogen, serum creatinine, urine protein, urine gravity, histopathological damage degree and collagen I deposition. ICA or/and SeMet also increased cell proliferation and decreased apoptosis and the expression of transforming growth factor-beta 1 and α-smooth muscle actin. Emphatically, ICA and SeMet joint had better nephroprotection than alone in most indexes including fibrosis. Furthermore, ICA and SeMet joint decreased the activation of toll-like receptor 4 (TLR4)/NFκB pathway induced by CTIN. TLR4 overexpression counteracted the joint protection of ICA and SeMet. Therefore, ICA and SeMet in combination could protect against CTIN through blocking TLR4/NFκB pathway. The study will provide novel insights to explore an adjuvant therapeutic orientation.
Collapse
|
10
|
Damiano S, Longobardi C, Andretta E, Prisco F, Piegari G, Squillacioti C, Montagnaro S, Pagnini F, Badino P, Florio S, Ciarcia R. Antioxidative Effects of Curcumin on the Hepatotoxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2021; 10:125. [PMID: 33477286 PMCID: PMC7830919 DOI: 10.3390/antiox10010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a powerful mycotoxin found in various foods and feedstuff, responsible for subchronic and chronic toxicity, such as nephrotoxicity, hepatotoxicity, teratogenicity, and immunotoxicity to both humans and several animal species. The severity of the liver damage caused depends on both dose and duration of exposure. Several studies have suggested that oxidative stress might contribute to increasing the hepatotoxicity of OTA, and several antioxidants, including curcumin (CURC), have been tested to counteract the toxic hepatic action of OTA in various classes of animals. Therefore, the present study was designed to evaluate the protective effect of CURC, a bioactive compound with different therapeutic properties on hepatic injuries caused by OTA in rat animal models. CURC effects were examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. At the end of the experiment, rats treated with OTA showed alterations in biochemical parameters and oxidative stress in the liver. CURC dosing significantly attenuated oxidative stress and lipid peroxidation versus the OTA group. Furthermore, liver histological tests showed that CURC reduced the multifocal lymphoplasmacellular hepatitis, the periportal fibrosis, and the necrosis observed in the OTA group. This study provides evidence that CURC can preserve OTA-induced oxidative damage in the liver of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Paola Badino
- Department of Veterinary Science, University of Turin, L. go P. Braccini 2-5, 10095 Grugliasco, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| |
Collapse
|
11
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
12
|
Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2020; 9:antiox9040332. [PMID: 32325727 PMCID: PMC7222377 DOI: 10.3390/antiox9040332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
- Correspondence: ; Tel.: +39-081-2536127
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli” Naples, Largo Madonna delle Grazie, 1, 80138 Napoli, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| |
Collapse
|
13
|
Damiano S, Iovane V, Squillacioti C, Mirabella N, Prisco F, Ariano A, Amenta M, Giordano A, Florio S, Ciarcia R. Red orange and lemon extract prevents the renal toxicity induced by ochratoxin A in rats. J Cell Physiol 2020; 235:5386-5393. [PMID: 31898818 DOI: 10.1002/jcp.29425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
In this work, we investigated the effects of red orange and lemon extract (RLE) on ochratoxin A (OTA)-induced nephrotoxicity. In particular, we analyzed the change in renal function and oxidative stress in Sprague-Dawley rats treated with OTA (0.5 mg/kg body weight, b.w.) and with RLE (90 mg/kg b.w.) by oral administration. After OTA treatment, we found alterations of biochemical and oxidative stress parameters in the kidney, related to a severe decrease of glomerular filtration rate. The RLE treatment normalized the activity of antioxidant enzymes and prevented the glomerular hyperfiltration. Histopathological examinations revealed glomerular damages and kidney cortex fibrosis in OTA-rats, while we observed less severe fibrosis in OTA plus RLE group. Then, we demonstrated that oxidative stress could be the cause of OTA renal injury and that RLE reduces this effect.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | | | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Andrea Ariano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Margherita Amenta
- Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| |
Collapse
|
14
|
Gan F, Zhou Y, Hu Z, Hou L, Chen X, Xu S, Huang K. GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage. Int J Biol Macromol 2019; 146:18-24. [PMID: 31790739 DOI: 10.1016/j.ijbiomac.2019.11.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Ochratoxin A (OTA) is a potent nephrotoxin. Selenium (Se) is an essential micronutrient for humans and animals, and plays a key role in antioxidant defense. To date, little is known about the effect of Se on OTA-induced DNA damage. In this study, the protective effects of Se (from selenomethionine) against OTA-induced cytotoxicity and DNA damage were investigated by using PK15 cells as a model. The results showed that OTA at 4.0 μg/mL induced cytotoxicity and DNA damage. Se at 0.5, 1, 2 and 4 μM significantly blocked OTA-induced cytotoxicity and DNA damage. Furthermore, Se blocked the increases of DNMT1, DNMT3a and HDAC1 mRNA and protein expression, reversed the decreases of glutathione peroxidase 1 (GPx1) mRNA and protein expression, and promoted the increases of SOCS3 mRNA and protein expression induced by OTA. Overexpression of GPx1 by pcDNA3.1-GPx1 inhibited the OTA-induced DNMT1 expression, promoted OTA-induced SOCS3 expression, and prevented the OTA-induced cytotoxicity and DNA damage. In contrast, knock-down of GPx1 by using a GPx1-specific siRNA had the opposite effects. The results suggest that GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
15
|
Li H, Malyar RM, Zhai N, Wang H, Liu K, Liu D, Pan C, Gan F, Huang K, Miao J, Chen X. Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sci 2019; 234:116735. [PMID: 31394124 DOI: 10.1016/j.lfs.2019.116735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS The present study was to investigate the protective effects of Zn supplementation in OTA-induced apoptosis of Madin-Darby canine kidney (MDCK) epithelial cells and explore the potential mechanisms. Aiming to provides a new insight into the treatment strategy of OTA-induced nephrotoxicity by nutritional regulation. MAIN METHODS Initially, through MTT and LDH assay revealed that Zn supplementation significantly suppressed OTA-induced cytotoxicity in MDCK cells. Then, the production of reactive oxygen species (ROS) was detected by using a DCFH-DA assay. Annexin V-FITC/PI, Hoechst 33258 staining and Flow cytometry were used to detect the apoptosis. The expressions of apoptosis-related molecules were determined by RT-PCR, Western blotting. Interestingly, OTA treatment slightly increased the levels of Metallothionein-1 (MT-1) and Metallothionein-2 (MT-2) by using RT-PCR, Western blotting assay; while Zn supplementation further improved the increase of MT-1 and MT-2 induced by OTA. However, the inhibitive effects of Zn supplementation were significantly blocked after double knockdown of MT-1 and MT-2 by using Small Interfering RNA (siRNA) Transfection method. KEY FINDINGS Our study provides supportive data for the potential roles of Zn in reducing OTA-induced oxidative stress and apoptosis in MDCK cells. SIGNIFICANCE Zn is one of the key structural components of many proteins, which plays an important role in several physiological processes such as cell survival and apoptosis. This metal is expected to contribute to the conservative and adjuvant treatment of kidney disease and should therefore be investigated further.
Collapse
Affiliation(s)
- Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Rahmani Mohammad Malyar
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Hong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine Nanjing Agricultural University Nanjing, China.
| |
Collapse
|
16
|
Dragicevic B, Suvakov S, Jerotic D, Reljic Z, Djukanovic L, Zelen I, Pljesa-Ercegovac M, Savic-Radojevic A, Simic T, Dragicevic D, Matic M. Association of SOD2 (rs4880) and GPX1 (rs1050450) Gene Polymorphisms with Risk of Balkan Endemic Nephropathy and its Related Tumors. ACTA ACUST UNITED AC 2019; 55:medicina55080435. [PMID: 31382611 PMCID: PMC6723896 DOI: 10.3390/medicina55080435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Background: Experimental data show that superoxide dismutase 2 (SOD2) is involved in ochratoxin (OTA)-induced nephrotoxicity, whereas clinical data indicate the role of SOD2 rs4880 or glutathione peroxidase 1 (GPX1) rs1050450 polymorphisms in end-stage renal disease and urothelial carcinoma risk, known to be the major complications of Balkan endemic nephropathy (BEN). Therefore, we hypothesized that SOD2 and GPX1 gene polymorphisms would influence the risk of BEN and its associated tumors. Materials and Methods: The study was conducted in 207 BEN patients and 86 controls from endemic areas. Results: Individuals with both copies of variant SOD2 allele, known for lower mitochondrial antioxidant protection, are at a significantly higher BEN risk (OR = 2.6, p = 0.021). No association was observed between GPX1 gene polymorphism and BEN risk. Combining SOD2 and GPX1 genotypes did not alter the risk of BEN development. Regarding the risk of urothelial tumors in BEN patients, none of the polymorphisms studied was significantly associated with the risk of these tumors. Conclusions: Polymorphism in SOD2 rs4880 gene affects the risk of BEN development. Hence, SOD2 genotyping could, together with a panel of other enzymes, be used as a biomarker of susceptibility in BEN areas.
Collapse
Affiliation(s)
- Biljana Dragicevic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorica Reljic
- Medical laboratory "PAN LAB", 36000 Kraljevo, Serbia
| | | | - Ivanka Zelen
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Dejan Dragicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic of Urology, Clinical Centre of Serbia, Resavska 51, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
17
|
Banihani SA. Effect of ginger (Zingiber officinale) on semen quality. Andrologia 2019; 51:e13296. [PMID: 31012134 DOI: 10.1111/and.13296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
To date, according to the Scopus database, the biological effects of ginger (binominal name: Zingiber officinale), or ginger extracts, and its derived compounds on semen quality and sperm parameters have been revealed in more than 35 original articles. Though, still, there are no collective systematic or narrative discussion and conclusion of this specific research streak. Here, we systematically review and summarise the current link between ginger and its bioactive compounds with semen quality. To achieve this, we searched the central databases (Scopus and PubMed) for original studies, published in English language from August 2004 through February 2019 using the keywords "ginger" versus "sperm" and "semen." In summary, there is solid evidence that ginger enhances semen quality and improves the main sperm parameters such as concentration, viability, motility and morphology. Such beneficial effects of ginger on semen quality are attributable, at least in part, to increased levels of gonadal hormones, in particular, testosterone and luteinising hormone, decreased oxidative damage to cells, increased production of nitric oxide, hypoglycaemic response of ginger and the presence of valued nutrients in ginger such as manganese. Still, the positive effects of ginger on semen quality require additional approval in men.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Gan F, Zhou X, Zhou Y, Hou L, Chen X, Pan C, Huang K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch Toxicol 2019; 93:1067-1082. [PMID: 30923867 DOI: 10.1007/s00204-019-02434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity and immunotoxicity in animals and humans. However, the underlying mechanism and the effects of OTA on DNA damage have not been reported until now. The present study aims to investigate OTA-induced cytotoxicity and DNA damage and the underlying mechanism in PK15 cells and PAMs. The results showed that OTA at 2.0-8.0 µg/mL for 24 h induced cytotoxicity and DNA damage in PK15 cells and PAMs as demonstrated by decreasing cell viabilities and mRNA levels of DNA repair genes (OGG1, NEIL1 and NEIL3), increasing LDH release, Annexin V staining cells, apoptotic nuclei and the accumulation of γ-H2AX foci. OTA at 2.0-8.0 µg/mL increased DNMT1 and SOCS3 mRNA expressions about 2-4 fold in PK15 cells or 1.3-2 fold in PAMs. OTA at 2.0-8.0 µg/mL increased DNMT1, SOCS3, JAK2 and STAT3 protein expressions in PK15 cells or PAMs. DNMT inhibitor (5-Aza-2-dc), promoted SOCS3 expression, inhibited JAK2 and STAT3 expression, alleviated cytotoxicity, apoptosis and DNA damage induced by OTA at 4.0 µg/mL in PK15 cells. While, in PAMs, 5-Aza-2-dc had no effects on SOCS3 expression induced by OTA at 4.0 µg/mL, but inhibited JAK2 and STAT3 expression, and alleviated cytotoxicity, apoptosis and DNA damage induced by OTA. JAK inhibitor (AG490) or STAT3-siRNA alleviated OTA-induced cytotoxicity and DNA damage in PK15 cells or PAMs. Taken together, nephrotoxicity instead of immunotoxicity of OTA is induced by targeting SOCS3 through DNMT1-mediated JAK2/STAT3 signaling pathway. These results provide a scientific and new explanation of the underlying mechanism of OTA-induced nephrotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xuan Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
19
|
Gan F, Zhou Y, Qian G, Huang D, Hou L, Liu D, Chen X, Wang T, Jiang P, Lei X, Huang K. PCV2 infection aggravates ochratoxin A-induced nephrotoxicity via autophagy involving p38 signaling pathway in vivo and in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:656-662. [PMID: 29614475 DOI: 10.1016/j.envpol.2018.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity in animals and humans. Porcine circovirus type 2 (PCV2) could induce porcine dermatitis and nephropathy syndrome. To date, little is known whether virus infection aggravates mycotoxin-induced toxicity. This work aimed to study the effects of PCV2 infection on OTA-induced nephrotoxicity and its mechanism in vivo and vitro. The results in vivo showed that PCV2 infection aggravated OTA-induced poor growth performance, nephrotoxicity, p38 phosphorylation and autophagy as demonstrated by Atg5, LC3 II and p62 protein expressions in kidney of pigs. The results in vitro indicated that PCV2 infection significantly aggravated OTA-induced nephrotoxicity as demonstrated by cell viabilities, annexin V/PI binding and caspase 3 activities, and induced p38 phosphorylation and autophagy in PK15 cells. p38 inhibitor decreased Atg5 and LC3 protein expression induced by PCV2 infection and OTA combined treatment. Adding autophagy inhibitor 3-MA or CQ alleviated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Atg5-specific siRNA eliminated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Taken together, these data indicate that in vivo and in vitro PCV2 infection aggravated OTA-induced nephrotoxicity via p38-mediated autophagy.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
20
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
21
|
Damiano S, Navas L, Lombari P, Montagnaro S, Forte IM, Giordano A, Florio S, Ciarcia R. Effects of δ‐tocotrienol on ochratoxin A—induced nephrotoxicity in rats. J Cell Physiol 2018; 233:8731-8739. [DOI: 10.1002/jcp.26753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”NaplesItaly
| | - Luigi Navas
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”NaplesItaly
| | - Patrizia Lombari
- Department of Cardiothoracic and Respiratory ScienceUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”NaplesItaly
| | - Iris M. Forte
- Oncology Research Center of Mercogliano (CROM)Istituto Nazionale Tumori—IRCCS“Fondazione G. Pascale”NapoliItalia
| | - Antonio Giordano
- Department of MedicineSurgery and NeuroscienceUniversity of SienaSienaItaly
- Sbarro Institute for Cancer Research and Molecular MedicineCenter of BiotechnologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”NaplesItaly
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
22
|
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem Toxicol 2018; 112:320-331. [DOI: 10.1016/j.fct.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
|
23
|
Sex differences in ochratoxin a toxicity in F344 rats after 7 and 21 days of daily oral administration. Food Chem Toxicol 2018; 111:363-373. [DOI: 10.1016/j.fct.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
|
24
|
Wang H, Chen Y, Zhai N, Chen X, Gan F, Li H, Huang K. Ochratoxin A-Induced Apoptosis of IPEC-J2 Cells through ROS-Mediated Mitochondrial Permeability Transition Pore Opening Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10630-10637. [PMID: 29136370 DOI: 10.1021/acs.jafc.7b04434] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the purpose to explore the mechanisms associated with the intestinal toxicity of Ochratoxin A (OTA), an intestinal porcine epithelial cell line (IPEC-J2) was applied in this study as in vitro models for intestinal epithelium. The results confirmed that OTA induced IPEC-J2 cell toxicity by MTT assay and apoptosis by Hoechst 33258 staining and flow cytometer analysis. We also observed that OTA induced the mitochondrial reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening by confocal microscopy. Western blot showed that OTA induced cytochrome c (cyt-c) release and caspase-3 activation, which could be suppressed by inhibition of mPTP opening with cyclosporin A. Treatment with Mito-TEMPO, the mitochondria-targeted ROS scavenger, blocked OTA-induced mitochondrial ROS generation and mPTP opening and prevented cyt-c release, caspase-3 activation, and apoptosis in IPEC-J2 cells.
Collapse
Affiliation(s)
- Hong Wang
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Ying Chen
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Nianhui Zhai
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Fang Gan
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Hu Li
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, and ‡Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University , Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
25
|
Sheu ML, Shen CC, Chen YS, Chiang CK. Ochratoxin A induces ER stress and apoptosis in mesangial cells via a NADPH oxidase-derived reactive oxygen species-mediated calpain activation pathway. Oncotarget 2017; 8:19376-19388. [PMID: 28038445 PMCID: PMC5386691 DOI: 10.18632/oncotarget.14270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
Abstract
Ochratoxin A (OTA) contaminated food increases reactive oxygen species (ROS) production in glomerulus and causes glomerulopathy. The molecular mechanisms still remain uncertain. In this study, we used mouse and rat glomerular mesangial cells and delineate the signaling pathway behind the OTA-triggered cell apoptosis. OTA dose-dependently induced expression of ER stress markers including phospho-PERK, phospho-eIF2α, GRP78, GRP94, and CHOP. Apoptosis events including cleavage of caspase-12, caspase-7, and PARP are also observed. OTA activated oxidative stress and increased NADPH oxidase activity. NADPH oxidase inhibitor, apocynin, significantly attenuated OTA-induced cell apoptosis. Moreover, OTA markedly increased the calpain activity which significantly inhibited by apocynin. Transfection of calpain-siRNA effectively inhibited the OTA-increased ER stress-related protein expression. These findings suggest that OTA activated NADPH oxidase and calpain, induced ER stress and ROS production, and caused glomerular mesangial cells apoptosis which leads to glomerulopathy.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Chemical Engineering Division, Institute of Nuclear Energy Research, Atomic Energy Council, Longtan District, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Gan F, Zhou Y, Hou L, Qian G, Chen X, Huang K. Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. CHEMOSPHERE 2017; 182:630-637. [PMID: 28527416 DOI: 10.1016/j.chemosphere.2017.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Ochratoxin A (OTA) is reported to be a potent nephrotoxin and immunotoxin in animals and humans. However, the mechanisms underlying OTA toxicity have not been clearly determined until now. Toxicity of OTA and its mechanism was investigated in PK15 cells and in porcine primary splenocytes. The results showed that OTA at 2.0-8.0 μg/mL for 24 h induced cytotoxicity and apoptosis in a dose-dependent manner in PK 15 cells. OTA at 0.5-4.0 μg/mL for 24 h induced cytotoxicity and apoptosis in a dose-dependent manner in porcine primary splenocytes. In addition, OTA induced p38 and ERK1/2 phosphorylation both in PK15 cells and porcine primary splenocytes. Knock-down of p38 instead of ERK by their specific siRNA significantly eliminated the nephrotoxicity induced by OTA. Contrary, knock-down of ERK1/2 instead of p38 by their specific siRNA significantly eliminated the immunotoxicity induced by OTA. The observed effects indicate that OTA induced nephrotoxicity by p38 signaling pathway in PK15 cells and immunotoxicity by ERK signaling pathway in porcine primary splenocytes.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yaojiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
27
|
Damiano S, Puzio MV, Squillacioti C, Mirabella N, Zona E, Mancini A, Borrelli A, Astarita C, Boffo S, Giordano A, Avallone L, Florio S, Ciarcia R. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats. J Cell Biochem 2017; 119:424-430. [PMID: 28590009 DOI: 10.1002/jcb.26197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O2- in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Maria V Puzio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Enrica Zona
- Department of Cardio-Thoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Aldo Mancini
- Laedhexa Biotechnologies Inc., Laedhexa Biotechnologies Inc., San Francisco, California
| | - Antonella Borrelli
- Department of Molecular Biology and Biotherapy, National Cancer Institute "G. Pascale" Naples, Naples, Italy
| | - Carlo Astarita
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Avallone
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| |
Collapse
|