1
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
2
|
Bighetti-Trevisan RL, Ferraz EP, Silva MBF, Zatta GC, de Almeida MB, Rosa AL, Beloti MM. Effect of osteoblasts on osteoclast differentiation and activity induced by titanium with nanotopography. Colloids Surf B Biointerfaces 2023; 229:113448. [PMID: 37451224 DOI: 10.1016/j.colsurfb.2023.113448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Titanium with nanotopography (Ti Nano) favors osteoblast differentiation and attenuates the osteoclast inhibitory effects on osteoblasts. Because the interactions between nanotopography and osteoclasts are underexplored, the aims of this study were to evaluate the effects of Ti Nano on osteoclast differentiation and activity, and the influence of osteoblasts on osteoclast-Ti Nano interaction. The discs were conditioned with a mixture of 10 N H2SO4 and 30% aqueous H2O2 to create Ti Nano and non-conditioned Ti discs were used as control (Ti Control). Osteoclasts were cultured on Ti Control and Ti Nano in the presence of osteoblasts in an indirect co-culture system. Also, osteoclasts were cultured on polystyrene and calcium phosphate plates in conditioned media by osteoblasts grown on Ti Control and Ti Nano. While Ti Control exhibited an irregular and smooth surface, Ti Nano presented nanopores distributed throughout the whole surface. Additionally, anisotropy was higher on Ti Nano than Ti Control. Nanotopography favored the gene expression of osteoclast markers but inhibited osteoclast differentiation and activity, and the presence of osteoblasts enhanced the effects of Ti Nano on osteoclasts. Such findings were mimicked by conditioned medium of osteoblasts cultured on Ti Nano, which reduced the osteoclast differentiation and activity. In conclusion, our results indicated that nanotopography regulates osteoblast-osteoclast crosstalk and further investigations should focus the impact of these bone cell interactions on Ti osseointegration.
Collapse
Affiliation(s)
| | - Emanuela Prado Ferraz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | | | - Guilherme Crepi Zatta
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcelo Barros de Almeida
- School of Electrical Engineering, Federal University of Uberlândia, Uberlândia, 38408-100 MG, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil.
| |
Collapse
|
3
|
Chen Q, Wang Y, Shuai J. Current status and future prospects of stomatology research. J Zhejiang Univ Sci B 2023; 24:853-867. [PMID: 37752088 PMCID: PMC10522564 DOI: 10.1631/jzus.b2200702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 08/08/2023]
Abstract
Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral-systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, "intelligent stomatology" is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.
Collapse
Affiliation(s)
- Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Yahui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
4
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
5
|
Effects of Modulation of the Hedgehog and Notch Signaling Pathways on Osteoblast Differentiation Induced by Titanium with Nanotopography. J Funct Biomater 2023; 14:jfb14020079. [PMID: 36826878 PMCID: PMC9968096 DOI: 10.3390/jfb14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.
Collapse
|
6
|
Zuardi LR, de Oliveira FS, Fernandes RR, Gomes MPO, Spriano S, Nanci A, de Oliveira PT. Effects of rmBMP-7 on Osteoblastic Cells Grown on a Nanostructured Titanium Surface. Biomimetics (Basel) 2022; 7:biomimetics7030136. [PMID: 36134940 PMCID: PMC9496167 DOI: 10.3390/biomimetics7030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023] Open
Abstract
This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells’ differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces.
Collapse
Affiliation(s)
- Leonardo Raphael Zuardi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Fabíola Singaretti de Oliveira
- Department of Oral and Maxillofacial Surgery and Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Roger Rodrigo Fernandes
- Department of Oral and Maxillofacial Surgery and Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Maria Paula Oliveira Gomes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Antonio Nanci
- Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-99623-3663
| |
Collapse
|
7
|
Scannavino RCP, Riccucci G, Ferraris S, Duarte GLC, de Oliveira PT, Spriano S. Functionalization with Polyphenols of a Nano-Textured Ti Surface through a High-Amino Acid Medium: A Chemical-Physical and Biological Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2916. [PMID: 36079954 PMCID: PMC9458157 DOI: 10.3390/nano12172916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The study aimed to identify an effective mechanism of adsorption of polyphenols on a nano-textured Ti surface and to evaluate the osteogenic differentiation on it. The source of polyphenols was a natural extract from red grape pomace. A chemical etching was used to form an oxide layer with a nanoscale texture on Ti; this layer is hydrophilic, but without hydroxyl groups with high acidic-basic chemical reactivity. The samples were characterized by electron and fluorescence microscopies, UV-Vis spectroscopy, contact angle measurements, zeta potential titration curves, and Folin-Ciocâlteu test. The presence of an adsorbed layer of polyphenols on the functionalized surface, maintaining redox ability, was confirmed by several tests. Consistent with the surface features, the adsorption was maximized by dissolving the extract in a high-amino acid medium, with respect to an inorganic solution, exploiting the high affinity of amino acids for polyphenols and for porous titanium surfaces. The osteogenic differentiation was assessed on an osteoblastic cell line by immunofluorescence, cell viability, expression of key osteoblast markers, and extracellular matrix mineralization. The surfaces functionalized with the extract diluted in the range 1 × 10-5-1 mg/mL resulted in having a greater osteogenic activity for the highest concentration, with lower values of cell viability; higher expression of alkaline phosphatase, bone sialoprotein, and collagen; and lower levels of osteopontin. In conclusion, the functionalization of a nano-textured Ti surface with polyphenols can potentially favor the osteogenic activity of osseointegrated implants.
Collapse
Affiliation(s)
- Rafaella C. P. Scannavino
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Giacomo Riccucci
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| | - Gabriel L. C. Duarte
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Paulo T. de Oliveira
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| |
Collapse
|
8
|
Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on Bone Formation. J Funct Biomater 2022; 13:jfb13030103. [PMID: 35893471 PMCID: PMC9394331 DOI: 10.3390/jfb13030103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional bone replacement materials have been developed with the goal of directing the osteogenesis of osteoblastic cell lines toward differentiation and therefore achieving biomaterial-mediated osteogenesis, but the osteogenic effect has been disappointing. With advances in bone biology, it has been revealed that the local immune microenvironment has an important role in regulating the bone formation process. According to the bone immunology hypothesis, the immune system and the skeletal system are inextricably linked, with many cytokines and regulatory factors in common, and immune cells play an essential role in bone-related physiopathological processes. This review combines advances in bone immunology with biomaterial immunomodulatory properties to provide an overview of biomaterials-mediated immune responses to regulate bone regeneration, as well as methods to assess the bone immunomodulatory properties of bone biomaterials and how these strategies can be used for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Tong Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| | - Liping Ouyang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| |
Collapse
|
9
|
Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, Lian JB, Stein JL, Rosa AL, Beloti MM. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. BIOMATERIALS ADVANCES 2022; 134:112548. [PMID: 35012895 PMCID: PMC9098699 DOI: 10.1016/j.msec.2021.112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.
Collapse
Affiliation(s)
- Rayana L. Bighetti-Trevisan
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana O. Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Jonathan A. R. Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Coralee E. Tye
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adalberto L. Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M. Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil,Corresponding author at: School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904 Ribeiraõ Preto, SP, Brazil. (M.M. Beloti)
| |
Collapse
|
10
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
11
|
Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater 2021; 129:148-158. [PMID: 34082097 DOI: 10.1016/j.actbio.2021.05.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
The fate of biomaterials is orchestrated by biocompatibility and bioregulation characteristics, reported to be closely related to topographical structures. For the purpose to investigate the topography of fibrous membranes on the guided bone regeneration performance, we successfully fabricated poly (lactate-co-glycolate)/fish collagen/nano-hydroxyapatite (PFCH) fibrous membranes with random, aligned and latticed topography by electrospinning. The physical, chemical and biological properties of the three topographical PFCH membranes were systematically investigated by in vitro and in vivo experiments. The subcutaneous implantation of C57BL6 mice showed an acceptable mild foreign body reaction of all three topological membranes. Interestingly, the latticed PFCH membrane exhibited superior abilities to recruit macrophage/monocyte and induce angiogenesis. We further investigated the osteogenesis of the three topographical PFCH membranes via the critical-size calvarial bone defect model of rats and mice and the results suggested that latticed PFCH membrane manifested promising performance to promote angiogenesis through upregulation of the HIF-1α signaling pathway; thereby enhancing bone regeneration. Our research illustrated that the topological structure of fibrous membranes, as one of the characteristics of biomaterials, could regulate its biological functions, and the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: In material-mediated regeneration medicine, the interaction between the biomaterial and the host is key to successful tissue regeneration. The micro-and nano-structure becomes one of the most critical physical clues for designing biomaterials. In this study, we fabricated three topological electrospun membranes (Random, Aligned and Latticed) to understand how topological structural clues mediate bone tissue regeneration. Interestingly, we found that the Latticed topographical PFCH membrane promotes macrophage recruitment, angiogenesis, and osteogenesis in vivo, indicating the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Shue Jin
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Renli Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Zou
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yubao Li
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Zuo
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jidong Li
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
12
|
Mimiroglu D, Yanik T, Ercan B. Nanophase surface arrays on poly (lactic-co-glycolic acid) upregulate neural cell functions. J Biomed Mater Res A 2021; 110:64-75. [PMID: 34245100 DOI: 10.1002/jbm.a.37266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
Nerve guidance channels (NGCs) promote cell-extracellular matrix (ECM) interactions occurring within the nanoscale. However, studies focusing on the effects of nanophase topography on neural cell functions are limited, and mostly concentrated on the sub-micron level (>100 nm) surface topography. Therefore, the aim of this study was to fabricate <100 nm sized structures on poly lactic-co-glycolic acid (PLGA) films used in NGC applications to assess the effects of nanophase topography on neural cell functions. For this purpose, nanopit surface arrays were fabricated on PLGA surfaces via replica molding method. The results showed that neural cell proliferation increased up to 65% and c-fos protein expression increased up to 76% on PLGA surfaces having nanophase surface arrays compared to the control samples. It was observed that neural cells spread to a greater extend and formed more neurite extensions on the nanoarrayed surfaces compared to the control samples. These results were correlated with increased hydrophilicity and roughness of the nanophase PLGA surfaces, and point toward the promise of using nanoarrayed surfaces in NGC applications.
Collapse
Affiliation(s)
- Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tulin Yanik
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey.,BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
13
|
The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. METALS 2021. [DOI: 10.3390/met11030510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we study the influence of the surface properties of ultrafine grained (UFG) and coarse grained (CG) titanium on the morphology, viability, proliferation and differentiation of osteoblast-like MG-63 cells. Wet chemical etching in H2SO4/H2O2 and NH4OH/H2O2 solutions was used for producing surfaces with varying morphology, topography, composition and wettability. The topography and morphology have been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition was determined by time of flight mass-spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results showed that it is possible to obtain samples with different compositions, hydrophilicity, topography and nanoscale or/and microscale structures by changing the etching time and the type of etching solution. It was found that developed topography and morphology can improve spreading and proliferation rate of MG-63 cells. A significant advantage of the samples of the UFG series in comparison with CG in adhesion, proliferation at later stages of cultivation (7 days), higher alkaline phosphatase (ALP) activity and faster achievement of its maximum values was found. However, there is no clear benefit of the UFG series on osteopontin (OPN) expression. All studied samples showed no cytotoxicity towards MG-63 cells and promoted their osteogenic differentiation.
Collapse
|
14
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
15
|
Marin CP, Santana GL, Robinson M, Willerth SM, Crovace MC, Zanotto ED. Effect of bioactive Biosilicate ® /F18 glass scaffolds on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 2020; 109:1293-1308. [PMID: 33070474 DOI: 10.1002/jbm.a.37122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the gene expression profile of the human adipose-derived stem cells (hASCs) grown on the Biosilicate® /F18 glass (BioS-2P/F18) scaffolds. hASCs were cultured using the osteogenic medium (control), the scaffolds, and their ionic extract. We observed that ALP activity was higher in hASCs grown on the BioS-2P/F18 scaffolds than in hASCs cultured with the ionic extract or the osteogenic medium on day 14. Moreover, the dissolution product group and the control exhibited deposited calcium, which peaked on day 21. Gene expression profiles of cell cultured using the BioS-2P/F18 scaffolds and their extract were evaluated in vitro using the RT2 Profiler polymerase chain reaction (PCR) microarray on day 21. Mineralizing tissue-associated proteins, differentiation factors, and extracellular matrix enzyme expressions were measured using quantitative PCR. The gene expression of different proteins involved in osteoblast differentiation was significantly up-regulated in hASCs grown on the scaffolds, especially BMP1, BMP2, SPP1, BMPR1B, ITGA1, ITGA2, ITGB1, SMAD1, and SMAD2, showing that both the composition and topographic features of the biomaterial could stimulate osteogenesis. This study demonstrated that gene expression of hASCs grown on the scaffold surface showed significantly increased gene expression related to hASCs cultured with the ionic extract or the osteogenic medium, evidencing that the BioS-2P/F18 scaffolds have a substantial effect on cellular behavior of hASCs.
Collapse
Affiliation(s)
- Claudia P Marin
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Geovana L Santana
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Meghan Robinson
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Murilo C Crovace
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Edgar D Zanotto
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
16
|
Diana R, Ardhani R, Kristanti Y, Santosa P. Dental pulp stem cells response on the nanotopography of scaffold to regenerate dentin-pulp complex tissue. Regen Ther 2020; 15:243-250. [PMID: 33426225 PMCID: PMC7770425 DOI: 10.1016/j.reth.2020.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The study of regenerative dentistry receives a fast growing interest. The potential ability of the dentin-pulp complex to regenerate is both promising and perplexing. To answer the challenging nature of the dental environment, scientists have developed various combinations of biomaterial scaffolds, stem cells, and incorporation of several growth factors. One of the crucial elements of this tissue engineering plan is the selection and fabrication of scaffolds. However, further findings suggest that cell behavior hugely depends on mechanical signaling. Nanotopography modifies scaffolds to alter cell migration and differentiation. However, to the best of the author's knowledge, there are very few studies addressing the correlation between nanotopography and dentin-pulp complex regeneration. Therefore, this article presents a comprehensive review of these studies and suggests a direction for future developments, particularly in the incorporation of nanotopography design for dentin-pulp complex regeneration.
Collapse
Key Words
- BDNF, brain-derived neurotrophic factor
- BMP, bone morphogenetic protein
- DPSC, dental pulp stem cell
- Dental pulp stem cell
- Dentin-pulp complex tissue
- ECM, extracellular matrix
- FGF2, fibroblast growth factor-2
- GDNF, glial cell line-derived neurotrophic factor
- GO, graphene oxide
- GelMA, methacrylated gelatin
- IGF, insulin-like growth factor
- ION-CPC, iron oxide nanoparticle-incorporating calcium phosphate cement
- LPS, lipopolysaccharide
- NGF, nerve growth factor
- Nanotopography
- PCL, polycaprolactone
- PDGF, platelet-derived growth factor
- PEGMA, poly(ethylene glycol) dimethacrylate
- PGA, polyglycolic acid
- PHMS, polyhydroxymethylsiloxane
- PLGA, poly-dl-lactic-co-glycolic acid
- PLLA, poly-l-lactic acid
- RGO, reduced graphene oxide
- Regenerative dentistry
- SACP, stem cells from apical papilla
- SDF-1, stromal cell-derived factor-1
- SHED, stem cells from human exfoliated deciduous teeth
- Scaffold
- TGF-β, transforming growth factor-β
- TNF-α, t umour necrosis factor-alpha
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Rasda Diana
- Department of Conservative Dentistry, Faculty of Dentistry Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta, 55281, Indonesia
- Corresponding author. Fax: +62274 515307.
| | - Yulita Kristanti
- Department of Conservative Dentistry, Faculty of Dentistry Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Pribadi Santosa
- Department of Conservative Dentistry, Faculty of Dentistry Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
17
|
Vasilevich AS, Vermeulen S, Kamphuis M, Roumans N, Eroumé S, Hebels DGAJ, van de Peppel J, Reihs R, Beijer NRM, Carlier A, Carpenter AE, Singh S, de Boer J. On the correlation between material-induced cell shape and phenotypical response of human mesenchymal stem cells. Sci Rep 2020; 10:18988. [PMID: 33149200 PMCID: PMC7642380 DOI: 10.1038/s41598-020-76019-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steven Vermeulen
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marloes Kamphuis
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Said Eroumé
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dennie G A J Hebels
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rika Reihs
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nick R M Beijer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan de Boer
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
de Oliveira PGFP, de Melo Soares MS, Silveira E Souza AMM, Taba M, Palioto DB, Messora MR, Ghiraldini B, Nunes FADS, de Souza SLS. Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A 2020; 109:682-694. [PMID: 32608088 DOI: 10.1002/jbm.a.37052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the response of a nano-hydroxyapatite coating implant through gene expression analysis (runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alp), osteopontin (Opn), osteocalcin (Oc), receptor activator of nuclear factor-kappa B (Rank), receptor activator of nuclear factor-kappa B ligand (Rank-L), and osteoprotegerin (Opg)). Three-dimensional evaluation (percent bone volume (BV/TV); percent intersection surface (BIC); bone surface/volume ratio (BS/BV); and total porosity (To.Po)) were also analyzed. Mini implants were surgically placed in tibias of both healthy and diabetic rats. The animals were euthanized at 7 and 30 days. Evaluating all factors the relative expression of Rank showed that NANO surface presented the best results at 7 days (diabetic rats). Furthermore the levels of Runx2, Alp, Oc, and Opn suggest an increase in osteoblasts proliferation, especially in early stages of osseointegration. %BIC in healthy and diabetic (7 days) depicted statistically significant differences for NANO group. BV/TV, BS/BV and To.Po demonstrated higher values for NANO group in all evaluated time point and irrespective of systemic condition, but BS/BV 30 days (healthy rat) and 7 and 30 days (diabetic rat). Microtomographic and gene expression analyses have shown the benefits of nano-hydroxyapatite coated implants in promoting new bone formation in diabetic rats.
Collapse
Affiliation(s)
| | - Mariana Sales de Melo Soares
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Mário Taba
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Ghiraldini
- Paulista University, School of Dentistry, São Paulo, São Paulo, Brazil
| | - Felipe Anderson de Sousa Nunes
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Abuna RPF, Oliveira FS, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway. J Cell Physiol 2020; 235:8293-8303. [PMID: 32239701 DOI: 10.1002/jcp.29674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and β-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/β-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Rocha AL, Bighetti-Trevisan RL, Duffles LF, de Arruda JAA, Taira TM, Assis BRD, Macari S, Diniz IMA, Beloti MM, Rosa AL, Fukada SY, Goulart GAC, Ribeiro DD, Abreu LG, Silva TA. Inhibitory effects of dabigatran etexilate, a direct thrombin inhibitor, on osteoclasts and osteoblasts. Thromb Res 2019; 186:45-53. [PMID: 31883999 DOI: 10.1016/j.thromres.2019.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Anticoagulants are widely used in orthopedic surgery to decrease the risk of deep vein thrombosis. While significant bone impairment is induced by long-term heparin therapy, little is known about the effects of direct oral anticoagulants (DOACs). Herein, we investigated the effects of dabigatran etexilate (Pradaxa®), a DOAC inhibitor of thrombin, on bone cells using in vitro and ex vivo cell culture models. MATERIALS AND METHODS Osteoblasts and osteoclasts exposed to different concentrations of dabigatran etexilate and untreated cells were assayed for cell differentiation and activity. Favorable osteogenic conditions for osteoblasts were tested using titanium with nanotopography (Ti-Nano). In addition, mice treated with a dabigatran etexilate solution had bone marrow cells analyzed for the ability to generate osteoclasts. RESULTS Dabigatran etexilate at concentrations of 1 μg/mL and 2 μg/mL did not impact osteoclast or osteoblast viability. The drug inhibited osteoclast differentiation and activity as observed by the reduction of TRAP+ cells, resorption pits and gene and protein expression of cathepsin K. Consistently, osteoclasts from mice treated with dabigatran showed decreased area, resorptive activity, as well as gene and protein expression of cathepsin K. In osteoblast cultures, grown both on polystyrene and Ti-Nano, dabigatran etexilate reduced alkaline phosphatase (ALP) activity, matrix mineralization, gene expression of ALP and osteocalcin. CONCLUSIONS Dabigatran etexilate inhibited osteoclast differentiation in ex vivo and in vitro models in a dose-dependent manner. Moreover, the drug reduced osteoblast activity even under optimal osteogenic conditions. This study provides new evidence regarding the negative overall impact of DOACs on bone cells.
Collapse
Affiliation(s)
- Amanda Leal Rocha
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | - Letícia Fernanda Duffles
- Department of Physics and Chemistry, Faculty of Pharmacological Science, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thaise Mayumi Taira
- Department of Physics and Chemistry, Faculty of Pharmacological Science, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Bruna Rodrigues Dias Assis
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Soraia Macari
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Marcio Mateus Beloti
- Bone Research Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Adalberto Luiz Rosa
- Bone Research Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Sandra Yasuyo Fukada
- Department of Physics and Chemistry, Faculty of Pharmacological Science, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Daniel Dias Ribeiro
- Department of Hematology, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lucas Guimarães Abreu
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Abuna RP, Oliveira FS, Lopes HB, Freitas GP, Fernandes RR, Rosa AL, Beloti MM. The Wnt/β-catenin signaling pathway is regulated by titanium with nanotopography to induce osteoblast differentiation. Colloids Surf B Biointerfaces 2019; 184:110513. [DOI: 10.1016/j.colsurfb.2019.110513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
|
22
|
Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral Spacing of TiO 2 Nanotubes Modulates Osteoblast Behavior. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2956. [PMID: 31547276 PMCID: PMC6766216 DOI: 10.3390/ma12182956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Raluca Nicoleta Ion
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
23
|
Altuntas S, Dhaliwal HK, Bassous NJ, Radwan AE, Alpaslan P, Webster T, Buyukserin F, Amiji M. Nanopillared Chitosan/Gelatin Films: A Biomimetic Approach for Improved Osteogenesis. ACS Biomater Sci Eng 2019; 5:4311-4322. [PMID: 33417787 DOI: 10.1021/acsbiomaterials.9b00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomimicry strategies, inspired from natural organization of living organisms, are being widely used in the design of nanobiomaterials. Particularly, nonlithographic techniques have shown immense potential in the facile fabrication of nanostructured surfaces at large-scale production. Orthopedic biomaterials or coatings possessing extracellular matrix-like nanoscale features induce desirable interactions between the bone tissue and implant surface, also known as osseointegration. In this study, nanopillared chitosan/gelatin (C/G) films were fabricated using nanoporous anodic alumina molds, and their antibacterial properties as well as osteogenesis potential were analyzed by comparing to the flat C/G films and tissue culture polystyrene as controls. In vitro analysis of the expression of RUNX2, osteopontion, and osteocalcin genes for mesenchymal stem cells as well as osteoblast-like Saos-2 cells was found to be increased for the cells grown on nano C/G films, indicating early-stage osteogenic differentiation. Moreover, the mineralization tests (quantitative calcium analysis and alizarin red staining) showed that nanotopography significantly enhanced the mineralization capacity of both cell lines. This work may provide a new perspective of biomimetic surface topography fabrication for orthopedic implant coatings with superior osteogenic differentiation capacity and fast bone regeneration potential.
Collapse
Affiliation(s)
- Sevde Altuntas
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey.,Brigham and Women's Hospital, Renal Division, 4 Blackfan Circle Street, 02115 Boston, Massachusetts, United States
| | | | | | - Ahmed E Radwan
- Brigham and Women's Hospital, Department of Radiology, Harvard Medical School, 72 Francis Street, 02115 Boston, Massachusetts, United States.,Chemistry and Physics Department, Simmons University, 300 The Fenway, 02115 Boston, Massachusetts, United States
| | - Pinar Alpaslan
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey
| | | | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey
| | | |
Collapse
|
24
|
Yin S, Zhang W, Zhang Z, Jiang X. Recent Advances in Scaffold Design and Material for Vascularized Tissue-Engineered Bone Regeneration. Adv Healthc Mater 2019; 8:e1801433. [PMID: 30938094 DOI: 10.1002/adhm.201801433] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/24/2019] [Indexed: 12/21/2022]
Abstract
Bone tissue is a highly vascularized tissue and concomitant development of the vascular system and mineralized matrix requires a synergistic interaction between osteogenesis and angioblasts. Several strategies have been applied to achieve vascularized tissue-engineered bone, including the addition of cytokines as well as pre-vascularization strategies and co-culture systems. However, the scaffold is another extremely important component to consider, and development of vascularized bone scaffolds remains one of the greatest challenges for engineering clinically relevant bone substitutes. Here, this review highlights the biomaterial selection, preparation of pre-vascularized scaffolds, composition modification of the scaffold, structural design, and the comprehensive use of the above synergistic modifications of scaffold materials for vascular scaffolds in bone tissue engineering. Moreover, a strategy is proposed for the design of future scaffold structures, in which promoting the regeneration of vascularized bone by regulating the microenvironment should be the main focus. This overview can help illuminate progress in this field and identify the most recently developed scaffolds that show the greatest potential for achieving clinically vascularized bone.
Collapse
Affiliation(s)
- Shi Yin
- Department of ProsthodonticsShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Engineering Research Center of Advanced Dental Technology and MaterialsNational Clinical Research Center of Stomatology Shanghai 200011 China
| | - Wenjie Zhang
- Department of ProsthodonticsShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Engineering Research Center of Advanced Dental Technology and MaterialsNational Clinical Research Center of Stomatology Shanghai 200011 China
| | - Zhiyuan Zhang
- Shanghai Engineering Research Center of Advanced Dental Technology and MaterialsNational Clinical Research Center of Stomatology Shanghai 200011 China
| | - Xinquan Jiang
- Department of ProsthodonticsShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology No. 639, Manufacturing Bureau Road Huangpu District Shanghai China
- Shanghai Engineering Research Center of Advanced Dental Technology and MaterialsNational Clinical Research Center of Stomatology Shanghai 200011 China
| |
Collapse
|
25
|
Lopes HB, Freitas GP, Elias CN, Tye C, Stein JL, Stein GS, Lian JB, Rosa AL, Beloti MM. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A 2019; 107:1303-1313. [PMID: 30707485 DOI: 10.1002/jbm.a.36643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin β3, which increases osteoblast differentiation. Silencing integrin β3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin β3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/β-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin β3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin β3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.
Collapse
Affiliation(s)
- Helena B Lopes
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade P Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Coralee Tye
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Adalberto L Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Tsui TY, Logan M, Moussa HI, Aucoin MG. What's Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E114. [PMID: 30602684 PMCID: PMC6337376 DOI: 10.3390/ma12010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what's happening on the "top" side or even the interior of the cell. Our group has focused on engineered surfaces typically reserved for microelectronics as potential surfaces to control cell behavior. These devices allow the exploration of novel substrates including titanium, tungsten, and tantalum intermixed with silicon oxide. Furthermore, these devices allow the exploration of the intricate patterning of surface materials and surface geometries i.e., trenches. Here we present two important advancements in our research: (1) the ability to split a fixed cell through the nucleus using an inexpensive three-point bend micro-cleaving technique and image 3D nanometer scale cellular components using high-resolution scanning electron microscopy; and (2) the observation of nanometer projections from the underbelly of a cell as it sits on top of patterned trenches on our devices. This application of a 3-point cleaving technique to visualize the underbelly of the cell is allowing a new understanding of how cells descend into surface cavities and is providing a new insight on cell migration mechanisms.
Collapse
Affiliation(s)
- Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
27
|
Souza AT, Bezerra BL, Oliveira FS, Freitas GP, Bighetti Trevisan RL, Oliveira PT, Rosa AL, Beloti MM. Effect of bone morphogenetic protein 9 on osteoblast differentiation of cells grown on titanium with nanotopography. J Cell Biochem 2018; 119:8441-8449. [DOI: 10.1002/jcb.27060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alann T.P. Souza
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Barbara L.S. Bezerra
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Fabiola S. Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Gileade P. Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Rayana L. Bighetti Trevisan
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Paulo T. Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Adalberto L. Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| |
Collapse
|
28
|
Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 2018; 5:43-59. [PMID: 29423267 PMCID: PMC5798025 DOI: 10.1093/rb/rbx024] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.
Collapse
Affiliation(s)
- Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
29
|
Li NB, Sun SJ, Bai HY, Xiao GY, Xu WH, Zhao JH, Chen X, Lu YP, Zhang YL. Preparation of well-distributed titania nanopillar arrays on Ti6Al4V surface by induction heating for enhancing osteogenic differentiation of stem cells. NANOTECHNOLOGY 2018; 29:045101. [PMID: 29182157 DOI: 10.1088/1361-6528/aa9daa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Great effort has recently been devoted to the preparation of nanoscale surfaces on titanium-based implants to achieve clinically fast osteoinduction and osseointegration, which relies on the unique characteristics of the nanostructure. In this work, we used induction heating treatment (IHT) as a rapid oxidation method to fabricate a porous nanoscale oxide layer on the Ti6Al4V surface for better medical application. Well-distributed vertical nanopillars were yielded by IHT for 20-35 s on the alloy surface. The composition of the oxides contained rutile/anatase TiO2 and a small amount of Al2O3 between the TiO2 grain boundaries (GBs). This technology resulted in a reduction and subsequent increase of surface roughness of 26-32 nm when upregulating the heating time, followed by the successive enhancement of the thickness, wettability and adhesion strength of the oxidation layer to the matrix. The surface hardness also distinctly rose to 554 HV in the IHT-35 s group compared with the 350 HV of bare Ti6Al4V. The massive small-angle GBs in the bare alloy promoted the formation of nanosized oxide crystallites. The grain refinement and deformation texture reduction further improved the mechanical properties of the matrix after IHT. Moreover, in vitro experiments on a mesenchymal stem cell (BMSC) culture derived from human bone marrow for 1-7 days indicated that the nanoscale layers did not cause cytotoxicity, and facilitated cell differentiation in osteoblasts by enhancing the gene and osteogenesis-related protein expressions after 1-3 weeks of culturing. The increase of the IHT time slightly advanced the BMSC proliferation and differentiation, especially during long-term culture. Our findings provide strong evidence that IHT oxidation technology is a novel nanosurface modification technology, which is potentially promising for further clinical development.
Collapse
Affiliation(s)
- Ning-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji'nan 250061, People's Republic of China. Suzhou Institute, Shandong University, Suzhou 215123, People's Republic of China. School of Materials Science and Engineering, Shandong University, Ji'nan 250061, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dhawan U, Pan HA, Shie MJ, Chu YH, Huang GS, Chen PC, Chen WL. The Spatiotemporal Control of Osteoblast Cell Growth, Behavior, and Function Dictated by Nanostructured Stainless Steel Artificial Microenvironments. NANOSCALE RESEARCH LETTERS 2017; 12:86. [PMID: 28168610 PMCID: PMC5293702 DOI: 10.1186/s11671-016-1810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The successful application of a nanostructured biomaterial as an implant is strongly determined by the nanotopography size triggering the ideal cell response. Here, nanoporous topography on 304L stainless steel substrates was engineered to identify the nanotopography size causing a transition in the cellular characteristics, and accordingly, the design of nanostructured stainless steel surface as orthopedic implants is proposed. A variety of nanopore diameters ranging from 100 to 220 nm were fabricated by one-step electrolysis process and collectively referred to as artificial microenvironments. Control over the nanopore diameter was achieved by varying bias voltage. MG63 osteoblasts were cultured on the nanoporous surfaces for different days. Immunofluorescence (IF) and scanning electron microscopy (SEM) were performed to compare the modulation in cell morphologies and characteristics. Osteoblasts displayed differential growth parameters and distinct transition in cell behavior after nanopore reached a certain diameter. Nanopores with 100-nm diameter promoted cell growth, focal adhesions, cell area, viability, vinculin-stained area, calcium mineralization, and alkaline phosphatase activity. The ability of these nanoporous substrates to differentially modulate the cell behavior and assist in identifying the transition step will be beneficial to biomedical engineers to develop superior implant geometries, triggering an ideal cell response at the cell-nanotopography interface.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Hsu-An Pan
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Meng-Je Shie
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Ying Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Guewha S. Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Po-Chun Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Section 3, Zhongxiao E Road, Taipei City, 106 Taiwan, ROC
| | - Wen Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu, 300 Taiwan, ROC
| |
Collapse
|
31
|
Bachhuka A, Delalat B, Ghaemi SR, Gronthos S, Voelcker NH, Vasilev K. Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. NANOSCALE 2017; 9:14248-14258. [PMID: 28914948 DOI: 10.1039/c7nr03131a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
Collapse
Affiliation(s)
- Akash Bachhuka
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and ARC Centre of Excellence for Nanoscale Bio Photonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bahman Delalat
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
| | - Soraya Rasi Ghaemi
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia. and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and School of Engineering, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
32
|
Silva HF, Abuna RPF, Lopes HB, Francischini MS, de Oliveira PT, Rosa AL, Beloti MM. Participation of extracellular signal-regulated kinases 1/2 in osteoblast and adipocyte differentiation of mesenchymal stem cells grown on titanium surfaces. Eur J Oral Sci 2017; 125:355-360. [DOI: 10.1111/eos.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heitor F. Silva
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Rodrigo P. F. Abuna
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Helena B. Lopes
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Marcelo S. Francischini
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Adalberto L. Rosa
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Marcio M. Beloti
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
33
|
Zhukova Y, Hiepen C, Knaus P, Osterland M, Prohaska S, Dunlop JWC, Fratzl P, Skorb EV. The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration. Adv Healthc Mater 2017; 6. [PMID: 28371540 DOI: 10.1002/adhm.201601244] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/04/2017] [Indexed: 11/06/2022]
Abstract
Surface structuring of titanium-based implants is known to modulate the behavior of adherent cells, but the influence of different nanotopographies is poorly understood. The aim is to investigate preosteoblast proliferation, adhesion, morphology, and migration on surfaces with similar surface chemistry but distinct nanotopographical features. Sonochemical treatment and anodic oxidation are employed to fabricate disordered, mesoporous titania (TMS) and ordered titania nanotubular (TNT) topographies on titanium, respectively. Morphological evaluation reveals that cells are polygonal and well-spread on TMS, but display an elongated, fibroblast-like morphology on TNT surfaces, while they are much flatter on glass. Both nanostructured surfaces impair cell adhesion, but TMS is more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. A quantitative wound healing assay in combination with live-cell imaging reveals that cell migration on TMS surfaces has a more collective character than on other surfaces, probably due to a closer proximity between neighboring migrating cells on TMS. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that can be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair while allowing for the encapsulation of drugs into porous titania layer.
Collapse
Affiliation(s)
- Yulia Zhukova
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14476 Potsdam-Golm Germany
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Marc Osterland
- Zuse Institute Berlin; 14195 Berlin Germany
- Institute for Mathematics; Freie Universität Berlin; 14195 Berlin Germany
| | | | - John W. C. Dunlop
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14476 Potsdam-Golm Germany
| | - Peter Fratzl
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14476 Potsdam-Golm Germany
| | - Ekaterina V. Skorb
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14476 Potsdam-Golm Germany
- Laboratory of Solution Chemistry of Advanced Materials and Technologies; ITMO University; 197101 St. Petersburg Russian Federation
| |
Collapse
|
34
|
Costa DG, Ferraz EP, Abuna RPF, de Oliveira PT, Morra M, Beloti MM, Rosa AL. The effect of collagen coating on titanium with nanotopography on in vitro
osteogenesis. J Biomed Mater Res A 2017. [DOI: 10.1002/jbm.a.36140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel G. Costa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Emanuela P. Ferraz
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Rodrigo P. F. Abuna
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Marco Morra
- Nobil Bio Ricerche srl; Portacomaro Asti Italy
| | - Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Adalberto L. Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| |
Collapse
|
35
|
Chen Z, Bachhuka A, Han S, Wei F, Lu S, Visalakshan RM, Vasilev K, Xiao Y. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS NANO 2017; 11:4494-4506. [PMID: 28414902 DOI: 10.1021/acsnano.6b07808] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Osteoimmunomodulation has informed the importance of modulating a favorable osteoimmune environment for successful materials-mediated bone regeneration. Nanotopography is regarded as a valuable strategy for developing advanced bone materials, due to its positive effects on enhancing osteogenic differentiation. In addition to this direct effect on osteoblastic lineage cells, nanotopography also plays a vital role in regulating immune responses, which makes it possible to utilize its immunomodulatory properties to create a favorable osteoimmune environment. Therefore, the aim of this study was to advance the applications of nanotopography with respect to its osteoimmunomodulatory properties, aiming to shed further light on this field. We found that tuning the surface chemistry (amine or acrylic acid) and scale of the nanotopography (16, 38, and 68 nm) significantly modulated the osteoimmune environment, including changes in the expression of inflammatory cytokines, osteoclastic activities, and osteogenic, angiogenic, and fibrogenic factors. The generated osteoimmune environment significantly affected the osteogenic differentiation of bone marrow stromal cells, with carboxyl acid-tailored 68 nm surface nanotopography offering the most promising outcome. This study demonstrated that the osteoimmunomodulation could be manipulated via tuning the chemistry and nanotopography, which implied a valuable strategy to apply a "nanoengineered surface" for the development of advanced bone biomaterials with favorable osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou 510055, Guangdong, People's Republic of China
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Akash Bachhuka
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
- Future Industries Institute & School of Engineering, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Shengwei Han
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Shifeier Lu
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | | | - Krasimir Vasilev
- Future Industries Institute & School of Engineering, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou 510055, Guangdong, People's Republic of China
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| |
Collapse
|
36
|
Marcatti Amarú Maximiano W, Marino Mazucato V, Tambasco de Oliveira P, Célia Jamur M, Oliver C. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells. J Biomed Mater Res A 2017; 105:2150-2161. [DOI: 10.1002/jbm.a.36076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- William Marcatti Amarú Maximiano
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School; University of Sao Paulo; Brazil
| | - Vivian Marino Mazucato
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School; University of Sao Paulo; Brazil
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology and Basic Pathology, School of Dentistry; University of Sao Paulo; Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School; University of Sao Paulo; Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School; University of Sao Paulo; Brazil
| |
Collapse
|
37
|
Abuna RPF, Stringhetta-Garcia CT, Fiori LP, Dornelles RCM, Rosa AL, Beloti MM. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis. J Appl Oral Sci 2016; 24:376-82. [PMID: 27556209 PMCID: PMC4990367 DOI: 10.1590/1678-775720160037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- - Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Laboratório de Cultura de Células, Ribeirão Preto, SP, Brasil
| | - Camila Tami Stringhetta-Garcia
- - Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Laboratório de Fisiologia Endócrina e do Envelhecimento, Araçatuba, SP, Brasil
| | - Leonardo Pimentel Fiori
- - Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Laboratório de Cultura de Células, Ribeirão Preto, SP, Brasil
| | - Rita Cassia Menegati Dornelles
- - Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Laboratório de Fisiologia Endócrina e do Envelhecimento, Araçatuba, SP, Brasil
| | - Adalberto Luiz Rosa
- - Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Laboratório de Cultura de Células, Ribeirão Preto, SP, Brasil
| | - Marcio Mateus Beloti
- - Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Laboratório de Cultura de Células, Ribeirão Preto, SP, Brasil
| |
Collapse
|