1
|
Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacol Biochem Behav 2023; 223:173522. [PMID: 36717034 DOI: 10.1016/j.pbb.2023.173522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a persistent impairment of social skills, including aspects of perception, interpretation, and response, combined with restricted and repetitive behavior. ASD is a complex and multifactorial condition, and its etiology could be attributed to genetic and environmental factors. Despite numerous clinical and experimental studies, no etiological factor, biomarker, and specific model of transmission have been consistently associated with ASD. However, an imbalance in cholesterol levels has been observed in many patients, more specifically, a condition of hypocholesterolemia, which seems to be shared between ASD and ASD-related genetic syndromes such as fragile X syndrome (FXS), Rett syndrome (RS), and Smith- Lemli-Opitz (SLO). Furthermore, it is known that alterations in cholesterol levels lead to neuroinflammation, oxidative stress, impaired myelination and synaptogenesis. Thus, the aim of this review is to discuss the cholesterol metabolic pathways in the ASD context, as well as in genetic syndromes related to ASD, through clinical observations and animal models. In fact, SLO, FXS, and RS patients display early behavioral markers of ASD followed by cholesterol disturbances. Several studies have demonstrated the role of cholesterol in psychiatric conditions and how its levels modulate brain neurodevelopment. This review suggests an important relationship between ASD pathology and cholesterol metabolism impairment; thus, some strategies could be raised - at clinical and pre-clinical levels - to explore whether cholesterol metabolism disturbance has a generally adverse effect in exacerbating the symptoms of ASD patients.
Collapse
Affiliation(s)
- Jaime Lin
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jade de Oliveira
- Laboratory for Research in Metabolic Disorders and Neurodegenerative Diseases, Graduate Program in Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Segatto M, Cutone A, Pallottini V. Fat Checking: Emerging Role of Lipids in Metabolism and Disease. Int J Mol Sci 2022; 23:ijms232213842. [PMID: 36430317 PMCID: PMC9698018 DOI: 10.3390/ijms232213842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Lipids are hydrophobic molecules involved in a plethora of biological functions; for example, they are employed for the storage of energy, serve as essential constituents of cell membranes and participate in the assembly of bilayer configuration [...].
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
- Correspondence:
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | |
Collapse
|
3
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
4
|
Mass Spectrometry Imaging of Lipids in the Scent Glands of Muskrat (Ondatra zibethicus) in Different Reproductive Statuses. Cells 2022; 11:cells11142228. [PMID: 35883671 PMCID: PMC9322022 DOI: 10.3390/cells11142228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
As a typical seasonal breeding animal, male muskrats have a pair of scent glands that can emit musky odor substances to attract females during the breeding period. The present study aimed to visualize the differences in the distribution of lipids in the scent glands of muskrats during their different reproductive statuses by imaging mass spectrometry and quantitative real-time PCR (qRT-PCR). The results revealed remarkable differences in the expression and spatial distribution of lipids detected in the scent glands of muskrats during the different reproductive statuses. In addition, the expression levels of lipid molecules PC (32:0) and LysoPC (16:0) were found to be significantly higher in the breeding season than in the non-breeding season. Moreover, the mRNA expression levels of lipid synthesis enzyme Pemt and Pla2g4b were higher in the breeding season than in the non-breeding season, and there were positive correlations between the expression intensities of lipid molecules and the expression levels of Pemt and Pla2g4b. The present study investigates the changes and distribution of the endogenous lipid in the scent glands of muskrats and elucidates that the seasonal changes in the lipid metabolism may affect the functions of the scent glands in muskrats.
Collapse
|
5
|
NGF Modulates Cholesterol Metabolism and Stimulates ApoE Secretion in Glial Cells Conferring Neuroprotection against Oxidative Stress. Int J Mol Sci 2022; 23:ijms23094842. [PMID: 35563230 PMCID: PMC9100774 DOI: 10.3390/ijms23094842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cholesterol plays a crucial role in the brain, where its metabolism is particularly regulated by astrocytic activity. Indeed, adult neurons suppress their own cholesterol biosynthesis and import this sterol through ApoE-rich particles secreted from astrocytes. Recent evidence suggests that nerve growth factor (NGF) may exert neurotrophic activity by influencing cell metabolism. Nevertheless, the effect of NGF on glial cholesterol homeostasis has still not been elucidated. Thus, the aim of this project is to assess whether NGF could influence cholesterol metabolism in glial cells. To reach this objective, the U373 astrocyte-derived cell line was used as an experimental model. Immunoblot and ELISA analysis showed that proteins and enzymes belonging to the cholesterol metabolism network were increased upon NGF treatment in glial cells. Furthermore, NGF significantly increased ApoE secretion and the amount of extracellular cholesterol in the culture medium. Co-culture and U373-conditioned medium experiments demonstrated that NGF treatment efficiently counteracted rotenone-mediated cytotoxicity in N1E-115 neuronal cells. Conversely, neuroprotection mediated by NGF treatment was suppressed when N1E-115 were co-cultured with ApoE-silenced U373 cells. Taken together, these data suggest that NGF controls cholesterol homeostasis in glial cells. More importantly, NGF exerts neuroprotection against oxidative stress, which is likely associated with the induction of glial ApoE secretion.
Collapse
|
6
|
Brain Cholesterol Biosynthetic Pathway Is Altered in a Preclinical Model of Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23063408. [PMID: 35328827 PMCID: PMC8955806 DOI: 10.3390/ijms23063408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent form of inherited X-linked pathology, associated with an intellectual and developmental disability, and currently considered the first monogenic cause of autism spectrum disorder (ASD). Low levels of total cholesterol reported in the serum of FXS patients, and evidence that FMRP targets a subset of mRNAs encoding proteins of lipid synthesis and transport suggests that the cholesterol metabolism impairments could be involved in FXS. Thus, the aim of the presented work was to investigate the modulations of the cholesterol biosynthetic pathway and its end-products in a recently developed Fmr1-Δexon 8 rat model of FXS. Here, we show that this experimental model mimics what is found in FXS patients, exhibiting a lower serum cholesterol content, accompanied by a reduction in food intake and body weight compared to WT animals. Moreover, alterations of proteins committed to cholesterol synthesis and uptake have been observed in the amygdala, prefrontal cortex and nucleus accumbens. Interestingly, the end-products show a brain region-dependent modulation in Fmr1-Δexon 8 rats. Overall, our results demonstrate that the cholesterol biosynthetic pathway is altered in some brain regions of this preclinical model of FXS. This finding has relevance for future studies to delve deeper into the involvement of this metabolic process in FXS, and thus its possible role as a therapeutic target.
Collapse
|
7
|
Tonini C, Schiavi S, Macca F, Segatto M, Trezza V, Pallottini V. Long-lasting impact of perinatal dietary supplementation of omega 3 fatty acids on mevalonate pathway: potential role on neuron trophism in male offspring hippocampal formation. Nutr Neurosci 2022; 25:110-121. [PMID: 32037984 DOI: 10.1080/1028415x.2020.1724452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: We were aimed at evaluating the long-term impact of perinatal an omega-3 fatty acid-enriched diet on the mevalonate/cholesterol pathway in the brain of male offspring.Methods: Female rats were fed with standard or omega-3 fatty acid-enriched diet during pregnancy and lactation. Liver, brain and plasma were collected from infant, adolescent and adult male offspring for subsequent biochemical and morphological analyses.Results: The omega-3 enriched diet induced region-dependent changes of the 3-hydroxy 3-methylglutaryl Coenzyme A reductase in the brain and affected notably RhoA/CREB signaling and the nerve growth factor content in the hippocampus. Our data reveal a long-lasting impact of perinatal omega-3 fatty acid supplementation on hippocampal nerve growth factor levels mediated by reduced 3-hydroxy 3-methylglutaryl Coenzyme A reductase activation state and enhanced CREB signaling.Discussion: These data underline the importance of the perinatal omega-3 enriched diet for adult brain function and reveal a new pathway important for nerve growth factor regulation.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Macca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
8
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Tonini C, Segatto M, Martino F, Cigliano L, Nazzaro M, Barberio L, Mandalà M, Pallottini V. Effects of Late-Life Caloric Restriction on Age-Related Alterations in the Rat Cortex and Hippocampus. Nutrients 2021; 13:nu13010232. [PMID: 33467406 PMCID: PMC7830987 DOI: 10.3390/nu13010232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background: A major problem of aging is the disruption of metabolic homeostasis. This is particularly relevant in the brain where it provokes neurodegeneration. Caloric restriction is a physiologic intervention known to delay the deleterious consequences of aging in several species ranging from yeast to mammals. To date, most studies on experimental models have started this dietary intervention from weaning, which is very difficult to be translated to human beings. Here, we study the effects of a more realistic dietary regimen in rats, starting at an advanced age and lasting for six months. Methods: we analyzed in the cortex and hippocampus, the proteins involved in the energetic balance of the cells, cholesterol metabolism, oxidative stress response, inflammation, synaptic impairment, and brain trophism. Results: our results suggest that caloric restriction in late life can revert only some age-related changes studied here.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.M.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Francesca Martino
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.M.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (L.C.); (M.N.)
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (L.C.); (M.N.)
| | - Laura Barberio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.M.)
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-57336335-44
| |
Collapse
|
11
|
ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells. Cells 2020; 9:cells9102232. [PMID: 33023189 PMCID: PMC7599914 DOI: 10.3390/cells9102232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.
Collapse
|
12
|
Facts about Fats: New Insights into the Role of Lipids in Metabolism, Disease and Therapy. Int J Mol Sci 2020; 21:ijms21186651. [PMID: 32932833 PMCID: PMC7554695 DOI: 10.3390/ijms21186651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
|
13
|
Impact of Sex and Age on the Mevalonate Pathway in the Brain: A Focus on Effects Induced by Maternal Exposure to Exogenous Compounds. Metabolites 2020; 10:metabo10080304. [PMID: 32722471 PMCID: PMC7463490 DOI: 10.3390/metabo10080304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The mevalonate pathway produces cholesterol and other compounds crucial for numerous cellular processes. It is well known that age and sex modulate this pathway in the liver. Recently, similar effects were also noted in different brain areas, suggesting that alterations of the mevalonate pathway are at the root of marked sex-specific disparities in some neurodevelopmental disorders related to disturbed cholesterol homeostasis. Here, we show how the mevalonate pathway is modulated in a sex-, age- and region-specific manner, and how maternal exposure to exogenous compounds can disturb the regulation of this pathway in the brain, possibly inducing functional alterations.
Collapse
|
14
|
Maternal Dietary Exposure to Low-Dose Bisphenol A Affects Metabolic and Signaling Pathways in the Brain of Rat Fetuses. Nutrients 2020; 12:nu12051448. [PMID: 32429515 PMCID: PMC7285067 DOI: 10.3390/nu12051448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Bisphenol A (BPA) is a synthetic compound widely used for the production of polycarbonate plasticware and epoxy resins. BPA exposure is widespread and more than 90% of individuals have detectable amounts of the molecule in their body fluids, which originates primarily from diet. Here, we investigated whether prenatal exposure to BPA affects the mevalonate (MVA) pathway in rat brain fetuses, and whether potential effects are sex-dependent. The MVA pathway is important for brain development and function. Our results demonstrate that the fetal brain, exposed in utero to a very low dose of BPA (2.5 µg/kg/day), displayed altered MVA pathway activation, increased protein prenylation, and a decreased level of pro-BDNF. Interestingly, the BPA-induced effects on estrogen receptor α were sex-dependent. In conclusion, this work demonstrates intergenerational effects of BPA on the brain at very low doses. Our results reveal new targets for BPA-induced interference and underline the impacts of BPA on health.
Collapse
|
15
|
Tonini C, Colardo M, Colella B, Di Bartolomeo S, Berardinelli F, Caretti G, Pallottini V, Segatto M. Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins by JQ1 Unravels a Novel Epigenetic Modulation to Control Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21041297. [PMID: 32075110 PMCID: PMC7072965 DOI: 10.3390/ijms21041297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising therapies in the management of lipid disorders. Here, we investigated the role of bromodomain and extraterminal domain (BET) proteins in the regulation of lipid metabolism. To reach this aim, we used a loss-of-function approach by treating HepG2 cells with JQ1, a powerful and selective BET inhibitor. The main results demonstrated that BET inhibition by JQ1 efficiently decreases intracellular lipid content, determining a significant modulation of proteins involved in lipid biosynthesis, uptake and intracellular trafficking. Importantly, the capability of BET inhibition to slow down cell proliferation is dependent on the modulation of cholesterol metabolism. Taken together, these data highlight a novel epigenetic mechanism involved in the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Mayra Colardo
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Barbara Colella
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Sabrina Di Bartolomeo
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Francesco Berardinelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Valentina Pallottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
- Correspondence:
| |
Collapse
|
16
|
Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, Leoni V, Atanasov AG, Tonon MC, Masmoudi-Kouki O, Lizard G. Octadecaneuropeptide (ODN) Induces N2a Cells Differentiation through a PKA/PLC/PKC/MEK/ERK-Dependent Pathway: Incidence on Peroxisome, Mitochondria, and Lipid Profiles. Molecules 2019; 24:molecules24183310. [PMID: 31514417 PMCID: PMC6767053 DOI: 10.3390/molecules24183310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Namsi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| | - Amira S Khan
- Physiology of Nutrition & Toxicology (NUTox), Inserm U1231, University UBFC, 21000 Dijon, France.
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Istituto Neurologico Carlo Besta, 20100 Milan, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, 20100 Milan, Italy.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1010 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
| | - Olfa Masmoudi-Kouki
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| |
Collapse
|
17
|
Engel DF, Grzyb AN, de Oliveira J, Pötzsch A, Walker TL, Brocardo PS, Kempermann G, de Bem AF. Impaired adult hippocampal neurogenesis in a mouse model of familial hypercholesterolemia: A role for the LDL receptor and cholesterol metabolism in adult neural precursor cells. Mol Metab 2019; 30:1-15. [PMID: 31767163 PMCID: PMC6812372 DOI: 10.1016/j.molmet.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objective In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis. Methods We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BL/6JRj and LDLr−/− mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BL/6JRj mice in vitro. Results Behavioral tests revealed that adult LDLr−/− mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr−/− mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown. Conclusions Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions. The LDLr −/− mice show impaired hippocampal related behaviour and adult neurogenesis. In vitro exposure of NPC to LDL and LDLr knock-down reduces cell proliferation. LDL exposure induces lipid storage in NPC. In vitro LDL and LDLr knock-down in NPC modulates distinct regulatory networks.
Collapse
Affiliation(s)
- Daiane F Engel
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jade de Oliveira
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Patricia S Brocardo
- Department of Morphological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Andreza F de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
18
|
Segatto M, Tonini C, Pfrieger FW, Trezza V, Pallottini V. Loss of Mevalonate/Cholesterol Homeostasis in the Brain: A Focus on Autism Spectrum Disorder and Rett Syndrome. Int J Mol Sci 2019; 20:ijms20133317. [PMID: 31284522 PMCID: PMC6651320 DOI: 10.3390/ijms20133317] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
The mevalonate (MVA)/cholesterol pathway is crucial for central nervous system (CNS) development and function and consequently, any dysfunction of this fundamental metabolic pathway is likely to provoke pathologic changes in the brain. Mutations in genes directly involved in MVA/cholesterol metabolism cause a range of diseases, many of which present neurologic and psychiatric symptoms. This raises the question whether other diseases presenting similar symptoms are related albeit indirectly to the MVA/cholesterol pathway. Here, we summarized the current literature suggesting links between MVA/cholesterol dysregulation and specific diseases, namely autism spectrum disorder and Rett syndrome.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Claudia Tonini
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences (INCI) CNRS UPR 3212, Université de Strasbourg, 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | - Viviana Trezza
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy.
| |
Collapse
|
19
|
Hernandez JA, Castro VL, Reyes-Nava N, Montes LP, Quintana AM. Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development. Blood Adv 2019; 3:1244-1254. [PMID: 30987969 PMCID: PMC6482358 DOI: 10.1182/bloodadvances.2018024539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Nayeli Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Laura P Montes
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
20
|
Pająk B, Kania E, Gołaszewska A, Orzechowski A. Preliminary Study on Clusterin Protein (sCLU) Expression in PC-12 Cells Overexpressing Wild-Type and Mutated (Swedish) AβPP genes Affected by Non-Steroid Isoprenoids and Water-Soluble Cholesterol. Int J Mol Sci 2019; 20:E1481. [PMID: 30909654 PMCID: PMC6470582 DOI: 10.3390/ijms20061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
In this study we attempted to verify the hypothesis that the mevalonate pathway affects amyloid beta precursor protein (AβPP) processing and regulates clusterin protein levels. AβPP expression was monitored by green fluorescence (FL) and Western blot (WB). WB showed soluble amyloid protein precursor alpha (sAβPPα) presence in AβPP-wt cells and Aβ expression in AβPP-sw cells. Nerve growth factor (NGF)-differentiated rat neuronal pheochromocytoma PC-12 cells were untreated/treated with statins alone or together with non-sterol isoprenoids. Co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol demonstrated statin-dependent neurotoxicity resulted from the attenuated activity of mevalonate pathway rather than lower cholesterol level. Atorvastatin (50 μM) or simvastatin (50 μM) as well as cholesterol chelator methyl-β-cyclodextrin (0.2 mM) diminished cell viability (p < 0.05) and clusterin levels. Interestingly, co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol stimulated (p < 0.05) clusterin expression. Effects of non-sterol isoprenoids, but not water soluble cholesterol (Chol-PEG), were the most significant in mock-transfected cells. Geranylgeraniol (GGOH) overcame atorvastatin (ATR)-dependent cytotoxicity. This effect does not seem to be dependent on clusterin, as its level became lower after GGOH. The novelty of these findings is that they show that the mevalonate (MEV) pathway rather than cholesterol itself plays an important role in clusterin expression levels. In mock-transfected, rather than in AβPP-overexpressing cells, GGOH/farnesol (FOH) exerted a protective effect. Thus, protein prenylation with GGOH/FOH might play substantial role in neuronal cell survival.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Elżbieta Kania
- Tumor Cell Death Laboratory, Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Anita Gołaszewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
21
|
Segatto M, Fico E, Gharbiya M, Rosso P, Carito V, Tirassa P, Plateroti R, Lambiase A. VEGF inhibition alters neurotrophin signalling pathways and induces caspase-3 activation and autophagy in rabbit retina. J Cell Physiol 2019; 234:18297-18307. [PMID: 30891770 DOI: 10.1002/jcp.28462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
This study sought to evaluate the prospective role exerted by vascular endothelial growth factor (VEGF) in the modulation of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) signalling pathways in the rabbit retina. To reach this aim, the anti-VEGF agents aflibercept and ranibizumab were used as a pharmacological approach to evaluate the putative consequences elicited by VEGF inhibition on neurotrophin signalling. VEGF inhibition determined a marked imbalance in proneurotrophin expression, a significant reduction in TrkA and TrkB phosphorylation states and a decrease in the pan-neurotrophin receptor p75. Importantly, VEGF blockade also caused a strong increase in cleaved caspase-3, beclin-1 and lipidated LC3. The effects were more pronounced in the aflibercept group when compared with ranibizumab-treated rabbits, particularly 1 week after injection. This study demonstrates that VEGF exerts pivotal physiological roles in regulating NGF and BDNF pathways in the retina, as its inhibition by anti-VEGF agents deeply impacts neurotrophin homeostasis. These events are accompanied by a sustained induction of apoptotic and autophagic markers, suggesting that anti-VEGF-dependent impairments in neurotrophin signalling could be responsible for the activation of retinal cell death pathways.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.,Department of Sense Organs, University of Rome "La Sapienza", Rome, Italy
| | - Elena Fico
- Institute of Cell Biology and Neurobiology (IBCN-CNR), Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Magda Gharbiya
- Department of Sense Organs, University of Rome "La Sapienza", Rome, Italy
| | - Pamela Rosso
- Institute of Cell Biology and Neurobiology (IBCN-CNR), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN-CNR), Rome, Italy
| | - Rocco Plateroti
- Department of Sense Organs, University of Rome "La Sapienza", Rome, Italy
| | | |
Collapse
|
22
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
23
|
Cartocci V, Tonini C, Di Pippo T, Vuono F, Schiavi S, Marino M, Trezza V, Pallottini V. Prenatal exposure to valproate induces sex-, age-, and tissue-dependent alterations of cholesterol metabolism: Potential implications on autism. J Cell Physiol 2018; 234:4362-4374. [PMID: 30341891 DOI: 10.1002/jcp.27218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Here, we investigated the protein network regulating cholesterol metabolism in the liver and brain of adolescent and adult male and female rats prenatally exposed to valproate (VPA), a well validated experimental model of autism spectrum disorders (ASD). We were aimed at studying whether prenatal VPA exposure affected the proteins involved in cholesterol homeostasis in a sex-dependent manner. To this aim the protein network of cholesterol metabolism, in term of synthesis and plasma membrane trafficking, was analyzed by western blot in the liver and different brain areas (amygdala, cerebellum, cortex, hippocampus, nucleus accumbens, and dorsal striatum) of adolescent and adult male and female rats prenatally exposed to VPA. Our results show that physiological sex-dependent differences are present both in the liver and in brain of rats. Interestingly, VPA affects specifically the brain in an age- and region-specific manner; indeed, cerebellum, cortex, hippocampus and nucleus accumbens are affected in a sex-dependent way, while this does not occur in amygdala and dorsal striatum. Overall, we demonstrate that each brain area responds differently to the same external stimulus and males and females respond in a different way, suggesting that this could be related to the diverse incidences, between the sexes, of some neurodevelopmental pathologies such as autism, which displays a 3:1 male to female ratio.
Collapse
Affiliation(s)
- Veronica Cartocci
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Claudia Tonini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Tiziana Di Pippo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Florenzia Vuono
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Maria Marino
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| |
Collapse
|
24
|
Altered Brain Cholesterol/Isoprenoid Metabolism in a Rat Model of Autism Spectrum Disorders. Neuroscience 2018; 372:27-37. [PMID: 29309878 DOI: 10.1016/j.neuroscience.2017.12.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.
Collapse
|
25
|
Hasegawa S, Imai M, Yamasaki M, Takahashi N, Fukui T. Transcriptional regulation of acetoacetyl-CoA synthetase by Sp1 in neuroblastoma cells. Biochem Biophys Res Commun 2017; 495:652-658. [PMID: 29137983 DOI: 10.1016/j.bbrc.2017.11.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
Acetoacetyl-CoA synthetase (AACS) is the enzyme responsible for cholesterol and fatty acid synthesis in the cytosol. We have previously shown that AACS has an important role in normal neuronal development and that knockdown of SREBP-2, which orchestrates cholesterol synthesis, resulted in the downregulation of AACS mRNA levels. In this study, we investigated the transcriptional mechanism of AACS in Neuro-2a, neuroblastoma cells. Luciferase assay showed that the minimal core promoter of the mouse AACS gene is located in a region with 110 bps upstream from the transcription start site. Mutagenesis studies showed that the Sp1 binding site was crucial for AACS promoter activity. ChIP assay and DNA affinity precipitation assay showed that Sp1 binds to the Sp1 binding site on the promoter region of AACS. Moreover, overexpression of Sp1 increased AACS mRNA levels. Knockdown of AACS resulted in a decrease in histone deacetylase 9, associated with gene silencing. These results suggest that Sp1 regulates gene expression of AACS in Neuro-2a cells and ketone body utilization affects the balance of histone acetylation.
Collapse
Affiliation(s)
- Shinya Hasegawa
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan.
| | - Masahiko Imai
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Masahiro Yamasaki
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Noriko Takahashi
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Tetsuya Fukui
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| |
Collapse
|
26
|
Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 2016; 232:281-286. [DOI: 10.1002/jcp.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Veronica Cartocci
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Michela Servadio
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Viviana Trezza
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Valentina Pallottini
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| |
Collapse
|